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Potential energy surfaces in atomic structure: The role of Coulomb correlation in the ground
state of helium
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For the S states of two-electron atoms, we introduce an exact and unique factorization of the internal
eigenfunction in terms of a marginal amplitude, which depends functionally on the electron-nucleus distances
r1 and r2, and a conditional amplitude, which depends functionally on the interelectronic distance r12 and
parametrically on r1 and r2. Applying the variational principle, we derive pseudoeigenvalue equations for these
two amplitudes, which cast the internal Schrödinger equation in a form akin to the Born-Oppenheimer separation
of nuclear and electronic degrees of freedom in molecules. The marginal equation involves an effective radial
Hamiltonian, which contains a nonadiabatic potential energy surface that takes into account all interparticle
correlations in an averaged way, and whose unique eigenvalue is the internal energy. At each point (r1,r2), such
surface is, in turn, the unique eigenvalue in the conditional equation. Employing the ground state of He as
prototype, we show that the nonadiabatic potential energy surface affords a molecularlike interpretation of the
structure of the atom, and aids in the analysis of energetic and spatial aspects of the Coulomb correlation, in
particular correlation-induced symmetry breaking and quantum phase transition.
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I. INTRODUCTION

The notion that molecules and other atomic aggregates
possess well-defined shapes, arguably the most basic paradigm
of chemistry, is rooted in the classical structural theory [1,2].
In the quantum-mechanical framework, this notion is put in
on the basis of the topography of a Born-Oppenheimer (BO)
potential energy surface (PES) [3].

In atomic physics, the success of the independent-particle
central-field model led, for a long time, to the view that atoms
are essentially spherical [4]. However, the discovery that the
intrashell supermultiplets in the double-excitation spectra of
He can be empirically assigned to collective rotational-like
and bendinglike motions of the electrons [5], analogous to
the rovibrational motions of a nonrigid linear XYX molecule,
challenged this view [4]. Afterwards, it was found that more
complex atoms can have nonspherical shapes even in their
ground states [6]. An analogous situation, referred to as
crystallization, arises in artificial atoms, which are mesoscopic
systems constituted by electrons confined in semiconductor
quantum dots [7].

In nuclear physics, it was early recognized that nuclei can
deviate from the spherical shape [8]. Moreover, the concept of
a BO PES was introduced, in analogy with the molecular case,
albeit in the limited context of the empirical liquid drop model,
with the roles of the adiabatic degrees of freedom played by
the parameters that specify the surface deformation [9,10].

Without recourse to the BO approximation, for any collec-
tion of particles, elements of structure can still be extracted
from the patterns in suitably defined probability densities
obtained from all-particle wave functions. For example, such
densities reveal that in some states of few-valence-electron
atoms [4,6,11] and other few-body systems [12–14] the corre-
lations can induce such a collective behavior of the particles
that the system acquires a moleculelike shape. Nevertheless,
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this probability-based notion of quantum structure is not as
far reaching as the BO-PES-based notion of classical structure
commonly employed in the molecular sciences [1,2].

Hence, it is highly desirable to generalize the concept of
PES, starting from the quantum-mechanical Hamiltonian, to
any assembly of particles, since this would allow the transfer
of chemical-like notions, e.g., bond length, bond angle, and
transition state, together with the conceptual and technical
apparatus of quantum chemistry and molecular spectroscopy,
e.g., the Franck-Condon principle, to other realms, thereby
providing a unified treatment of atoms in molecules [15,16],
electrons in atoms [15–17], quasiparticles in nanostructures
[7,14], nucleons in nuclei [14,18], and even quarks in baryons
[19]. At first sight, this program might seem to be hampered by
the fact that an adiabatic separation of degrees of freedom, the
basic tenet of the BO approximation [3,17,18], is not always
possible. However, in this paper we rigorously prove that such
generalization is indeed feasible, by introducing an exact and
unique marginal-conditional factorization (MCF) of the wave
function [20].

As a prototype, we show how to define a nonadiabatic
PES (NAPES) for the radial motions of the electrons in S

states of two-electron atoms, which amounts to formulating an
exact central-field model for these states. For the case of the
ground state of He, the topography of this surface allows us to
extract a classical molecularlike interpretation of the structure
of the atom. In addition, we analyze the contributions of the
different aspects of the electron correlation to this topography.
Furthermore, we show that this NAPES provides a convenient
conceptual framework for addressing issues of correlation-
induced symmetry breaking and quantum phase transition.

II. FORMALISM

For the S states of two-electron atoms, the internal
Schrödinger equation,

Ĥ�(r1,r2,r12) = E�(r1,r2,r12), (1)
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determines the nonrelativistic energy, E [21]. Considering the
center of mass located at the nucleus, the internal coordinates
r1,r2,r12, with r1,r2 being the electron-nucleus distances and
r12 being the interelectronic distance, determine the shape and
size of the electron-nucleus-electron triangle. Such coordinates
are independent, except that they are constrained by the trian-
gle condition |r1 − r2| � r12 � r1 + r2. The volume element
of this configuration space is dV = r1r2r12dr1dr2dr12. In
atomic units, the fixed-nucleus Hamiltonian is given by

Ĥ = −
2∑

i=1

(
1

2

∂2

∂r2
i

+ 1

ri

∂

∂ri

+ Z

ri

)

−
(

∂2

∂r2
12

+ 2

r12

∂

∂r12
− 1

r12

)

−
2∑

i �=j

r2
i − r2

j + r2
12

2rir12

∂2

∂ri∂r12
. (2)

Evidently, in this coordinate system there appear kinetic
couplings, i.e., terms containing derivatives with respect to
r12, besides the original Coulomb potential coupling, r−1

12 .
We wish to construct a PES for the radial degrees of

freedom, r1,r2, which we will accomplish by averaging over
the r12 variable, in the following way. The internal distribution
function is given by

D(r1,r2,r12) = r1r2r12|�(r1,r2,r12)|2. (3)

According to Bayes’ rule, this function can be factorized as

D(r1,r2,r12) = Dm(r1,r2)Dc(r12|r1,r2), (4)

where

Dm(r1,r2) :=
∫ r1+r2

|r1−r2|
dr12D(r1,r2,r12) (5)

is the marginal distribution function for finding the electrons at
(r1,r2) irrespective of r12, and Dc(r12|r1,r2) is the conditional
distribution function for finding the electrons at r12 provided
that they are found at (r1,r2). (Here and henceforth, when we
speak of the probability of finding the electrons at a point, we
actually mean in an infinitesimal neighborhood around that
point.) The normalization of D(r1,r2,r12),∫ ∞

0
dr1

∫ ∞

0
dr2

∫ r1+r2

|r1−r2|
dr12D(r1,r2,r12) = 1, (6)

automatically implies the normalization of Dm(r1,r2),∫ ∞

0
dr1

∫ ∞

0
dr2Dm(r1,r2) = 1, (7)

and the local normalization of Dc(r12|r1,r2),∫ r1+r2

|r1−r2|
dr12Dc(r12|r1,r2) = 1. (8)

Following Hunter [20], we introduce the MCF of the
internal eigenfunction

�(r1,r2,r12) = ψ(r1,r2)χ (r12|r1,r2), (9)

by defining marginal and conditional amplitudes [22,23]

ψ(r1,r2) := eiα(r1,r2)

(∫ r1+r2

|r1−r2|
dr12r12|�(r1,r2,r12)|2

)1/2

≡ eiα(r1,r2)〈�|�〉1/2, (10)

χ (r12|r1,r2) := e−iα(r1,r2) �(r1,r2,r12)

〈�|�〉1/2 , (11)

such that

Dm(r1,r2) = r1r2|ψ(r1,r2)|2, (12)

Dc(r12|r1,r2) = r12|χ (r12|r1,r2)|2. (13)

[From Eq. (10) onwards, angular brackets express integrals
over r12 with the Jacobian r12.] The normalization conditions
(6)–(8) now read

∫ ∞

0
dr1r1

∫ ∞

0
dr2r2〈�|�〉 = 1, (14)∫ ∞

0
dr1r1

∫ ∞

0
dr2r2|ψ |2 = 1, (15)

〈χ |χ〉 = 1. (16)

The following observations about the MCF [Eqs. (9)–
(16)] are in order. First, it does not presuppose an adiabatic
separation of the degrees of freedom, i.e., that r1 and r2 are slow
in comparison with r12. Second, even if the last summation
in Eq. (2), which explicitly couples all the variables, were
neglected, �(r1,r2,r12) still could not be exactly factorized
as, say, ψ(r1,r2)ξ (r12), because of the triangle condition.
Third, the phase eiα(r1,r2), with α(r1,r2) real, is arbitrary.
Thus, given the exchange symmetry of �, this phase can be
chosen to set the exchange symmetries of ψ and χ , in the
following way: Noting that 〈�|�〉1/2 is always symmetric,
for singlet states, where � must be symmetric, α can be
chosen as symmetric (antisymmetric) to make both ψ and χ

symmetric (antisymmetric); for triplet states, where � must be
antisymmetric, α can be chosen as symmetric (antisymmetric)
to make ψ symmetric (antisymmetric) and χ antisymmetric
(symmetric). Fourth, the local normalization of χ [Eq. (16)]
guarantees it to be nontrivial and unique, within the phase
α(r1,r2) [22]. Fifth, χ is not globally normalizable despite the
fact that � is, since

∫ ∞
0 dr1r1

∫ ∞
0 dr2r2〈χ |χ〉 = V → ∞, with

V the volume of the {r1,r2} subspace [23]. Finally, if ψ(r1,r2)
had a node at, say, r1 = a then �(a,r2,r12) would have to
vanish at all r12 [see Eq. (10)]. Moreover, for χ (r12|r1,r2) to
remain finite as r1 → a, �(r1,r2,r12) would have to approach
zero faster than 〈�|�〉1/2 at all r12 in this limit [see Eq. (11)],
which is impossible. This constitutes a proof that marginal
amplitudes must be nodeless, alternative to the one presented
by Hunter [24].

We derive the equations that govern ψ and χ from
the variational principle, as follows. First, we set up the
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constrained functional [22]

F [�] ≡
∫ ∞

0
dr1r1

∫ ∞

0
dr2r2

〈
�|Ĥ |�〉

−
∫ ∞

0
dr1r1

∫ ∞

0
dr2r2λ(r1,r2)(〈χ |χ〉 − 1)

− ε

(∫ ∞

0
dr1r1

∫ ∞

0
dr2r2|ψ |2 − 1

)
, (17)

where the first term is the expectation value of the energy, the
second term ensures the local normalization of χ (r12|r1,r2)
at every point of the {r1,r2} subspace, and the third term
ensures the normalization of ψ(r1,r2), with λ(r1,r2) and ε

being Lagrange multipliers. Then, we impose the extrem-
ization condition δF = 0, which yields, after a convenient
rearrangement,

(T̂0 + U (r1,r2))ψ(r1,r2) = εψ(r1,r2), (18)

�̂ψ (r1,r2)χ (r12|r1,r2) = U (r1,r2)χ (r12|r1,r2), (19)

where

T̂0 ≡ −
∑

i

(
1

2

∂2

∂r2
i

+ 1

ri

∂

∂ri

)
, (20)

�̂ψ (r1,r2) ≡Ĥ−
2∑

i �=j

(
1

ψ

∂ψ

∂ri

)(
r2
i − r2

j + r2
12

2rir12

∂

∂r12
+ ∂

∂ri

)
.

(21)

Here, the notation �̂ψ (r1,r2) indicates that this operator
contains ψ(r1,r2) and acts also on the r1,r2 variables. The
fact that in Eq. (19) r1 and r2 play the roles of parameters
can be made more explicit by rewriting its left-hand side as
�̂ψ (r ′

1,r
′
2)χ (r12|r ′

1,r
′
2) r ′

1=r1,r
′
2=r2 , which means that r1 and r2

are fixed only after the operator has acted on χ .
Equations (18) and (19) constitute a pair of exact coupled

pseudoeigenvalue equations with the following characteristics.
First, since the operators on their left-hand sides are Hermitian
the eigenvalues ε and U (r1,r2) are real. Second, since ψ and
χ are unique up to a phase for a given �, each one of them
possesses only one acceptable solution. Third, the presence of
the logarithmic derivatives of ψ in the second term at the right-
hand side of Eq. (21) makes them nonlinear, which implies
that their solution requires an iterative self-consistent scheme.
(For mathematical caveats about this kind of problem, see
Ref. [25].) Finally, the eigenvalue U (r1,r2) and the Lagrange
multiplier λ(r1,r2) are related by

U (r1,r2) = λ(r1,r2)

ρm(r1,r2)
− T̂0ψ(r1,r2)

ψ(r1,r2)
. (22)

Consequently, by substituting Eq. (22) into Eq. (18) and
taking into account Eq. (15) we see that ε = ∫ ∞

0 dr1r1∫ ∞
0 dr2r2λ(r1,r2). Furthermore, with some additional mani-

pulation we obtain that ε = ∫ ∞
0 dr1r1

∫ ∞
0 dr2r2〈�|Ĥ |�〉 =

E. Therefore, λ(r1,r2) = 〈�|Ĥ |�〉 can be interpreted as a local
energy, i.e., the energy of the system when the electrons are
positioned at (r1,r2).

In Eq. (18) T̂0, as given by Eq. (20), represents the kinetic
energy of two electrons in a central field. On the other hand,
according to Eq. (19) U (r1,r2) = 〈χ |�̂ψ (r1,r2)|χ〉, so this
function carries all the information about the electron-nucleus
attractions, electron-electron repulsion, and kinetic couplings,
averaged over r12. Hence, in Eq. (18) U (r1,r2) plays the role
of an effective radial potential that, nonetheless, correlates the
electrons fully. Consequently, Eq. (18) constitutes an exact
central-field model for S states. In addition, since this is a
Schrödinger equation for

√
Dm(r1,r2)/r1r2 [see Eq. (12)],

we observe that the energy is a functional of the marginal
distribution function, which from now on we will call the
radial distribution.

Equations (18) and (19) are arranged in a form analo-
gous to Hunter’s nonadiabatic electronic-nuclear separation
[20,22,23,26], which, in turn, is a sort of exact version of
the BO approximation. Thus, r12 and r1,r2 are the analogs
of the electronic and the nuclear coordinates, respectively,
and �̂, T̂0, and U are the analogs of the clamped-nuclei
Hamiltonian (with the electron-nucleus attractions included),
the nuclear kinetic energy operator, and the molecular NAPES.
Consequently, we will refer to our U (r1,r2) as the atomic
NAPES. By the same token, χ and ψ are analogous to the
electronic and the vibrational eigenfunctions. Nevertheless, it
must be kept in mind that, due to the uniqueness of the MCF,
there can be only one marginal (vibrational) eigenfunction,
with energy E, associated with this atomic NAPES, in contrast
with the molecular BO case, where the PES can sustain several
vibrational states with different energies.

III. ILLUSTRATIVE CALCULATIONS AND DISCUSSION

We applied the foregoing formalism to the ground state of
He. The solution to the nonlinear system of Eqs. (18) and (19)
is a difficult problem [25] that lies beyond the scope of this
work. Since our main goal is to learn about the topography of
the atomic NAPES and its dependence upon the interparticle
correlations, we employed these equations for the purposes of
analysis only. Therefore, we extracted approximate marginal
and conditional amplitudes, using Eqs. (10) and (11), choosing
α ≡ 0, from variationally optimized trial functions, and then
evaluated approximate atomic NAPES’s by U ≈ 〈χ |�̂ψ |χ〉,
in accordance with Eq. (19).

In order of increasing account of the Coulomb correlation,
the optimized trial functions selected were

�(r1,r2,r12) = Ne−ζ (r1+r2) (23)

with N = 13.59, ζ = 27/16;

�(r1,r2,r12) = Ne−ζ (r1+r2)(1 + c1r12) (24)

with N = 12.26, ζ = 1.857270, c1 = 0.390807; and

�(r1,r2,r12) = N e−ζ (r1+r2)
[
1 + c1r12 + c2r

2
12 + c3(r1 + r2)

+ c4(r1 + r2)2 + c5(r1 − r2)2] (25)

with N = 12.27, ζ = 1.755656, c1 = 0.337294, c2 =
−0.037024, c3 = −0.145874, c4 = 0.023634, c5 =
0.112519. Expression (23) is the familiar Kellner uncorrelated
function, whereas expressions (24) and (25) are of the
Hylleraas type, with linear and quadratic polynomial
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correlation factors, respectively [21]. For these trial functions
the expectation values of the energy turn out to be
〈E〉 = −2.848, − 2.891, − 2.903 hartree, respectively [21],
which increasingly approach the reported exact energy [27].
Of course, much better trial functions than (25) can be devised
[27], but this level of approximation suffices for our largely
qualitative analysis.

Before presenting the results, we must qualitatively com-
pare the spatial behavior of the functions (23)–(25). First, we
recall that, strictly, the correlation factor in a trial function
should go to a constant as r12 → ∞ (which can occur only
when r1 → ∞ and/or r2 → ∞), because in this limit the
electrons are uncorrelated. Hence, the only function that
fulfills this condition is (23). In fact, the correlation factors
of functions (24) and (25) diverge in this limit. (However,
the full trial functions remain well behaved because the
exponential factor damps the divergence.) Thus, in regions of
large r1 and/or large r2 the uncorrelated function (23) actually
provides a much better approximation to the exact wave
function. On the other hand, close to the nucleus the correlated
functions (24) and (25) provide better approximations. Very
close to the nucleus, function (25) should provide a better
approximation than function (24), but at sufficiently long
distance from the nucleus the situation should reverse, since
the divergence of (25) is stronger. Hence, we will confine our
comparison of the NAPES’s extracted from these functions to
a region relatively close to the nucleus, which is where the
electron correlation plays an important role anyway. Second,
the correlation factor of function (25) also has corrections
in r1 and r2, which (24) does not have. Therefore, due to
the interplay of these characteristics, at a particular point
(r1,r2) it is difficult to predict which NAPES will be more
accurate, although, evidently, the one evaluated with function
(25) should be more accurate overall, since it provides the best
energy.

Trial functions with polynomial correlation factors, in
spite of their wrong asymptotic behaviors, are advantageous
to us because they permit analytical evaluations of ψ , χ ,
and U . For this task, we employed Mathematica 10.3.1
[28]. However, we do not provide the expressions here,
since some of them are too formidable. As a check, we
also reevaluated the energies by means of the expression
〈E〉 = ∫ ∞

0 dr1r1
∫ ∞

0 dr2r2ψ
∗(r1,r2)(T̂0 + U (r1,r2))ψ(r1,r2)

[see Eq. (18)], which had to be performed numerically,
employing the same software; the values obtained turned out
to be the same as the ones reported above.

Figure 1 displays the approximate atomic NAPES evaluated
with the trial function (25). Several features stand out. First, U
has negative values everywhere, except for the steep repulsive
walls at small r1 or r2. Second, it contains a ridge along r1 = r2,
which asymptotically goes to zero very slowly. [Strictly
speaking, exactly at r1 = r2 the value of U is undetermined,
an artifact of the approximate � employed. We obtained
these values by a simple interpolation. The same observation
applies to the NAPES that will be obtained later from the
trial function (24).] Third, this ridge separates two basins with
minima of Ue = −7.73 hartree positioned at re,i = 0.26,re,j =
0.43 bohr, and asymptotic values of −5.57 hartree. Fourth,
there is a saddle point of U ‡ = −7.42 hartree positioned at
r
‡
1 = r

‡
2 = 0.32 bohr, which, along the minimum-energy path,

FIG. 1. The atomic NAPES, U (r1,r2), and its contour map,
obtained from the trial function (25). All quantities are given in atomic
units. The innermost contour has a value of −7.5 hartree and contour
values increase outwards in intervals of 0.5.

lies at the top of a barrier of height Ub ≡ U ‡ − Ue = 0.31
hartree located in between the two minima.

A classical molecularlike interpretation of this topogra-
phy is as follows. The atomic NAPES is associative, as
it should since we are dealing with a bound state. The
minima correspond to two versions of the same equilibrium
structure, with the two electrons on respective Bohrian orbits
of radii 0.26 and 0.43 bohr. These versions are interconvertible
by a degenerate rearrangement through the saddle point
[29], the latter corresponding to a transition structure with
the two electrons on the same (unstable) orbit of radius
0.32 bohr. The stable orbits can perform highly anharmonic
breathing motions, which are analogous to molecular bond
stretching modes. Since the spatial part of the eigenfunction
is symmetric under permutation of r1 and r2 [see Eq. (25)],
these breathings occur in phase, analogously to a molecular
symmetric stretching mode.

To examine the sensitivity of the topography of the NAPES
to the degree of accuracy with which the electron correlation
is taken into account, we also evaluated NAPESs with the
two other trial functions. Figure 2 shows the results. (We
chose the size of the region exhibited in accordance with the
effective range of the radial distribution, as discussed below.)
We see that the three surfaces are very similar, which means
that the topography of the NAPES is not very sensitive to the
degree of correlation in the wave function. As the electron
correlation in the trial function increases, the only trend we
can discern is that the basins become more anharmonic, which
implies that the amplitudes of the breathings of the orbits get
larger.

To assess the roles of the Coulomb interactions in shaping
the topography of the atomic NAPES, first we calculated sur-
faces with the electron-nucleus attractions, −2r−1

i , removed
from �̂ [see Eqs. (21) and (2)], for the three trial functions.
As observed in Fig. 3, the wells disappear, i.e., the basins
become valleys, and, consequently, U becomes dissociative.
Moreover, as the degree of correlation carried by the trial
function increases, the maximum on the ridge slightly shifts
towards shorter distance from the nucleus. Then, we calculated
surfaces with both −2r−1

i and r−1
12 removed from �̂, which

means that the only couplings remaining are the kinetic
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FIG. 2. Contour maps of the atomic NAPESs obtained with
trial functions carrying different degrees of electron correlation. All
quantities are given in atomic units. Top: constant correlation factor
[Eq. (23)]. Middle: linear correlation factor [Eq. (24)]. Bottom:
quadratic correlation factor [Eq. (25)]. The innermost contour has
a value of −7.5 hartree and contour values increase outwards in
intervals of 0.5.

ones. Now, in Fig. 4 we see that the ridge disappears and a
single shallow well remains, whose bottom corresponds to an
equilibrium configuration with both electrons on the same orbit
of radius ∼0.9 bohr. Furthermore, as the degree of correlation
increases, such well becomes more anharmonic. Thus, the
kinetic couplings play a small stabilizing role in the atom, since
this surface is associative, and contribute to the anharmonicity
of the basins present in the NAPES (see Fig. 2). Naturally,
the electron-nucleus attractions play the major stabilizing
role, manifested by the presence of the deep wells in the
NAPES (see Fig. 2), and the electron-electron repulsion plays a

0.5 1.0 1.5 2.0 2.5 3.0

0.5
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FIG. 3. Contour maps of the atomic NAPESs obtained after
removing the electron-nuclear attractions from �̂, for the same cases
of Fig. 2. All quantities are given in atomic units. The innermost
contour has a value of −0.37 hartree and contour values increase
outwards in intervals of 0.05.

destabilizing role, manifested by the presence of the ridge (see
Figs. 2 and 3). Therefore, the Coulomb repulsion is responsible
for inducing the symmetry breaking [14] that gives rise to the
split-orbit equilibrium configuration. Interestingly, the concept
of a correlation-induced orbit splitting has been introduced in
an ad hoc manner by defining inner and outer radial probability
densities [30].

Because of the averaging over r12, this atomic NAPES
provides explicit information about the radial correlations
only. To obtain explicit information about the angular
correlations, we turn to the conditional distribution func-
tion, Dc(r12|r1,r2), which, for convenience of interpretation,
we transformed into Dc(θ12|r1,r2) using the relation r12 =
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FIG. 4. Contour maps of the atomic NAPESs obtained after
removing the electron-nuclear attractions and electron-electron re-
pulsion from �̂, for the same cases of Fig. 2. All quantities are given
in atomic units. The innermost contour has a value of −0.88 hartree
and contour values increase outwards in intervals of 0.05.

(r2
1 + r2

2 − 2r1r2 cos θ12)1/2. Figure 5 displays this function,
extracted from the trial function (25), evaluated at selected
points (r1,r2) of the NAPES. Its behavior reveals the presence
of the Coulomb hole: First, the probabilities of finding the sys-
tem in the collinear electron-nucleus-electron (θ12 = π ) and
nucleus-electron-electron (θ12 = 0) configurations are maxi-
mal and minimal, respectively. [Note that the probability of
finding the electrons at zero separation vanishes because of
the Jacobian r12 present in Eq. (13).] Second, the values and
curvature of this function decrease with the distance from the
nucleus, which must be due to the weakening of the electron-

FIG. 5. The conditional distribution function, Dc(θ12|r1,r2) (in
atomic units), evaluated at (a) r1 = r2 = 0.25 bohr, (b) r1 = r2 =
0.32 bohr (the saddle point), (c) ri = 0.26,rj = 0.43 bohr (the
minimum of either well), (d) r1 = r2 = 0.50 bohr, (e) r1 = r2 =
1.00 bohr, (f) r1 = r2 = 2.00 bohr.

electron correlation as the size of the electron-nucleus-electron
triangle grows.

The corresponding radial distribution, Dm(r1,r2), is shown
in Fig. 6. It turns out to be unimodal, with its maximum
located on the ridge, at r1 = r2 = 0.60 bohr. (By ri ∼ 3 bohr,
this function has practically decayed to zero. This is why
above we showed all the surfaces within the region 0 �
ri � 3.0 bohr.) Hence, quantum mechanics has frustrated the
symmetry breaking latent in the NAPES, and placed the most
probable configuration with both electrons on the same orbit
of radius 0.60 bohr. Taking into account that the profile of the
NAPES along the minimum-energy path looks like a double
well, we suspect this has happened because the zero-point
energy, E0 ≡ 〈E〉 − Ue = 4.83 hartree, is very much above
the barrier, Ub = 0.31 hartree. Consequently, the atom behaves
analogously to a fluxional molecule. Had E0 been below
the barrier, Dm would have displayed two humps, each
associated mainly with the breathing of one orbit. It appears
that something like this occurs in some of the doubly excited
states of He, for instance the nominal 2s3s 1Se state (see Fig. 2

FIG. 6. The radial distribution, Dm(r1,r2), and its contour map.
All quantities are given in atomic units. The innermost contour has a
value of 0.66 hartree and contour values decrease outwards in intervals
of 0.033.
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FIG. 7. Contour map of the atomic NAPES for a fictitious He
atom with the electron-electron repulsion quadrupled. All quantities
are given in atomic units. The innermost contour has a value of −4.2
hartree and contour values increase outwards in intervals of 0.55.

in Ref. [11d]), where the electron-electron correlation is more
effective and, consequently, the ridge must be higher.

To support this suspicion, we considered fictitious atoms
with the electron-electron repulsion increased, i.e., with r−1

12

replaced by κr−1
12 (κ > 1) in the Hamiltonian (2). For each

value of κ we used a trial function of the form (25), with all
the parameters reoptimized. In the NAPES, we observed that,
as κ increases, hills continuously develop on each side of the
ridge and the basins become more anharmonic. Concomitantly,
at κ ∼ 2.5 the radial distribution begins to develop two humps
along the basins. Figures 7 and 8 display the NAPES and Dm,
respectively, for κ = 4. In this case the energy turns out to be
〈E〉 = −1.302 hartree, which indicates that this fictitious atom
is much less stable than the real one, as expected. The minima
of the basins are now located at re,i = 0.27,re,j = 2.28 bohr
with potential values of Ue = −4.53 hartree, and the saddle
point is now positioned at r‡1 = r

‡
2 = 1.60 bohr with a potential

value of U ‡ = −0.97 hartree. The barrier height becomes
Ub = 3.56 hartree, which is much higher than the one for
the κ = 1 case. The two maxima of Dm are positioned

FIG. 8. The broken-symmetry radial distribution, Dm(r1,r2), and
its contour map, for a fictitious He atom with the electron-electron
repulsion quadrupled. All quantities are given in atomic units. The
innermost contour has a value of 0.0325 hartree and contour values
decrease outwards in intervals of 0.0013.

at ri = 0.65,rj = 3.64, very displaced from the potential
minima due to the high anharmonicity of the basins. Along
the ridge this function practically vanishes. Thus, the most
probable configurations now have the electrons on respective
orbits of radii 0.65 and 3.64 bohr, with the probability
of interconverting by tunneling practically vanishing. These
orbits can be envisioned undergoing essentially independent
in-phase breathing motions. Hence, the symmetry breaking
latent in the NAPES has become actual, due to the stronger
electron-electron correlation [14]. With confidence, we can
associate this phenomenon with the fact that the zero-point
energy, E0 = 3.23 hartree, is now 0.33 hartree below the
barrier.

The smooth evolution of the radial distribution from
unimodal to bimodal as the Coulomb strength parameter, κ ,
increases is the hallmark of a continuous quantum phase tran-
sition, where κ and the double-well profile of the minimum-
energy path are analogous to the temperature and the free
energy in thermodynamics, respectively. Phase transitions
of this type in Coulomb three-body systems have been
characterized [31]; the atomlike (unimodal) to moleculelike
(bimodal) evolution of the particle density in the sequence
H− → He → Ps− → H+

2 [12,13] is a case in point.

IV. CONCLUSIONS AND OUTLOOK

The particular MCF (9) defined in this work produced an
exact central-field model of the two-electron atom, embodied
in the atomic NAPES U (r1,r2) [see Eq. (18)]. For the ground
state of He, we found that the topography of this surface (see
Figs. 1 and 7), together with the radial distribution (see Figs. 6
and 8), provide a convenient framework for discussing issues
of electron correlation, symmetry breaking, and quantum
phase transition.

Three alternative MCF’s can be defined, which al-
low one to focus on complementary aspects. First, the
MCF �(r1,r2,r12) = ψ(r2,r12)χ (r1|r2,r12) yields the NAPES
U (r2,θ12), which is useful for analyzing the spatial behavior
of the Coulomb hole [32]. In addition, such NAPES, together
with the marginal distribution Dm(r2,θ12), should also provide
a more complete picture of the correlation-induced symmetry
breaking underlying the quantum phase transitions that have
been observed in Coulomb three-body systems [12–14,31].
Second, from the MCF �(r1,r2,r12) = ψ(r1)χ (r2,r12|r1) the
density ρ(r2,θ12|r1) used extensively in an ad hoc way by
Berry and coworkers [4,11,15] can be obtained simply as
|χ (r2,r12|r1)|2 followed by the transformation r12 → θ12. In
this case, an atomic nonadiabatic potential energy curve
(NAPEC) U (r1) can also be extracted [33]. Finally, the
MCF �(r1,r2,r12) = ψ(r12)χ (r1,r2|r12) generates the NAPEC
U (r12), which can be used to generalize the molecular-orbital-
like method of Feagin and Briggs, initially devised for the
classification of doubly excited states of He [34], to cases
where the r12 coordinate cannot be treated as adiabatic, as in
the ground and singly excited states of this atom and other
three-particle systems [35].

Further insight can be gained by working with the hy-
perspherical coordinates R ≡ (r2

1 + r2
2 )1/2, α ≡ tan−1(r2/r1)

[36], instead of the Hylleraas coordinates r1,r2. In par-
ticular, the MCF �(R,α,θ12) = ψ(R)χ (α,θ12|R) produces
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the NAPEC U (R), whose adiabatic counterpart has been
extensively used for the classification of states of Coulomb
three-particle systems [36]. (We would like to clarify that what
is often called the potential surface in this connection is not a
PES in the sense used in this paper, but rather the sum of all the
Coulomb potentials appearing in the Hamiltonian expressed in
hyperspherical or Jacobi coordinates.)

Ludeña and coworkers [13] have discovered that the
topologies of non-BO one-particle nuclear and electron
densities for few-body systems depend upon the reference
points selected for the definitions of these quantities. This
nonuniqueness weakens the notion that elements of molecular
structure can be extracted from the patterns exhibited by the
densities [12]. Here, the MCF can come to the rescue since
one can define a density for any particle by marginalizing
the variables associated with the other particles, and, as we
have seen, marginal distributions are uniquely defined. All
these constitute topics for future research.

We must emphasize that the implementation of this method-
ology does not rely on finding solutions of coupled marginal
and conditional equations, such as (18) and (19), which appears

to be a very difficult nonlinear problem [25]. Instead, these
equations are used for extracting and analyzing information
contained in wave functions that can be generated by other,
more practical means, such as the variational trial functions
(23)–(25). Thus, the extension of this methodology to more
complex systems seems quite feasible. One of the issues we
plan to address in the near future is whether atoms with more
than two valence electrons in their ground states possess
well-defined geometrical shapes or behave analogously to
fluxional molecules [6].

In conclusion, we believe we have taken a first step in
developing a research program aimed at unifying the treat-
ment of atoms, molecules, and other collections of quantum
particles, where the concept of PES, with the associated notion
of geometrical shape, in the sense employed in the molecular
sciences, can play a key role.
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