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Coarse graining the phase space of N qubits
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We develop a systematic coarse-graining procedure for systems of N qubits. We exploit the underlying
geometrical structures of the associated discrete phase space to produce a coarse-grained version with reduced
effective size. Our coarse-grained spaces inherit key properties of the original ones. In particular, our procedure
naturally yields a subset of the original measurement operators, which can be used to construct a coarse discrete
Wigner function. These operators also constitute a systematic choice of incomplete measurements for the
tomographer wishing to probe an intractably large system.
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I. INTRODUCTION

Recently, the understanding of many-body quantum sys-
tems has dramatically progressed. Nowadays, we are achiev-
ing an amazing degree of control over larger and larger
systems [1,2]. Therefore, verification during each stage of
experimental procedures is of utmost importance; quantum
tomography is the appropriate tool for that purpose.

The goal of quantum tomography is to reconstruct the state
of a system by performing multiple measurements on iden-
tically prepared copies of the system. Once the experimental
data are extracted, a numerical procedure determines which
density matrix fits best the measurements. This estimation can
be performed using different approaches, such as maximum
likelihood [3] or Bayesian methods [4–7]. However, tomogra-
phy becomes harder as we explore more intricate systems. If
we look at the simple, yet illustrative case of N qubits, which
will serve as the consistent thread in this paper, one has to make
measurements in at least 2N + 1 different bases before one can
claim to know everything about an a priori unknown system.
With such an exponential scaling in the number of qubits, it
is clear that current methods rapidly become intractable for
present state-of-the-art experiments.

As a result, more sophisticated tomographical techniques
are called for. New protocols try to simplify the process by
making an educated guess about the nature of the state. Among
other assumptions, this includes rank deficiency [8–12], extra
symmetries [13–15], or Gaussianity [16]. While all these
approaches are extremely efficient, their pitfall is that when
the starting guess is inaccurate, they produce significant
systematic errors.

Here, we pursue a different approach, inspired by a
notion from statistical mechanics: coarse graining [17]. This
operation transforms a probability density in phase space
into a “coarse-grained” density that is a piecewise constant
function, a result of density averaging in cells. This is the
chief idea behind the renormalization group [18], which allows
a systematic investigation of the changes of a physical system
as viewed at different scales.

In our case, we consider a system of qubits and look at the
associated phase space, which turns out to be a discrete grid

of 2N×2N points. We assign to each suitably defined line in
phase space a specific rank-1 projection operator representing
a pure quantum state. For each point of the grid, a suitable
quasiprobability such as the Wigner function can be directly
computed from the measurement of the states associated with
the lines passing through that point. We coarse grain by
combining groups of these lines into thick lines, which we
will show to be lines in the phase space of an effectively
smaller system. Our coarse-grained phase spaces are endowed
with many nice properties.

Most notably, our procedure systematically and naturally
reveals a subset of measurements which one could use to
perform incomplete tomography. In addition, using the coarse-
grained points and lines, we show that one can define a discrete
Wigner function in largely the same way as it is defined in the
original space. When plotted, the coarse functions resemble
smoothed-out versions of the originals, preserving many of
their prominent visual features.

II. PHASE SPACE OF N QUBITS

A qubit is a two-dimensional quantum system, with Hilbert
space isomorphic to C2. It is customary to choose two
normalized orthogonal states, say {|0〉,|1〉}, as a computational
basis. The unitary matrices

σz = |0〉〈0| − |1〉〈1|, σx = |0〉〈1| + |1〉〈0| (2.1)

generate the Pauli group P1, which consists of all the
Pauli matrices plus the identity, with multiplicative factors
±1,±i [19].

For N qubits, the corresponding Hilbert space is the tensor
product C2 ⊗ · · · ⊗ C2 = C2N

. A compact way of labeling
both states and elements of the corresponding Pauli group
PN is by using the finite field F2N . In Appendix A we briefly
summarize the basic notions of finite fields needed to proceed.

Let |ν〉, ν ∈ F2N , be an orthonormal basis in the Hilbert
spaceC2N

(henceforth, field elements will be denoted by Greek
letters). The elements of the basis can be labeled by powers of
a primitive element σ (i.e., a root of an irreducible primitive
polynomial): {|0〉, |σ 〉, . . . , |σ 2N −1 = 1〉}. Now the equivalent
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version of (2.1) is [20–22]

Zα =
∑

ν

χ (αν) |ν〉〈ν|, Xβ =
∑

ν

|ν + β〉〈ν|, (2.2)

so that

ZαXβ = χ (αβ) XβZα, (2.3)

which is the discrete counterpart of the Weyl-Heisenberg
algebra for continuous variables [23]. Here, the additive
character χ is defined as χ (α) = exp[iπ tr(α)], and the trace of
a field element (we distinguish it from the trace of an operator
by the lower case “tr”) is defined in Appendix A. Moreover,
Zα and Xβ are related through the finite Fourier transform [24]

F = 1√
2N

∑
ν,ν ′

χ (ν ν ′) |ν〉〈ν ′|, (2.4)

so that Xα = F Zα F †.
The operators (2.2) generate the Pauli group PN of

N qubits and, with a suitable choice of basis, they can
be factorized into a tensor product of single-qubit Pauli
operators. To this end, it is convenient to consider F2N as
an N -dimensional linear space over Z2. It is spanned by an
abstract basis {θ1, . . . ,θN }, so that given a field element α, the
expansion

α =
N∑

i=1

ai θi, ai ∈ Z2, (2.5)

allows us the identification α ⇔ (a1, . . . ,aN ). The basis {θi}
can be chosen to be orthonormal with respect to the trace
operation; that is, tr(θi θj ) = δij . This is a self-dual basis, which
always exists for the case of qubits. In this way, we associate
each qubit with a particular element of the self-dual basis:
qubiti ⇔ θi . Using this basis, we have the factorization

Zα = σa1
z ⊗ · · · ⊗ σaN

z , Xβ = σb1
x ⊗ · · · ⊗ σbN

x , (2.6)

where ai = tr(αθi) and bi = tr(βθi) are the corresponding
expansion coefficients for α and β in the self-dual basis.

We next recall [25,26] that the grid defining the phase space
for N qubits can be appropriately labeled by the discrete points
(α,β), which are precisely the indices of the operators Zα and
Xβ : α is the “horizontal” axis and β is the “vertical” one. In
this grid we can introduce the set of displacements

D(α,β) = 
(α,β) ZαXβ, (2.7)

where 
(α,β) is a phase required to avoid plugging in extra
factors when acting with D. A sensible choice for the case of
qubits is 
2(α,β) = χ (αβ), which ensures the Hermiticity of
the displacement operators. In addition, we impose 
(α,0) =
1 and 
(0,β) = 1, which means that the displacements along
the “position” axis α and the “momentum” axis β are not
associated with any phase. These displacement operators
shift phase-space points, so the action of D(α′,β ′) maps
(α,β) 	→ (α + α′,β + β ′), justifying their designation. Note
that we still have to fix the sign of the phase 
(α,β). We
choose the phase as


(α,β) = i tr(αβ)(−1)f (αβ), (2.8)

where f (x) = ∑
0�j<i�m−1 x2i+2j

, which ensures that the
operators defined in Eq. (3.3) below are rank-1 projections.

On the phase-space grid one can introduce a variety of
geometrical structures with many of the same properties as in
the continuous case [27–29]. The simplest are the straight lines
passing through the origin (also called rays), with equations

α = 0 or β = λα. (2.9)

The rays have a very remarkable property: the displacement
operators D(α,β) belonging to the same ray commute and thus
have a common system of eigenvectors {|ψν,λ〉},

D(α,λα)|ψν,λ〉 = exp(iξν,λ)|ψν,λ〉, (2.10)

where λ is fixed and exp(iξν,λ) is the corresponding eigenvalue,
so |ψν,0〉 = |ν〉 are eigenstates of Zα (displacement operators
labeled by the ray β = 0, which we take as the horizontal axis).
The projection operators associated with the lines of equal
slope are the projections onto these eigenvectors. Indeed, we
have that

|〈ψν,λ|ψν ′,λ′ 〉|2 = δλ,λ′δν,ν ′ + 1

2N
(1 − δλ,λ′), (2.11)

and in consequence, they are mutually unbiased bases
(MUBs) [30].

Now suppose for each ray we disregard the origin (0,0),
whose displacement operator is the identity. This leaves us
with 2N − 1 commuting operators. If we then consider the
whole bundle of 2N + 1 rays (which are obtained by varying
the “slope” λ over all of F2N ), we can construct a complete set
of MUB operators arranged in a (2N + 1)×(2N − 1) table [31].

To round out the scenario, we need to represent states
in phase space. The discrete Wigner function [32] is the
appropriate tool. It can be considered an invertible mapping

W�(α,β) = 1

2N
Tr[� �(α,β)], (2.12)

so that

� =
∑
α,β

�(α,β) W�(α,β). (2.13)

The operational kernel is defined as

�(α,β) = 1

2N

∑
α′,β ′

χ (αα′ − ββ ′) D(α′,β ′), (2.14)

which, in view of Eq. (2.4), can be interpreted as a double
Fourier transform of D(α,β). One can check that this kernel has
all the desirable properties [33]: it is Hermitian, normalized,
and covariant under the Pauli group. As a result, for each point
on the grid, the corresponding value of the Wigner function
can be computed from the probabilities of measuring the pure
states associated with the lines passing through that point.

III. COARSE GRAINING

As heralded in the Introduction, our goal is to tailor a
procedure that allows us to coarse grain the phase space
of a multiqubit system, i.e., to break it down into simpler
subcomponents.

To this end, we consider the number N of qubits to be
composite, i.e., N = mn. Let {μ0, . . . ,μn−1} be a basis of
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FIG. 1. Graphical sketch of coarse graining. Here we consider dimension 16 and its diagonal ray, β = α. The left panel plots all the lines
of the form β = α + γ , parametrized by the shift γ . Points on the same line have the same color. Axis labels correspond to powers of the
primitive element of F16, with the convention that σ 0 is denoted by 0 and σ 15 = 1. The middle panel shows the original grid with the axis
labels permuted such that coset elements are grouped together. We can see that this leads to distinct 4×4 blocks containing points of exactly
four different colors. These are shown expanded out in the small bottom four grids. One notices that these “coarse” blocks form the diagonal
ray and all its translates in dimension 4, which we show superimposed in the right panel.

F2mn with respect to F2m . We define

C0 =
⎧⎨
⎩

n−1∑
j=1

τjμj |τj ∈ F2m

⎫⎬
⎭, (3.1)

i.e., the subspace made of linear combinations of basis
elements μ1, . . . ,μn−1 with coefficients in the base field F2m .
We can use this set C0, which we henceforth refer to as the
initial coset, to decompose the field F2mn into cosets:

Cτ = τμ0 + C0, τ ∈ F2m . (3.2)

The coarse-grained space will be labeled according to these
cosets.

We can imagine the process of coarse graining as partition-
ing the grid F2mn×F2mn in such a way that we superimpose
a grid of size 2m×2m on top, with each superimposed point
indexed by cosets rather than field elements in the original
grid. Each point in the coarse grid then contains a subgrid the
same size as Fn−1

2m ×Fn−1
2m . To provide some intuition for this,

we show a visual example of this process in action in Fig. 1.
Our procedure for coarse graining the grid arises naturally

from consideration of the line structure of phase space. We will
use the thin lines inF2mn to create thick lines in the coarse phase
space by grouping together lines having the same slope and
with intercepts in the same coset. We write thin lines in the big
field F2mn as |�(λ)

γ 〉, where λ is the slope and γ is the intercept.

A thick, coarse-grained line is denoted as |L(λ)
Cτ

〉, where now
the intercept is a whole coset.

To each line in the fine-grained phase space we can assign
a projector |�(λ)

γ 〉〈�(λ)
γ |, constructed as a linear combination of

the displacement operators. We choose as our convention for
the rays (γ = 0) the all-positive sum

∣∣�(λ)
0

〉〈
�

(λ)
0

∣∣ = 1

2mn

∑
α

D(α,λα). (3.3)

These lines are eigenstates with eigenvalue +1 for all displace-
ment operators in the sum. Projectors with nonzero intercepts
are obtained by conjugating that of the ray with an appropriate
displacement operator.

The coarse lines are produced by grouping together lines
with intercepts in the same coset:

∣∣L(λ)
Cτ

〉〈
L

(λ)
Cτ

∣∣ =
∑
γ∈Cτ

∣∣�(λ)
γ

〉〈
�(λ)

γ

∣∣. (3.4)

The possible choices of slope for these lines will be limited
to elements of the subfield F2m , as these have natural analogs
between the two fields.

As discussed in more detail in Appendix B, the coarse rays
of Eq. (3.4) can be simplified and rewritten as the sum of
displacement operators

∣∣L(λ)
C0

〉〈
L

(λ)
C0

∣∣ = 1

2mn

∑
λ

⎡
⎣∑

γ∈C0

χ (γα)

⎤
⎦D(α,λα). (3.5)

One can check here that the inner sum over the elements of
C0 will cause some of the displacement operators to vanish.
The sum in brackets in Eq. (3.5) is either zero or a positive
constant. Hence, the projection associated with the thick lines
is a sum over a subset of the displacement operators associated
with the thin lines. This leads us to the key idea of our
work: rather than measuring all the displacement operators,
we measure only those which are present in the rays of the
coarse-grained space.

We note here that the choice of C0 is not unique and
will ultimately determine the resultant set of displacement
operators. For example, a special case occurs when the
dimension of the system is square. In this case, we can consider
the relationship between the fields a quadratic field extension,
i.e., when n = 2, and we can partition F22m into F2m×F2m . We
can then choose the initial coset as the copy of the subfield
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F2m ⊂ F22m :

C0 = {σ i(2m+1), i = 0, . . . ,2m − 1}, (3.6)

where σ is a primitive element of F2mn and we use the notation
σ 0 for 0. The subsequent cosets are obtained additively from
this subfield using the representatives τi = σ 2m(i−1)+i .

Finally, the coarse-grained phase space inherits a coarse-
grained Wigner function. A coarse kernel can be constructed
by grouping together kernel operators from the same coset,
i.e.,

D(Cτ ,Cξ ) =
∑
α∈Cτ

∑
β∈Cξ

�(α,β). (3.7)

Desired properties of a Wigner function all follow from
the original kernel. As was the case with the displacement
operators, differing choices of the subset C0 will lead to
differing Wigner functions.

IV. EXAMPLES

We illustrate the previous ideas with some relevant exam-
ples. We have written a PYTHON software package capable of
generating all the following results, which we make available
online [34].

The first nontrivial instance we can have is the case of
two qubits, so dimension 4. Using the irreducible primitive
polynomial x2 + x + 1 = 0, we have that F4 = {0,1,σ,σ 2 =
σ + 1}. The self-dual basis is {σ,σ + 1}, and we use it to
produce the displacement operators.

Another basis forF4/F2 is {1,σ }. Taking all scalar multiples
of μ1 = σ from the prime field gives us C0 = {0,σ }. We
then obtain C1 = 1 + C0 = {1,σ 2}. For each ray, we can list
the operators which survive in the inner sum over C0 in
Eq. (3.5). Moreover, we can label the points of the coarse-
grained grids by those displacement operators. Disregarding
the identity operator, the resulting set {1X,1Z,1Y } constitutes
the appropriate measurements to be performed. They are
essentially Pauli measurements on one of the two qubits in
the system.

Alternatively, as the dimension is a square, we can choose
as our initial coset the subfield F2: C0 = {0,1}. This yields
the second coset Cσ = {σ,σ 2}. We once again compute the
surviving operators using Eq. (3.5). The final result now is
{XX,YY,ZZ}. We see that we are making a measurement
with the same Pauli operator on both qubits, thereby fully
capturing the correlations between the two qubits and thus
their entanglement properties. Figure 2 shows both partitioning
methods side by side.

Our next example is the case of dimension 8. We choose σ

to be a root of the irreducible primitive polynomial x3 + x +
1 = 0 and obtain a self-dual basis {σ 3,σ 5,σ 6}. An obvious
choice for a basis of F8/F2 is a polynomial basis {1,σ,σ 2}. To
construct C0, we must take all possible linear combinations of
σ and σ 2 with coefficients in F2. This produces

C0 = {0,σ,σ 2,σ 4}. (4.1)

We obtain the second coset by adding the remaining subfield
element 1 to C0:

C1 = {1,σ 3,σ 5,σ 6}. (4.2)

FIG. 2. Resultant operators from coarse graining a dimension-4
system down to dimension 2. Colors are indicative of particular coarse
rays. The left image coarse grains by taking C0 = {0,σ }, whereas the
right image uses the subfield C0 = {0,1}.

The traces of all elements in C0 are 0, and the traces for all
elements in C1 are 1. The surviving four operators are shown
in Fig. 3.

Using a Clifford transformation, we can “trace out”
two of the qubits. The sequence of controlled-NOT (CNOT)
gates CNOT12-CNOT13-CNOT21-CNOT31 transforms the set into
{X11,Z11,Y11}, so we see that this partitioning is, after a
global change of basis, equivalent to measuring each Pauli on
only a single qubit.

If we choose instead the basis {σ,σ 4,σ 5} to build our cosets,
we get a more interesting result:

C0 = {0,1,σ 4,σ 5}, Cσ = {σ,σ 2,σ 3,σ 6}. (4.3)

The operators that survive have the form ZαXβ , α,β ∈ {0,σ 4},
yielding the operators in Fig. 3, which all commute. In this
case, we are already ignoring one of the three qubits. However,
it is not possible to find a Clifford transformation which will
trace out one of the remaining ones as was the case with the
polynomial basis case. So, in a sense, using this partitioning,
we are ignoring fewer qubits than before.

Dimension 16 is perhaps the first truly interesting case.
First of all, we can consider it in two ways: m = 1,n = 4 or
m = 2,n = 2. Essentially, to do the partitioning, we can look at
F16 as a quartic extension over F2 or a quadratic extension over
F4. We consider the quadratic case, so we can coarse grain in

FIG. 3. Resultant operators from coarse graining a dimension-8
system down to dimension 2. Left: Coarse graining using the basis
{1,σ,σ 2}. The resultant measurements are unitarily equivalent to a
case where two of the qubits remain untouched. Right: Resultant
operators when the coarse graining uses the initial basis {σ,σ 4,σ 5}.
Here we obtain the interesting result that all resultant operators
commute.
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FIG. 4. Resultant operators from coarse graining a dimension-16
system down to dimension 4. The left panel contains the surviving
operators from the general basis method; the right panel contains the
surviving operators from choosing the subfield as C0. The cosets are
listed in Eqs. (4.4) and (4.5), respectively. In the case of the left panel,
these operators are unitarily equivalent to a set where two qubits are
untouched and the two-qubit MUB operators are applied to the rest.
The right panel has no such transformation.

two ways. We work with F16 as constructed by the irreducible
primitive polynomial x4 + x + 1 overF2 and x2 + x + σ ′ over
F4, where we denote a primitive element of F4 as σ ′. We know
from Eq. (3.6) that σ ′ = σ 5, where σ is the primitive element
in F16. Then F4 in F16 can be written as {0,σ 5,σ 10,σ 15 = 1}.

For the general case, we choose the basis {1,σ }. Taking all
F4 multiples of σ , we obtain C0 = {0,σ,σ 6,σ 11}. The full set
of cosets is

C0 = {0,σ,σ 6,σ 11}, Cσ 5 = {σ 5,σ 2,σ 9,σ 3},
Cσ 10 = {σ 10,σ 8,σ 7,σ 14}, C1 = {1,σ 4,σ 13,σ 12}. (4.4)

Proceeding in the standard way and taking into account
that a self-dual basis is {σ 3,σ 7,σ 12,σ 13}, we obtain the
operators in Fig. 4. What is (un)interesting about these
operators is that we can transform them all into operators
which completely ignore two of the qubits. In particular,
consider the following sequence of controlled-NOT operations:
CNOT43-CNOT32-CNOT31-CNOT14-CNOT24. Application of this to
the operators of the left panel of Fig. 4 yields a new set of
operators where the last two qubits contain only 1 and the first
two qubits contain the full set of MUB operators on two qubits.

Alternatively, we can choose our initial coset as the subfield
and the coset representatives as τi = σ 4(i−1)+i . We obtain the
cosets

C0 = {0,1,σ 5,σ 10}, Cσ = {σ,σ 4,σ 2,σ 8},
Cσ 6 = {σ 6,σ 13,σ 9,σ 7}, Cσ 11 = {σ 11,σ 12,σ 3,σ 14}. (4.5)

Using Eq. (3.5), we get the table shown in the right panel of
Fig. 4. Unlike in the previous case, there is no transformation
which will lead to us “tracing out” two of the qubits. However,
we can bring these operators into a more basic form by
applying the sequence CNOT13-CNOT24. The resultant operators
have the property that on the first two qubits, we have only X

and on the last two qubits only Z, so that they all commute.
To conclude, we present some of the coarse-grained Wigner

functions we obtain using our method. Those in dimensions
4 and 8 are somewhat trivial, so we focus on dimension 16.
Wigner functions for the states 1

2 (|00〉 + |11〉) ⊗ (|00〉 + |11〉)
and 1

2 (|0001〉 + |0010〉 + |0100〉 + |1000〉) are presented in
Fig. 5.

Finally, we stress that if we have a system of N qubits and
we trace over N ′ of them, the resulting Wigner function has not,
in general, any straight link with the original one. In contrast,
this is precisely the major advantage of our approach: since we
associate the elements of F2N with a basis in our Hilbert space,
then in the coarse Wigner functions, when we group the field
elements into cosets, we can consider this also as grouping
together the associated basis states. Hence, the probabilities
in these Wigner functions become distributed over the cosets
which contain the constituent basis states of our target state.
As a result, the coarse Wigner functions resemble “smoother”
versions of the original one to varying degrees.

V. CONCLUSIONS

Coarse graining is a cogent method for describing situations
where the complete information of a system is not relevant or
available for a physical problem. Interestingly enough, the
physics of the subsystem is described by effective laws that do
not refer any longer to the total system.

FIG. 5. Top: Coarse-grained Wigner function for the state 1
2 (|00〉 + |11〉) ⊗ (|00〉 + |11〉). Left: The original Wigner function in dimension

16. The x axis represents the computational basis, in the standard ordering |0000〉,|0001〉,|0010〉, etc. The Fourier basis, as defined via Eq. (2.4),
is on the y axis and is similarly ordered. Middle: Coarse graining over F4 with the polynomial basis {1,σ }. Here, the axes are not labeled by
single states, but rather by a set of states associated with each coset. Right: Coarse graining with the subfield as the initial coset. Bottom: The
same coarse graining procedure as above, but applied to the state 1

2 (|0001〉 + |0010〉 + |0100〉 + |1000〉).
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Our coarse-graining procedure shows a way to facilitate
our understanding when the number of qubits is high. While
it is always possible to ignore part of the system and to
determine the full Wigner function of the resulting reduced
density matrix, our approach allows more choices regarding
which information of the whole system is measured. In
another extremal case, the coarse-grained Wigner function is
completely determined by a set of commuting operators that
can be measured simultaneously.

Since the discrete phase space is the natural arena for
such a program, the discrete Wigner function is the proper
tool to visualize our results. Compared to its continuous
counterpart, the discrete Wigner function is an adolescent
formulation, slowly developing into adult maturity. Actually,
the discreteness imposes several new challenges, which leads
to an intricate mapping of the Wigner function. However, the
final results deserve such an effort.

Several open questions remain. An obvious next step would
be to extend the coarse-graining procedure to multiqudit
systems. Furthermore, knowing the coarse-grained function,
does there exist another subset of measurements which will
allow us to zoom in on specific areas of it and gain more
information? A logical first choice would be to extend the
set of measurements such that they include all operators that
correspond to slopes in the subfield. For example, in the
dimension-16 case, we would measure all operators for the
rays α = 0 and β = λα,λ ∈ {0,σ 5,σ 10,σ 15}, rather than just
three from each. This strategy would allow us to optimize
measurements in a very subtle way. Work along these lines is
in progress.
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APPENDIX A: FINITE FIELDS

In this appendix we briefly recall some background needed
for this paper. The reader interested in more mathematical
details is referred, e.g., to the excellent monograph by Lidl
and Niederreiter [35].

A commutative ring is a nonempty set R with two binary
operations, called addition and multiplication, such that it is an
Abelian group with respect to addition, and the multiplication
is associative. The most typical example is the ring of integers
Z, with the standard sum and multiplication. On the other
hand, the simplest example of a finite ring is the set Zn of
integers modulo n, which has exactly n elements.

A field F is a commutative ring with division, i.e., such
that 0 does not equal 1 and all elements of F except 0
have a multiplicative inverse (note that 0 and 1 here stand
for the identity elements for the addition and multiplication,
respectively, which may differ from the familiar real numbers 0
and 1). Elements of a field form Abelian groups with respect to
addition and multiplication (in this latter case, the zero element

is excluded). Note that the finite ring Zd is a field if and only
if d is a prime number.

The characteristic of a finite field is the smallest positive
integer d such that

1 + 1 + . . . + 1︸ ︷︷ ︸
d times

= 0, (A1)

and it is always a prime number. Any finite field contains a
prime subfield Zd and has dn elements, where n is a natural
number. Moreover, the finite field containing dn elements is
unique up to isomorphism and is called the Galois field Fdn .

We denote as Zd [x] the ring of polynomials with coeffi-
cients in Zd . If P (x) is an irreducible polynomial of degree n

(that is, one that cannot be factorized over Zd ), the quotient
spaceZd [X]/P (x) provides an adequate representation ofFdn .
Its elements can be written as polynomials that are defined
modulo the irreducible polynomial P (x). The multiplicative
group of Fdn is cyclic, and its generator is called a primitive
element of the field.

As a trivial example of a nonprime field, we consider the
polynomial x2 + x + 1 = 0, which is irreducible over Z2. If σ

is a root of this polynomial, the elements {0,1,σ,σ 2 = σ + 1 =
σ−1} form the finite field F22 , and σ is a primitive element.

A basic map is the trace

tr(α) = α + αd + · · · + αdn−1
. (A2)

The image of the trace is always in the prime field Zd and
satisfies

tr(α + α′) = tr(α) + tr(α′). (A3)

In terms of it we define an additive character as

χ (α) = exp

[
2πi

d
tr(α)

]
, (A4)

which possesses two important properties:

χ (α + α′) = χ (α)χ (α′),
∑

α′∈Fdn

χ (αα′) = dnδ0,α. (A5)

Any finite fieldFdn can be also considered an n-dimensional
linear vector space over its prime field Fd . Given a basis {θj }
(j = 1, . . . ,n) in this vector space, any field element can be
represented as

α =
n∑

j=1

aj θj , (A6)

with aj ∈ Zd . In this way, we map each element of Fdn onto
an ordered set of natural numbers α ⇔ (a1, . . . ,an).

Two bases {θ1, . . . ,θn} and {θ ′
1, . . . ,θ

′
n} are dual when

tr(θkθ
′
l ) = δk,l . (A7)

A basis that is dual to itself is called self-dual. A self-dual
basis exists if and only if either d is even or both n and d are
odd.
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There are several natural bases inFdn . One is the polynomial
basis, defined as

{1,σ,σ 2, . . . ,σ n−1}, (A8)

where σ is a primitive element. An alternative is a normal
basis, constituted of {

σ,σ d, . . . ,σ dn−1}
. (A9)

The appropriate choice of basis depends on the specific
problem at hand. For example, in F22 the elements {σ,σ 2}
are both roots of the irreducible polynomial. The polynomial
basis is {1,σ }, and its dual is {σ 2,1}, while the normal basis
{σ,σ 2} is self-dual.

APPENDIX B: DERIVATION OF EQUATION
FOR LINE OPERATORS

Here, we present the derivation of our equation for the
surviving displacement operators. We begin by considering
the projectors for the rays,

∣∣�(λ)
0

〉〈
�

(λ)
0

∣∣ = 1

2mn

∑
α

D(α,λα) = 1

2mn

∑
α


(α,λα)ZαXλα.

(B1)

As mentioned in Sec. II, the projectors for the shifted lines can
be obtained by applying an appropriate displacement operator
to induce a transformation. Let us ignore for now the ray with
infinite slope, α = 0. Then for the rest of the rays, we can shift
them vertically by applying the displacement operators of the

form D(0,γ ):

∣∣�(λ)
γ

〉〈
�(λ)

γ

∣∣ = 1

2mn

∑
α

D(0,γ )D(α,λα)D†(0,γ )

= 1

2mn

∑
α


(α,λα)Xγ ZαXλαXγ , (B2)

where we recall the convention that all the phases 
(0,γ ) = 1.
Here, we can make further use of the commutation relation

in Eq. (2.3). We obtain

∣∣�(λ)
γ

〉〈
�(λ)

γ

∣∣ = 1

2mn

∑
α


(α,λα)χ (γα)ZαXλα

= 1

2mn

∑
α

χ (γα)D(α,λα). (B3)

It is then straightforward to see that the thick rays, which are
obtained by summing over all intercepts γ in coset C0, can be
written as

∣∣L(λ)
C0

〉〈
L

(λ)
C0

∣∣ = 1

2mn

∑
λ

⎡
⎣∑

γ∈C0

χ (γα)

⎤
⎦D(α,λα). (B4)

Finally, we mention that for the infinite slope the analysis
proceeds in exactly the same way but that the lines are
translated by displacement operators of the form D(γ,0), and
Eq. (2.3) gives us χ (γβ) instead.

Only those operators that have a nonzero term in the sum
will contribute; thus, we consider them to be the effective
displacement operators in the coarse phase space.
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DI MATTEO, SÁNCHEZ-SOTO, LEUCHS, AND GRASSL PHYSICAL REVIEW A 95, 022340 (2017)

[19] I. Chuang and M. Nielsen, Quantum Computation and Quantum
Information (Cambridge University Press, Cambridge, 2000).
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