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Overarching framework between Gaussian quantum discord and Gaussian quantum illumination
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We cast the problem of illuminating an object in a noisy environment into a communication protocol. A
probe is sent into the environment, and the presence or absence of the object constitutes a signal encoded on
the probe. The probe is then measured to decode the signal. We calculate the Holevo information and bounds
to the accessible information between the encoded and received signal with two different Gaussian probes—an
Einstein-Podolsky-Rosen (EPR) state and a coherent state. We also evaluate the Gaussian discord consumed
during the encoding process with the EPR probe. We find that the Holevo quantum advantage, defined as the
difference between the Holevo information obtained from the EPR and coherent state probes, is approximately
equal to the discord consumed. These quantities become exact in the typical illumination regime of low object
reflectivity and low probe energy. Hence we show that discord is the resource responsible for the quantum
advantage in Gaussian quantum illumination.
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I. INTRODUCTION

Quantum illumination is a simple target-detection scheme,
first proposed by Lloyd for photonic qubits [1]. It harnesses
entanglement in a quantum state of light to better infer the
presence or absence of a weakly reflecting object flooded
by white noise. The protocol distinguished itself in display-
ing quantum advantage, even in regimes so noisy that no
entanglement survives. It presented a remarkable deviation
from the conventional view that quantum technologies are
fragile, displaying advantage only in carefully engineered
environments which ensure little or no loss of entangle-
ment. Since its original inception, quantum illumination has
gained significant scientific interest. Many variants have
been proposed, including some that make use of Gaussian
states in the continuous-variable regime [2–4] and inspiring
a number of different experimental realizations [5–8]. The
phenomenon has also seen applications outside metrology,
where quantum illumination has been harnessed to provide
security against passive eavesdropping in the setting of secure
communication [9].

Quantum illumination challenges the conventional view
that entanglement alone can explain all quantum advantage.
It joins a particularly surprising class of protocols that
appear to thrive in noisy, possibly entanglement-breaking
environments [10,11]. What other quantum resources, then,
could help us better understand its noisy resilience? Quan-
tum discord [12–14], which quantifies correlations beyond
entanglement, is considered a likely candidate. Unlike entan-
glement, discord is far more robust and can also survive in
highly noisy conditions [15]. In fact, Weedbrook et al. have
shown such a relation for discrete variables [16]. Specifically,
they showed that the performance advantage of quantum
illumination—in terms of extra accessible information about
whether an object is present—can be directly related to the
amount of discord in the illumination protocol that survives

after being subjected to entanglement-breaking noise. Does a
similar relationship hold for continuous variables?

The aim of this work is to answer that question. We
extend the framework relating discord and illumination to the
continuous-variable regime. This involves understanding how
these relations generalize when a number of conditions specific
to the discrete scenario no longer hold. The paper is organized
as follows. In Sec. II, we describe the illumination protocol
and the quantifiers of performance. In Sec. III, we describe
discord and how it relates to quantum illumination. In Sec. IV,
we present and discuss our results, demonstrating that there
is a general relationship between discord and the quantum
advantage of illumination in the continuous-variable regime.

II. THE ILLUMINATION FRAMEWORK

A. Setup

The illumination framework is described as follows: Bob
wishes to determine whether an object is located in a noisy
environment. He sends a quantum state, referred to as the
probe, to the location. If an object is present, part of the probe
will be reflected back to Bob, along with some background
noise. If the object is not present, Bob receives only the
background noise. Bob may have another state called the idler,
which was initially correlated with the probe.

If the probe and idler are quantum correlated (have a
nonzero quantum discord), the scheme is called quantum
illumination. If there is no idler, it is called single-mode
illumination.

A diagram of illumination is shown in Figs. 1(a) and 1(b).
Bob performs a joint measurement on the idler and returning
probe, and uses the results of the measurement to determine
whether an object was present. For brevity in notation in the
rest of the paper, modes A and B will label the probe and idler
parts of the state, respectively.
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FIG. 1. Diagram of illumination setup. (a) With probability p0,
there is an object located in a noisy environment. The object is
partially reflective (modeled as a beam splitter with reflectivity ε).
A probe is sent towards the object. The probe is mixed with the noisy
environment and reflected to the detector. (b) With probability p1,
an object is not present, in which case there is nothing to reflect the
probe to the detector. Hence, only noise is detected. (c) An equivalent
description of illumination whereby first noise is injected. Then,
encoding is performed on the probe, whereby with a probability p0, an
identity operation is performed on the probe (after noise injection) and
the environment noise, and (d) with probability p1, a swap operation
is performed on the probe and environment. In quantum illumination,
we also have an idler initially entangled with the probe which is
used to perform a joint measurement. Single-mode illumination is
when there is no idler. ρenv is the noisy environment and ρ̃env is the
environment with the mean photon number scaled by 1/(1 − ε).

We are interested in quantum illumination in the
continuous-variable setting, where the probe and idler are
Gaussian states. For single-mode illumination, Bob uses a
coherent state ρα , where α is its amplitude. For quantum
illumination, Bob uses an Einstein-Podolsky-Rosen (EPR)
state described by ρEPR = |ψEPR〉〈ψEPR|, where

|ψEPR〉 =
√

1 − λ2
∞∑

n=0

(−λ)n|n〉A|n〉B. (1)

where λ = tanh(r), and r is the squeezing parameter.
Illumination can also be recast as a communication pro-

tocol. Let us suppose that Alice is in control of the object
and she would like to communicate with Bob. She can do
so by encoding a binary alphabet via the control of the

object, such as in the Morse code. The message she sends to
Bob can be described by realizations of a random variable
X, where if X = 0, Alice places the object in the noisy
environment, and if X = 1, Alice removes the object. Let px

be the prior probability that X = x, and let p0 = p1, i.e., let
both hypotheses be equally likely to occur. Let ρ(x) denote the
state received by Bob when X = x. Noise is injected into the
probe state before Alice encodes the value of X. This is shown
diagrammatically in Figs. 1(c) and 1(d). We model the object as
a beam splitter with reflectivity ε. The environment-noise state
ρenv is a thermal state with mean photon number n̄env, where
ρenv(n̄) = ∑∞

n=0
n̄n

(n̄+1)n+1 |n〉〈n|. When the object is present, the
environment noise is multiplied by a factor of 1/(1 − ε) such
that the mean number of noise photons arriving at the detector
is the same as when the object is absent. This approach has
been adopted by [2] to avoid a “shadowing effect”—so that
the object is not detected by a reduction in the number of
noise photons arriving at the detector. The typical illumination
scenario that has greatest quantum advantage is for the regime
of low object reflectivity and high noise, i.e., ε � 1 and
n̄ � n̄env, where n̄ is the mean photon number of the probe.
We term this as the intense white-noise limit.

Consider Figs. 1(c) and 1(d). After the noise injection,
the entanglement is reduced or lost all together, before any
information is encoded within the probe. In fact, for all the
settings studied in Sec. IV, the entanglement after noise
injection is strictly zero. Nevertheless, we see a quantum
advantage. Thus, quantum entanglement itself does not give
a complete picture on why illumination thrives in such noise.
Our goal here is to see if discord will give us additional insight.

In the next section, we will use the communication
formalism to study the amount of information that Alice can
communicate to Bob under different settings. This provides a
measure for assessing the performance of illumination under
these settings.

B. Quantifiers of performance

We consider two quantifiers of performance of illumination:
the accessible information and Holevo information.

Let M = {Ek} be a positive operator-valued measure
(POVM) that mathematically represents a measurement. The
POVM elements Ek are non-negative, self-adjoint opera-
tors satisfying

∑
k Ek = 1, where the subscript k labels

the outcome of the measurement. The probability of the
measurement outcome k on a state ρ(x) is then given by
q

(x)
k = Tr (ρ(x)Ek). Let this be governed by random variable

KM. In the communication setting described in the last section,
the amount of information obtained by Bob after measurement
of the state ρ(x) is given by the mutual information,

Imut(X,KM) =
∑

k

1∑
x=0

pxq
(x)
k log2

(
q

(x)
k

qk

)
, (2)

where qk = ∑1
x=0 pxq

(x)
k . The accessible information is the

maximization of the mutual information over all POVMs,

A(ρ(0),ρ(1)) = max
M

Imut(X,KM). (3)

The accessible information quantifies Bob’s knowledge when
each ρ(x) from N trials is measured separately using an optimal
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POVM. In the context of communication, illumination can
be regarded as classical information exchange over a noisy
channel. By the Shannon’s noisy-channel coding theorem [17],
Alice and Bob communicate at a rate equal to the accessible
information in the limit of infinite message size N .

There is no known general method for calculating the
accessible information exactly. Here we will make use of
the upper and lower bounds found by Fuchs and Caves [18].
The lower bound, hereby referred to as the Fuch’s lower bound,
is

Ilower = Tr {p0ρ
(0) log2[Lρ̄(ρ(0))] + p1ρ

(1) log2[Lρ̄(ρ(1))]},
(4)

where L is the lowering superoperator given by

Lρ̄(�) =
∑

{j,k|λj +λk �=0}

[
2

λj (p1) + λk(p1)

×〈ψj (p1)|�|ψj (p1)〉|ψj (p1)〉〈ψk(p1)|
]
, (5)

and where � = ρ(1) − ρ(0). λi(p1) and |ψi(p1)〉 are the
eigenvalues and eigenvectors of ρ̄ = (1 − p1)ρ(0) + p1ρ

(1).
The Fuchs upper bound Iupper is found by numerically solving
the differential equation,

d2Iupper(p1)

dp2
1

=
∑

{j,k|λj +λk �=0}

[
− 2

λj (p1) + λk(p1)

× |〈ψj (p1)|�|ψk(p1)〉|2
]
, (6)

subject to

Iupper(0) = Iupper(1) = 0. (7)

The other figure of merit we consider is the Holevo
information [19]. It is given by

χ (ρ(0),ρ(1)) = S

(
1∑

x=0

pxρ
(x)

)
−

1∑
x=0

pxS(ρ(x)), (8)

where S(ρ) is the von Neumann entropy of the quantum state
ρ. The Holevo information is the maximum communication
rate Bob can obtain, provided he stores all of the N states and
then performs a joint measurement upon all of the states. From
the Holevo-Schumacher-Westmoreland theorem [20,21], this
information rate is obtainable when N → ∞.

C. Three cases of illumination and quantum advantage

Three cases, together with three pairs of accessible informa-
tion and Holevo information, are relevant for our assessment
of the illumination scheme [Fig. 1(a)] in the communication
framework. They are as follows:

Case 1. Quantum illumination with joint measurement: Aq

and χq are the accessible information and Holevo information,
respectively, for Bob when two-mode EPR states are used
as probes and idlers for illumination. Any arbitrary joint
measurement over the two modes is allowed.

Case 2. Quantum illumination with local measurements:
Ac and χc are the average accessible information and Holevo
information for Bob with EPR state as the probe and idler,
under the restriction that Bob must perform the optimal
Gaussian local measurement on mode B, followed by an
arbitrary local measurement on mode A. The measurement on
mode B is optimal in the sense that it maximizes the amount of
accessible information or Holevo information Bob receives. In
this case, Bob only takes advantage of the classical correlations
of the EPR state. This enables a direct comparison to case 1,
when both quantum and classical correlations are utilized.

Case 3. Single-mode illumination: As and χs are the
accessible information and Holevo information, respectively,
when Bob uses a single-mode coherent state with a fixed
amplitude α as the illumination probe.

The quantum advantage is defined as the difference be-
tween the performance of quantum-illumination and single-
mode-illumination protocol. The protocols are compared for
scenarios where the probe states have coinciding energy.
This constraint allows for fair comparison, as it is always
possible to detect the presence of an object with any fixed
accuracy by using a sufficiently energetic probe. The quantum
advantage in terms of accessible information is Aq − As and
the Holevo information quantum advantage is χq − χs , where
each information quantity is evaluated over the probe with
mean photon number n̄. As we shall show in this paper, these
quantum advantages can be linked to the discord consumed in
the illumination protocol.

III. DISCORD AND QUANTUM ILLUMINATION

Quantum discord is a measure of the nonclassical correla-
tions between two quantum states. It arises from the difference
between quantum analogs of two distinct definitions of the
classical mutual information [12,13]:

I (A : B) = S(A) + S(B) − S(AB), (9)

J (A|B) = S(A) − min
{	b}

∑
pbS(A|b), (10)

where 	b is the POVM element corresponding to the outcome
b, pb is the probability of that outcome, and S(A|b) is the
entropy of the state conditioned on the outcome b. The discord
is then

δ(A|B) = I (A : B) − J (A|B)

= S(B) − S(AB) + min
{	b}

∑
pbS(A|b), (11)

where the minimization is done over all possible POVMs
on mode B. In the special case that the domain of this
minimization is restricted to Gaussian measurements, the
discord is known as the Gaussian discord [22,23]. It was
recently shown that for a large class of Gaussian states,
Gaussian quantum discord is equal to quantum discord [24].
Henceforth, we denote the Gaussian discord δG(A|B) with a
superscript G.

We now consider the evolution of the discord when quantum
illumination is described by Figs. 1(c) and 1(d). After the
noise-injection step, Alice is left with state ρ with which she
can encode information to send to Bob. We note that this
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state may have no entanglement due to the noise injection [2].
Alice encodes the value of X on the state by performing the
operation Ox on ρ, resulting in a state ρ(x) = Ox(ρ) with
discord δ(x)(A|B).

Let us decompose the discord of ρ, δ(A|B) into three
components:

δ(A|B) = δloss + δ̄(A|B) + δcon(A|B). (12)

The first component δloss is the amount of discord lost to
the environment during the encoding process. This can be
evaluated by first defining

δ
(x)
loss = δ(A|B) − δ(x)(A|B) (13)

as the loss of discord for each possible value of x that Alice
can encode, and then taking the weighted average over the
probability of encoding that x. This results in

δloss =
∑

x

pxδ
(x)
loss. (14)

The second component δ̄(A|B) is the discord of ρ̄ = p0ρ
(0) +

p1ρ
(1), the state after encoding. This is the state seen by Bob

who is oblivious to the value of X.
We term the remaining component the consumed discord

δcon(A|B), and represents the discord in ρ that remain
unaccounted for. In prior literature, it was proposed to capture
the amount of discord consumed to encode the value of X

on the state ρ [16]. For the special case where encodings
were unitary, such that δ

(x)
loss = 0, δcon(A|B) was related to

the advantage of using coherent interactions [25]. It is also
interesting to note that δcon(A|B) also coincides with the the
extra discord Bob sees between A and B, should he learn the
value of X.

In quantum illumination, when X = 0, Alice performs an
identity operation, and thus δ(0)(A|B) = δ(A|B) and δ

(0)
loss = 0.

When X = 1, Alice performs a swap operation between
mode A of ρ with the environment noise, destroying all
correlations between the two modes. All discord is lost and
δ

(1)
loss = δ(A|B). Putting this together, the average discord loss

is thus δloss = p1δ(A|B). Hence the consumed discord for
quantum illumination is

δcon(A|B) = p0δ
(0)(A|B) − δ̄(A|B). (15)

IV. METHOD AND RESULTS

In Sec. IV A, we first derive a general result that if certain
conditions are fulfilled, the discord consumed is equal to the
Holevo information quantum advantage. In Sec. IV B, we
numerically calculate the illumination information quantities.
In Sec. IV C, we numerically evaluate the consumed discord
and compare it to the quantum advantages. Our main result
is that for continuous-variable quantum illumination, the
consumed discord is approximately equal to the Holevo
information quantum advantage.

A. Analytic result

We prove the following theorem.
Theorem 1. Let ρ

(0)
AB and ρ

(1)
AB be two arbitrary two-mode

states. If the following conditions are met:

(1) mode B is the same for both states, i.e., ρ(0)
B = ρ

(1)
B where

ρ
(x)
B = Tr A(ρ(x)

AB) and where Tr A denotes the partial trace over
subsystem A;

(2) ρ
(1)
AB is a product state, i.e., ρ

(1)
AB = ρ

(1)
A ⊗ ρ

(1)
B ; and

(3) the Holevo information of local measurement χc, the
discord of ρ̄AB = p0ρ

(0)
AB + p1ρ

(1)
AB , and the discord of ρ

(0)
AB are

achieved by the same measurement, then δcon(A|B) = χq −
χc, where

χq = χ
(
ρ

(0)
AB,ρ

(1)
AB

)
, χc = max

{	b}

∑
b

pbχ
(
ρ

(0)
A|b,ρ

(1)
A|b

)
,

where pb is the probability of measuring outcome 	b on sub-
system B, and ρ

(x)
A|b are the states of subsystem A conditioned

on that outcome.
Proof. Let {	b} be the measurement in condition 3 that

simultaneously optimizes χc, as well as the discord of states
ρ̄AB and ρ

(0)
AB . The measurement outcome probability is

pb = Tr
[
(	b ⊗ I )ρ(0)

AB

] = Tr
[
(	b ⊗ I )ρ(1)

AB

]
,

where we have used condition 1. The resulting conditional
states are

ρ
(x)
A|b = Tr B

(
	bρ

(x)
AB

)
pb

.

Our goal is to prove δcon(A|B) = χq − χc. Because of
condition 2, δ(1)(A|B) = 0, so the consumed discord is

δcon(A|B) = p0δ
(0)(A|B) − δ̄(A|B)

= p0

[
S
(
ρ

(0)
B

) − S
(
ρ

(0)
AB

) +
∑

b

pbS
(
ρ

(0)
A|b

)]

− S(ρ̄B) + S(ρ̄AB) −
∑

b

pbS(ρ̄A|b).

We also have that

χq − χc = S(ρ̄AB) − p0S
(
ρ

(0)
AB

) − p1S
(
ρ

(1)
AB

)
+

∑
b

pb

[ − S(ρ̄A|b) + p0S
(
ρ

(0)
A|b

)
+p1S

(
ρ

(1)
A|b

)]
.

This leads to

δcon(A|B) − (χq − χc)

= p0S
(
ρ

(0)
B

) − S(ρ̄B) + p1S
(
ρ

(1)
AB

) −
∑

b

pbp1S
(
ρ

(1)
A|b

)
.

From condition 1, we have that ρ
(0)
B = ρ

(1)
B = ρ̄B . From con-

dition 2, ρ(1)
AB is a product state, so S(ρ(1)

AB) = S(ρ(1)
A ) + S(ρ(1)

B )
and ρ

(1)
A|b = ρ

(1)
A . So this becomes

δcon(A|B) − (χq − χc)

= S
(
ρ

(0)
B

)
(p0 − 1 + p1) + S

(
ρ

(1)
A

)
(p1 − p1) = 0.

�
In continuous-variable quantum illumination, condition

1 is satisfied since the idler is not interacting with the
illumination object. Condition 2 is met by the fact that the swap
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FIG. 2. Information vs object reflectivity ε when probe has mean photon number (a) 0.5 and (b) 0.01. The environment noise has mean
photon number 4. Each plot has two insets showing zoomed portions. Insets (ii) show the upper and lower bounds for Aq , with the true value
lying somewhere in the shaded region. Insets (iii) show that χs , χc, As , and Ac differ slightly, despite appearing as a single line in the main plot.

operation decorrelates mode A and mode B. By restricting
ourselves to Gaussian quantum discord, together with the
assumption that a Gaussian heterodyne measurement is the
optimal measurement for the quantities in condition 3, we
have δG

con(A|B) = χq − χc. This assumption is justified by
numerical results in the next sections.

B. Accessible information and Holevo information calculations

The accessible information and Holevo information quan-
tities Aq , χq , Ac, χc, As , and χs were calculated numerically
for typical settings of quantum illumination. Due to finite
computational resources, the states must be approximated to
a Hilbert space with finite dimensions. Under this restriction,
the highest noise mean photon number that does not result in
significant error is n̄env = 4. Plots are shown in Fig. 2 of the
information quantities for noise mean photon number 4 and
probe mean photon number n̄ = (0.01,0.5). We will now re-
view the information quantities for each case listed in Sec. II C.

Case 1. The Holevo information χq and Fuchs upper and
lower bounds for the accessible information Aq for quantum
illumination with joint measurement are shown in Fig. 2. The
difference between the upper and lower bounds of Aq is, at
most, 0.7%, implying that the true accessible information is

close to the Fuchs bounds. As evident in the plot, there is a
substantial difference between the χq and Aq .

Case 2. χc and Ac: In the previous section, we assume
that a heterodyne measurement is the optimal local Gaussian
measurement to make on mode B. We demonstrate in Fig. 3
that this is true for a typical choice of parameters. Since a
heterodyne measurement on mode B collapses mode A into a
distribution of coherent states, χc and Ac were calculated by
integrating the information quantities of single coherent probe
(χs , As) as a function of energy. The computed upper and
lower bounds for Ac are equal to within six significant figures.

Case 3. χs and As : The Holevo information χs is plotted in
Fig. 2. Fuchs lower and upper bounds for As were calculated
and are equal to within seven significant figures, and are
indistinguishable in Fig. 2. Unlike case 1, when using a
coherent state, the Holevo and accessible information differ
by a small amount, only 0.4%.

From Figs. 2(a)(i), 2(a)(iii), 2(b)(i), and 2(b)(iii), we see
that χq is greater than χs , and Aq is greater than As , showing
that quantum illumination with joint measurement does indeed
have an advantage over single-mode illumination. In the
communication context, Alice can communicate with Bob
with a higher bit rate if Bob uses a probe entangled with
an idler instead of a coherent state probe.
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From Fig. 2, we see that the performance of a coherent state
probe is approximately equal to performance of an EPR probe

when a local Gaussian measurement is performed on mode B.
However, As is slightly higher than Ac (and χs slightly higher
than χc) because As is a concave function of energy (see
Appendix B). By considering the ratio of As and Ac, we find
that their relative difference approaches zero in both the limits
ε → 0 and n̄ → 0. This indicates that there is no advantage to
using an EPR state for illumination, over a coherent state probe,
if a Gaussian measurement is first made on mode B of the EPR
state. A local Gaussian measurement on mode B of an EPR
state will cause mode A to collapse to a single-mode Gaussian
state. Hence, this is equivalent to using a distribution of single-
mode Gaussian states for the probe, which, under the masking
of strong environmental noise, gives an approximately equal
knowledge about a weakly reflecting object as using a single-
mode coherent state probe.

C. Relating quantum advantage to discord consumed

To calculate the consumed discord δcon(A|B), we need to
compute the discord of states ρ(0) and ρ̄ when the entangled
state ρEPR is used as probe and idler. ρ(0), the resulting
state when Alice does nothing, is a Gaussian state whose
discord is equal to the Gaussian discord, and additionally this
discord is obtained when the measurement is a heterodyne
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Gaussian, and thus the same rule does not apply. Unfortunately,
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FIG. 4. The quantities χq − χs , χq − χc, Aq − As , and Aq − Ac compared to the consumed Gaussian discord δG
con(A|B). The average
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con(A|B), χq − χs , and χq − χc. Insets (iii) shows upper and lower bounds of Aq − As and Aq − Ac.
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calculating the discord of a general state is an NP-hard
problem [26], so there is no method to calculate it efficiently.
Here, we simplify the problem by restricting ourselves to
Gaussian discord and calculate the consumed Gaussian discord
δG

con(A|B) instead. This is just Eq. (15) with the discords
replaced with Gaussian discords.

The Gaussian discord of state ρ̄ was obtained by numeri-
cally optimizing Eq. (11) over Gaussian measurements. It was
found that the optimal point occurs when the measurement is a
heterodyne measurement. The two discord values δG(0)(A|B)
and δ̄G(A|B) are then substituted into Eq. (15) to obtain the
consumed Gaussian discord.

Due to the optimality of the Gaussian discord of state ρ(0)

and the fact that Gaussian discord is an upper bound for the
discord for state ρ̄, the consumed Gaussian discord is a lower
bound of the consumed discord, i.e., δG

con(A|B) � δcon(A|B). A
plot of the δG

con(A|B) compared to the information differences
is shown in Fig. 4.

As discussed in Sec. IV A, since a heterodyne measurement
on mode B optimizes δ(0)(A|B) and numerical results show that
this is the case for δ̄(A|B) and χc, from Theorem 1, δ(0)(A|B) =
χq − χc. Numerical calculation of δ(0)(A|B) and χq − χc agree
within the precision of the calculation, further verifying the
theorem.

From Fig. 4, we see that the difference in Holevo informa-
tion between quantum illumination (χq − χc) and single-mode
illumination (χq − χs) is 1.3% for n̄ = 0.5 and 0.005% for
n̄ = 0.01 when ε = 0.3. The percentage difference approaches
zero when ε → 0. Since δG

con(A|B) = χq − χc, this leads us to
the conclusion that in the limit of low reflectivity and low probe
energy, χq − χs converges to the Gaussian discord consumed.
Hence, discord encoded can suitably explain the quantum
advantage of quantum illumination, if quantum illumination
is viewed as a communication problem with access to devices
such as quantum memory.

On the other hand, Aq − As , which quantifies the perfor-
mance advantage for quantum illumination in the single-copy
measurement case, is more relevant from a practical point
of view since this does not require the storage of quantum
states [3]. From Fig. 4, we see that δG

con(A|B) is greater
than Aq − As and Aq − Ac. This discrepancy is mainly due
to the difference between the Holevo information χq and
the accessible information Aq for the states involved in
quantum illumination. Hence, measuring each illumination
event separately does not fully harness the benefits offered by
the discord. However, it is sufficient to provide some quantum
advantage over single-mode illumination.

D. Quantum advantage versus probe energy

There is nothing special about our choice of probe energies
of 0.01 and 0.5 used in the previous sections. To demonstrate
this, Fig. 5 shows the illumination performance, quantum
advantage, and consumed Gaussian discord for probe mean
photon numbers in the range 0 to 0.1, while the object
reflectivity is kept constant at 0.1. There is always a quantum
advantage, and the consumed Gaussian discord is approxi-
mately equal to the quantum advantage in terms of Holevo
information.
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FIG. 5. The accessible information and Holevo information quan-
tities (top) and consumed Gaussian discord and quantum advantage
(bottom) vs the mean energy of the probe. The environment-noise
mean photon number is 4 and object reflectivity ε = 0.1.

E. Comparison to discrete variables

It is worth comparing continuous-variable (CV) illumina-
tion to discrete-variable (DV) illumination [16]. In discrete
variables, the environmental noise is often described as white
noise. This scenario is not realistic in continuous variables,
as it corresponds to a thermal state at infinite temperature,
and thus is of unbounded energy. Using a maximally mixed
environment noise for DV illumination has the consequence
that all pure state probes yield the same information for
single-mode illumination. This is clearly not the case for
any physically relevant cases of CV illumination, where a
coherent state with a high energy generally performs better
than a coherent state with low energy.

The probe used for quantum illumination for DV illumi-
nation is a maximally entangled state. Again, this state in
CV illumination would have unbounded energy. A maximally
entangled probe and idler, and a maximally mixed environ-
ment, mean that ρ(0) and ρ(1) commute in DV illumination.
Hence, the Holevo information and accessible information are
equal. This is not the case for CV illumination. From Fig. 2,
we see the differences between Aq and χq can be significant,
though deviations between Ac and χc remain small. Quantum
advantage, though, remains significant for both Holevo and
accessible information.
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TABLE I. Comparison of continuous-variable (CV) and discrete-variable (DV) illumination.

DV CV

Environment noise Maximally mixed
∑N

n=0
1

N+1 |n〉〈n| Thermal state
∑∞

n=0
n̄n

(n̄+1)n+1 |n〉〈n|
Quantum-illumination probe Maximally entangled

∑N

n=0
1√

N+1
|n,n〉 EPR

√
1 − λ2

∑∞
n=0(−λ)n|n,n〉

Accessible vs Holevo information χq = Aq no difference χq > Aq big difference
Single-mode illumination probe: any pure state |ψ〉 χs = As probe: coherent state |α〉 with |α|2 = n̄

χs ≈ As

Quantum vs single-mode illumination χs < χq As < Aq χs < χq As < Aq

Single-mode probe vs local measurement on
idler first

χc = χs Ac = As χc ≈ χs Ac ≈ As approximation gets better
with low probe energy and low reflectivity

Consumed discord vs Holevo quantum
advantage

δcon = χq − χc = χq − χs δG
con = χq − χc ≈ χq − χs

Consumed discord vs accessible info quantum
advantage

δcon = Aq − Ac = Aq − As δG
con > Aq − Ac ≈ Aq − As

In DV illumination, performing a local measurement on
the idler first, followed by a local measurement on the probe,
yields identical information as single-mode illumination. For
CV illumination, this is only approximately true; these two
quantities approach equality in the limit of low reflectivity and
low probe energy.

Finally, in DV illumination, the consumed discord is exactly
equal to the Holevo information quantum advantage and
the accessible information quantum advantage. We found,
for CV illumination, that this approximately holds for the
Holevo information, but not for the accessible information. The
differences between DV and CV illumination are summarized
in Table I.

V. CONCLUSION

In [16], it has been shown that quantum discord coin-
cides exactly with quantum advantage in a DV quantum
illumination. Here, we complete the picture by extending
the framework to CV quantum illumination [2]. To this
end, we numerically calculated the performance enhancement
that quantum illumination has over single-mode illumination
and compared it to the Gaussian discord of the system. We
derived an analytic result showing that δG

con(A|B) = χq − χc,
provided condition 3 of Theorem 1 is met. Our main result is
that the quantum advantage in terms of Holevo information
matches the consumed discord in the limit of low probe
energy and low object reflectivity (n̄ → 0 and ε → 0). This
is in agreement with the DV counterpart, which analogously
assumes a maximally entropic illumination environment.

Several remarks in relation to other works are in order.
In deriving our results, we have demonstrated that a joint
measurement over the returning probe and idler is necessary
to exploit the surviving quantum correlation to determine the
nonunitary encoding. Similar to [25], a coherent interaction
is required to unlock the information encoded via unitary
discord consumption. The discrepancy between the quantum
advantage offered by Holevo information and accessible
information is in concordance with recent findings, where the
improvement of error probability of quantum illumination over
single-mode illumination is limited to 3 dB (out of a maximum
gain of 6 dB) for single-copy separate measurement in the
intense white-noise limit [3,4].

We note other efforts in quantifying the source of enhance-
ment in quantum-illuminationlike protocols. In [27], mutual
information is used to quantify the advantage offered by an
entangled source over a correlated thermal source. Gaussian
discriminating strength is proposed to distinguish the absence
or presence of a set of unitary operations in [28,29]. The role
of correlation in the improvement of channel loss detection
is also established by linking discord to the performance
numerically [30]. Meanwhile, several other cryptographic
and metrological variants of illumination has been proposed
and demonstrated recently [6,9], in which we envisage our
framework would shed light in understanding the discord’s
role in their quantum enhancement.
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APPENDIX A: SUBOPTIMALITY OF COHERENT
STATE PROBE

A coherent state is not the optimal state to use for single-
mode illumination. Small perturbations were made on a coher-
ent state, such that the mean photon number was maintained.
Figure 6 shows a histogram of the Holevo information when
the perturbed states were used in illumination. Some of the
perturbed states resulted in a Holevo information greater than
that achieved with the coherent state. Hence, a coherent state
is not the optimal probe to use in single-mode illumination.
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FIG. 8. Lower bound of As as a function of probe average photon
number n̄ = |α|2 when the noise mean photon number n̄env = 4, and
the object has reflectivity ε of 1/2, 1/10, and 1/100 (top). The same
plot with each line scaled by 1/ε so that linearity can be compared
(bottom).

However, we hypothesize that it is close to optimal. The
problem of finding the optimal probe is too difficult to
calculate, so this hypothesis is difficult to prove.

If the probe is restricted to a Gaussian state, as in Gaussian
single-mode illumination, the coherent state is still not optimal.
Using a squeezed coherent state with a tiny squeezing can
result in increased accessible information (as can be seen in
Fig. 7), but the improvement is negligible. Hence, a coherent
state is approximately optimal for Gaussian single-mode
illumination.

APPENDIX B: CALCULATING χc AND Ac FROM
INTEGRATION OF χs AND As

From Fig. 8, we see that As is a concave function of energy.
If As were a perfect linear function of energy, Ac and As would
be equal. As can be seen from Fig. 8, As as a function of
energy becomes more linear as the ε approaches zero. Hence,
this suggests that Ac and As become equal as ε approaches
zero. The same applies to χc and χs .
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