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A nonrelativistic system such as an ultracold trapped ion may perform a quantum simulation of a Dirac
equation dynamics under specific conditions. The resulting Hamiltonian and dynamics are highly controllable,
but the coupling between momentum and internal levels poses some difficulties to manipulate the internal
states accurately in wave packets. We use invariants of motion to inverse engineer robust population inversion
processes with a homogeneous, time-dependent simulated electric field. This exemplifies the usefulness of
inverse-engineering techniques to improve the performance of quantum simulation protocols.
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I. INTRODUCTION

A recent highlight in the remarkable history of the Dirac
equation [1,2] is the realization that nonrelativistic systems
such as an ultracold trapped ion can obey this equation, with
a proper reinterpretation of symbols, under specific trapping
conditions and laser interactions [3–6]. In a one-dimensional
setting (linear trap), two levels of the ion interacting with
laser fields set the basis that spans the relevant internal
state subspace, whereas orthogonal eigenvectors of the Dirac
Hamiltonian with positive and negative energies correspond to
matter and antimatter solutions. Similarly, different elements
of the original Dirac equation, such as the mass, or the
constant playing the role of speed of light, are mapped to
atomic or interaction-dependent properties. Different interac-
tion potentials may also be simulated, such as the ones for
homogeneous or linear electric fields [5]. These mappings
and the controllability of trapped ions have been used to
observe experimentally simulations of relativistic effects, like
Zitterbewegung [4], or Klein tunneling [6]. Trapped ions
are in fact an example of a wider set of nonrelativistic
“Dirac systems” that obey a Dirac dynamics, for example
in condensed matter [7], optics [8], cold atoms [9,10], or
superconducting circuits [11].

The new physical platforms for Dirac dynamics are often
easier to manipulate than relativistic particles. In trapped ions,
for example, the effective (simulated) mass, speed of light, or
electric field may be changed in time. This opens prospects for
finding and implementing new or exotic effects and carrying
out further fundamental studies. It also motivates a search
for manipulation protocols to achieve specific goals [12].
Shortcuts to adiabaticity (STAs) [13], a group of techniques to
speed up adiabatic methods, possibly following nonadiabatic
routes, offer a suitable framework for the task, and example
cases have been worked out recently in the domain of the Dirac
equation [12,14]. STAs are typically highly flexible so that,
apart from speeding up the processes, which may be needed to
avoid decoherence, the protocol may satisfy further conditions,
such as robustness with respect to noise and/or systematic
perturbations. Robust protocols have been demonstrated for
the Schrödinger equation [15,16], and, as we shall see in this
paper, can be extended as well to the Dirac equation.

The study case we address here is a population inversion
of the internal state, as a paradigmatic example of single

qubit operations, making use of an effective time-dependent,
homogeneous electric field. Due to the structure of the Dirac
Hamiltonian, a protocol designed to perform the inversion for
a specific momentum, say the average momentum of the wave
packet, in general will not work perfectly for other momenta. In
other words, the momentum spread is a source of systematic
errors, and our goal will be to design robust protocols with
respect to momentum offsets inherent in wave packets. The
employment of inverse engineering and STA methods may
enhance the toolbox of quantum simulations and enable faster
and more accurate protocols, which will presumably boost the
field of quantum technologies.

The paper is organized as follows: In Sec. II we set the
model and Hamiltonian. In Sec. III we give the solution via
invariants. In Sec. IV, we put forward a robust invariant-based
protocol to engineer the quantum state. Section V analyzes the
robustness of the invariant-based shortcut protocols against
the systematic momentum error. Section VI addresses a
proposal to implement the robust protocol via a Dirac equation
dynamics using trapped ions. Finally Sec. VII summarizes and
discusses the results.

II. DRIVEN DIRAC DYNAMICS WITH TIME-DEPENDENT
VECTOR FIELD

We focus now on a 1 + 1-dimensional Dirac equation for
a charged particle moving in x direction, which could be
simulated by ultracold trapped ions and realizes quantum
relativistic effects [3–5]. It may be written as [12]

ih̄|�̇(t)〉 = {[−ih̄c∂x + A(x,t)]σx + mc2σz}|�(t)〉, (1)

where |�(t)〉 is the two-component time-dependent wave
function for the particle with mass m, the dot means time
derivative, c is the speed of light, which should be considered
as a constant in the simulation, h̄ is the Planck constant divided
by 2π , and σx,y,z are 2×2 Pauli matrices in the basis

|1〉 =
(

1
0

)

and

|2〉 =
(

0
1

)
.
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To implement a time-dependent but spatially homogeneous
electric field, we set A(x,t) as a purely time-dependent
function, A(x,t) = αt . Then the Hamiltonian reads

H = −ih̄c∂xσx + αtσx + mc2σz. (2)

Beware that c, m, and the electric field must be reinterpreted
in the simulated dynamics, as discussed in [3–5] and later in
Sec. VI. Note also that, whereas the two components of the
state do not represent the spin in the relativistic interpretation
[17], the two levels |1〉 and |2〉 in the simulation simply become
two bare internal levels of the ion.

Deffner [12] used the fast-forward shortcut technique
[18,19] to suppress “production of pairs” (transitions among
positive and negative energy solutions) in fast processes,
combining scalar and pseudoscalar potentials. Our goal here is
instead to induce a fast and robust population inversion among
the bare levels. A different technique will be applied, designing
the time dependence of the parameters in the Hamiltonian
rather than adding terms to it. This is carried out by making use
of invariants of motion twice: first to decompose the solution of
the Dirac equation into independent subspaces for each plane
wave, and then to describe and manipulate the solution for the
internal state amplitudes within each subspace [14].

III. SOLUTIONS VIA INVARIANTS

We shall find exact solutions of the Dirac equation in Eq. (1)
based on the Lewis and Riesenfeld theory of invariants [20].
For the Hamiltonian in Eq. (2), let us assume that a nontrivial
invariant exists with the form [21–23]

I = A(t)p + B(t)x + D(t), (3)

where A(t), B(t), and D(t) are 2×2 matrices. The invariant
should satisfy the equation

dI

dt
= 1

ih̄
[I,H ] + ∂I

∂t
= 0. (4)

Substituting Eqs. (2) and (3) into Eq. (4) gives

[A,σx] = 0, (5)

[B,σx] = 0, (6)

αt [A,σx] + mc2[A,σz] + c[D,σx] + ih̄Ȧ = 0, (7)

αt [B,σx] + mc2[B,σz] + ih̄Ḃ = 0, (8)

ih̄cBσx + αt [D,σx] + mc2[D,σz] + ih̄Ḋ = 0. (9)

Expanding the matrices in the su(2) basis, A = a1 + a2σx +
a3σy + a4σz with ai an arbitrary real number for i = 1,2,3,4,
and similarly for B and D, the above equations are easy to
solve. From Eqs. (5) and (6), we get

A = a1 + a2σx, (10)

B = b1 + b2σx, (11)

where a1, a2, b1, b2 are to be determined. Substituting Eq. (11)
into Eq. (8), we have

ḃ1 = ḃ2 = 0, (12)

b2 = 0. (13)

Substituting Eq. (10) into Eq. (7), we have

cd4 = mc2a2,

d3 = 0, (14)

ȧ1 = ȧ2 = 0.

Similarly, from Eq. (9), we find

cb1 + ḋ2 = 0,

αtd4 = mc2d2, (15)

ḋ1 = ḋ4 = 0.

The invariant can be then written as

I = (a1p + b1x + d1) + (a2p + d2)σx + d4σz, (16)

where a1, a2, b1, d1, and d4 are constant. If αt is time
dependent, then d4 = d2 = 0, and therefore b1 = a2 = 0. The
invariant can be simplified as

I = a1p + d1 = a1(p + C), (17)

where C is a constant. This holds even for a time-dependent
mass. Consistently, the Heisenberg equations of motion for the
Hamiltonian (2) are

dp

dt
= 0,

dx

dt
= cσx. (18)

In other words, the momentum operator is invariant, which
may be interpreted as the initial momentum p0 [24], as shown
below making use of a different frame.

The solutions of the time-dependent Dirac equation may
be written as linear superpositions of eigenvectors of the
invariant [20]. Since the eigenfunctions of the invariant
take the plane-wave form eip0x/h̄ with p0 a real number,
we assume the existence of plane-wave solutions of Eq. (1)
according to the Ansatz

|φ(t)〉 = eip0x/h̄|φp0 (t)〉, (19)

where |φp0 (t)〉 is a 2×1 vector that depends on the parameters
p0 and t .

Substituting Eq. (19) into the time-dependent Dirac
equation (1) gives the following reduced (2×2) Dirac equation
for the vector |φp0 (t)〉:

ih̄|φ̇p0 (t)〉 = Hp0 |φp0 (t)〉, (20)

where

Hp0 = cp0σx + αtσx + mc2σz. (21)

By superposing plane-wave solutions, general (wave packet)
solutions are found, of the form

|�(t)〉 =
∫ ∞

−∞
a(p0)|φp0 (t)〉dp0, (22)
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where each (momentum) component evolves with its own
2×2 Hamiltonian Hp0 , so that the corresponding global (wave
packet) populations for |1〉 and |2〉 are given by

Pk =
∫ ∞

−∞
|a(p0)|2Pk(p0)dp0, (23)

where k = 1,2 and Pk(p0) = |〈k|φp0 (t)〉|2 (k = 1,2) are the
populations for each momentum in the basis {|1〉,|2〉}. In the
numerical examples we take a Gaussian function |a(p0)|2 =

1√
2πσ

exp(−p2
0/σ

2).
The homogeneous electric field is more often represented

by a linear scalar potential. To find this representation and
see the equivalence with our treatment, we change the frame
by means of the unitary transformation U = e−iαt x/(h̄c). The
effective Hamiltonian becomes

Hu = U †HU − ih̄U †U̇ = cpσx + mc2σz − α̇t x/c, (24)

where we have used the Hausdorff expansion, which can be
truncated here exactly, as eξxHe−ξx = H + ξ [x,H ], with ξ =
iαt/(h̄c). The homogeneous field is now represented by a linear
scalar potential of time-varying slope. The plane-wave solu-
tions transform as |φu(t)〉 = U †|φ(t)〉 = ei(p0+αt /c)x/h̄|φp0 (t)〉
so they get a time-dependent momentum and the invariant of
Hu becomes [as it may be seen by repeating the steps after
Eq. (4) for Hu] Iu = C(p − αt/c). Since the two frames are
unitarily connected, in what follows we shall use for simplicity
the one based on H .

IV. ROBUST QUANTUM STATE ENGINEERING

A. Invariant-based shortcuts to adiabaticity
for driven Dirac dynamics

The Hamiltonian Hp0 in (21) for the Dirac system with
spatially homogeneous electric field reads in matrix form

Hp0 =
(

mc2 cp0 + αt

cp0 + αt −mc2

)
. (25)

If the functions of time m(t) and αt are given, different values of
p0 imply different 2×2 Hamiltonians, with different solutions
of the Dirac equation (20). If we design m(t) and αt by inverse
engineering so as to induce a population inversion (or some
other operation), say at p0 = 0, which we assume to be the
average momentum of a wave packet, the solution for any other
momentum will generally fail to satisfy the intended task. In
other words, the spread of p0 in a wave packet can affect
the dynamics and induce errors. Therefore, it is necessary
to design protocols robust with respect to the momentum
spread. The perturbed Hamiltonian Hp0 can be decomposed as
Hp0 = H0(t) + H1(t), where

H0(t) =
(

mc2 αt

αt −mc2

)

is the unperturbed Hamiltonian and

H1(t) = c

(
0 p0

p0 0

)

is the “systematic error” Hamiltonian. In the following,
adopting the standard notation for two-level Hamiltonians in

quantum optics, h̄
2	(t) = mc2 and h̄

2
(t) = αt , in terms of a
detuning 	, and a Rabi frequency 
, we write

H0(t) = h̄

2

(
	 



 −	

)
. (26)

The instantaneous adiabatic eigenstates of H0(t) are

|E+(t)〉 = cos

(
ϕ

2

)
|1〉 + sin

(
ϕ

2

)
|2〉, (27)

|E−(t)〉 = sin

(
ϕ

2

)
|1〉 − cos

(
ϕ

2

)
|2〉, (28)

with the mixing angle ϕ = arctan(
/	) and the corresponding
adiabatic energies E±(t) = ± h̄

2

√
	2 + 
2.

For this time-dependent 2×2 Hamiltonian H0, there exists a
dynamical invariant I0, not to be confused with the momentum
invariant of Eq. (2). This invariant in the internal-state subspace
can be written as [13,20,25,26]

I0(t) = h̄

2

0

(
cos θ sin θeiβ

sin θe−iβ − cos θ

)
, (29)

where 
0 is an arbitrary constant (angular) frequency to keep
I0(t) with dimensions of energy, and θ and β are auxiliary
time-dependent angles. Using Eqs. (26) and (29) in Eq. (4) we
find the differential equations

θ̇ = 
 sin β, (30)

β̇ = 
 cot θ cos β − 	. (31)

The eigenstates of the invariant are

|φ+(t)〉 =
(

cos (θ/2)eiβ/2

sin (θ/2)e−iβ/2

)
, (32)

|φ−(t)〉 =
(

sin (θ/2)eiβ/2

− cos (θ/2)e−iβ/2

)
, (33)

which satisfy I0|φn(t)〉 = λn|φn(t)〉(n = ±) with the eigenval-
ues λ± = ±h̄
0/2. The general solution of the time-dependent
Schrödinger equation, according to the theory of Lewis and
Riesenfeld [20], can be written as a linear combination |�s〉 =∑

n=± cne
iεn |φn〉, where c± are time-independent amplitudes,

and the ε± are the Lewis-Riesenfeld phases,

ε±(t) = 1

h̄

∫ t

0
〈φ±(t ′)|ih̄ ∂

∂t ′
− H0(t ′)|φ±(t ′)〉dt ′. (34)

Then, two orthogonal solutions can be constructed as

|ψ0(t)〉= e−iγ (t)/2|φ+(t)〉= e−iγ (t)/2

(
cos(θ/2)eiβ/2

sin(θ/2)e−iβ/2

)
, (35)

and

|ψ⊥(t)〉= eiγ (t)/2|φ−(t)〉= eiγ (t)/2

(
sin(θ/2)eiβ/2

− cos(θ/2)e−iβ/2

)
, (36)

where γ = 2ε− = −2ε+ and 〈ψ0(t)|ψ⊥(t)〉 = 0 for all times.
Thus, by using Eqs. (30) and (34), we find

γ̇ = 
 cos β

sin θ
= θ̇ cos β

sin θ sin β
. (37)
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Our aim is to design invariant-based shortcuts to achieve a
population inversion from state |1〉 to state |2〉, up to a global
phase factor, along the invariant eigenstate |φ+(t)〉 in a given
time tf . We therefore write down the boundary conditions for
θ to guarantee the desired initial and final states,

θ (0) = 0, θ (tf ) = π. (38)

Moreover, if we impose [H0(0),I0(0)] = 0 and
[H0(tf ),I0(tf )] = 0 so that the Hamiltonian H0(t) and
the invariant I0(t) share common eigenstates at initial
and final times, we have the additional boundary conditions


(0) = 0, θ̇ (0) = 0,


(tf ) = 0, θ̇ (tf ) = 0. (39)

The Rabi frequency and detuning leading to a fast population
inversion are determined from Eqs. (30) and (31), choosing
a convenient function of β, and interpolating θ to satisfy the
boundary conditions (38) and (39).

B. Robust shortcuts against systematic momentum errors

To construct invariant-based shortcuts robust against the
systematic momentum errors, we use perturbation theory up to
O(p2

0) to find the time evolution of the quantum state governed
by Hp0 that starts as |ψ0(0)〉,

|ψ(tf )〉 = |ψ0(tf )〉 − i

h̄

∫ tf

0
dtÛ0(tf ,t)H1(t)|ψ0(t)〉

− 1

h̄2

∫ tf

0
dt

∫ t

0
dt ′Û0(tf ,t)H1(t)

× Û0(t,t ′)H1(t ′)|ψ0(t ′)〉 + · · ·, (40)

where |ψ0(t)〉 is the unperturbed solution and Û0(s,t) =
|ψ0(s)〉〈ψ0(t)| + |ψ⊥(s)〉〈ψ⊥(t)| is the unperturbed time evo-
lution operator. We assume that the error-free (p0 = 0) scheme
works perfectly, i.e., |ψ0(0)〉 = |1〉, |ψ0(tf )〉 = |2〉, up to phase
factors. Then, the probability of the excited state at the final
time for tf and momentum p0 is

P2(p0) = |〈ψ0(tf )|ψ(tf )〉|2

= 1 − 1

h̄2

∣∣∣∣
∫ tf

0
dt〈ψ⊥(t)|H1(t)|ψ0(t)〉

∣∣∣∣
2

. (41)

Defining the systematic error sensitivity as [15,16]

qs := −1

2

∂2P2(p0)

∂p2
0

∣∣∣∣
p0=0

= −∂P2(p0)

∂(p2
0)

∣∣∣∣
p0=0

, (42)

we have

qs = c2

h̄2

∣∣∣∣
∫ tf

0
dte−iγ (−i sin β − cos θ cos β)

∣∣∣∣
2

. (43)

For a flat π pulse, β = π/2, and θ = πt/tf , so θ̇ = π/tf ,


 = π/tf , 	 = 0, and γ̇ = 0. This gives

qs(π pulse) = c2t2
f

h̄2 . (44)

Optimally robust invariant-based shortcuts are now defined as
those that make the systematic error sensitivity zero. Following

3 2 1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

ν

q s

FIG. 1. Systematic error sensitivity qs in Eq. (48). As in all
figures we use dimensionless units with c = h̄ = tf = 1. For specific
values of |ν|, qs = 0 is satisfied, in particular at the minimal value
|ν| = 0.643.

[27], we could try the simple Fourier series type of Ansatz

γ = 2θ + ν sin(2θ ), (45)

where ν is a real number that may be varied to nullify qs . (It
is possible to extended this Ansatz to make further derivatives
zero as in [27].) Alternatively we use [15]

γ = ν[2θ − sin(2θ )]. (46)

Both Ansätze are valid and nullify qs for different values
of ν. They lead approximately to the same pulse area A =∫ tf

0 
(t)dt , but the second one provides simpler expressions
of β, 
, and 	, using Eqs. (30), (31), and (37), so it is preferred
here. Specifically, using Eqs. (37) and (46), the parameter β

takes the form

β = arccot(4ν sin3 θ ). (47)

This gives β(0) = β(tf ) = π/2 so that the invariant eigenstate
|φ+(t)〉, see Eq. (32), evolves from |1〉 to |2〉 up to phase
factors, |φ+(0)〉 = eiπ/4|1〉 and |φ+(tf )〉 = e−iπ/4|2〉. Finally,
the systematic errors sensitivity is given by

qs = c2

h̄2

∣∣∣∣
∫ tf

0
dte−iν[2θ−sin(2θ)] −i − 4ν sin3 θ cos θ√

1 + 16ν2 sin6 θ

∣∣∣∣
2

. (48)

Figure 1 shows the systematic error sensitivity versus ν, pass-
ing through zeroes of qs . (In all numerical calculations we use
dimensionless units with c = h̄ = tf = 1. The dimensionless
effective mass generally depends on time so it is not made 1
as usual.) The corresponding Rabi frequency and detuning are


 = θ̇
√

1 + 16ν2 sin6 θ, (49)

	 = 16ν sin2 θ cos θ θ̇
1 + 4ν2 sin6 θ

1 + 16ν2 sin6 θ
. (50)


 increases monotonously with ν so we choose the smaller
value consistent with qs = 0, νm = 0.643, to minimize 
 along
the evolution path. In addition, to interpolate at intermediate
times, we assume a polynomial Ansatz θ = ∑3

j=0 aj t
j , where

the coefficients aj are found by solving the equations set by
the boundary conditions on θ and its derivative; see Eqs. (38)
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FIG. 2. (a) The Rabi frequency 
 (red, solid line) and detuning 	

(blue, dotted-dashed line) in our optimal protocol. (b) Time evolution
of the populations P1(0) (blue, solid line) and P2(0) (red, dotted-
dashed line) during the population inversion. We have used ν = 0.643
and p0 = 0.

and (39). The time-dependent 
 and 	 are shown in Fig. 2(a),
with absolute value maxima |
m| � 13 and |	m| � 10. For
the specified H0(t) in Eq. (26), corresponding to p0 = 0,
we solve H0|φ0(t)〉 = ih̄|φ̇0(t)〉 numerically by a Runge-Kutta
method with an adaptive step, and get the time evolution of the
populations Pk(p0 = 0) for the optimal protocol represented in
Fig. 2(a). Figure 2(b) shows the population inversion between
|1〉 and |2〉. By contrast, solving the dynamics separately
for each p0 with Hp0 , and averaging the populations Pk(p0)
according to Eq. (23), Fig. 3 shows the change of the global
population Pk for Gaussian wave packets with σ = 0.3 and
σ = 0.9, respectively. The population inversion is still accurate
for σ = 0.3, but by further increasing the momentum width,
it eventually must fail. P2(p0) is shown in the next section,
making explicit the momentum-width window where a perfect
inversion can be achieved.

We plot the adiabatic (instantaneous) eigenenergies of H0(t)
in Fig. 4(a) for the optimal protocol. Note the degeneracy at
the edge times due to the vanishing of 	 and 
. Figure 4(b)
depicts the adiabatic time evolution of the populations of
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0

0.5

1
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P
op
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ns

FIG. 3. Time evolution of the populations P1 of a Gaussian
wave packet centered at zero momentum (green, solid line and
blue, dot-dashed line for σ = 0.3 and σ = 0.9, respectively) and P2

(red, dotted-dashed line and black circles for σ = 0.3 and σ = 0.9,
respectively) by averaging over all momenta p0, see Eq. (23), during
the population inversion. H0 as in Fig. 2(a). Compare to the result for
a plane wave, p0 = 0, in Fig. 2(b).
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FIG. 4. (a) The adiabatic energies of Hamiltonian H0(t): E+(t)
(red, solid line) and E−(t) (blue, dotted-dashed line). (b) The adiabatic
time evolution of the populations of level |1〉 for the positive (red,
solid line) and negative (blue, dotted-dashed line) energy eigenstates
of Hamiltonian H0(t). 
 and 	 are as in Fig. 2(a).

level |1〉 in both eigenstates, |〈1|E+(t)〉|2 and |〈1|E−(t)〉|2.
In addition, Fig. 5 depicts the instantaneous populations of
positive and negative energy eigenstates for the invariant
eigenstates, |〈E+(t)|φ+(t)〉|2 and |〈E−(t)|φ+(t)〉|2. While the
positive energy solution dominates most of the time, both are
equally important at boundary times.

V. ROBUSTNESS AGAINST WAVE-PACKET
MOMENTUM SPREAD

We now test the stability of the optimal invariant-based
protocol of the previous section with respect to the momentum
spread in wave packets, compared to a simple invariant-based
shortcut for which the sensitivity is not zero. Both protocols
should invert the population along the invariant eigenstate
|φ+(t)〉 in a given time tf for p0 = 0. Let us denote by a
subscript “s” the auxiliary angles θs(t) and βs(t) and the
Hamiltonian functions 
s,	s for the simple protocol with
nonzero sensitivity. To perform a fair comparison, we impose
the same maxima of Rabi frequency and detuning for the two
protocols. We also take θs(t) = θ (t) and βs(0) = βs(tf ) = π/2
for simplicity. Setting βs(tf /2) = 2π/17 the maximum of
the Rabi frequency becomes 
m

s � 13, as in the optimal

0 0.25 0.5 0.75 1
0

0.5

1

t

P
op

ul
at

io
ns

FIG. 5. Populations of energy eigenstates along the invari-
ant eigenstate |φ+(t)〉, |〈E+(t)|φ+(t)〉|2 (red, solid line) and
|〈E−(t)|φ+(t)〉|2 (blue, dotted-dashed line), for the optimal 
(t) and
	(t) in Fig. 2(a).
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FIG. 6. The Rabi frequency 
s (green, dotted-star line), and
detuning and 	s (black, dashed line) are determined by Eqs. (30)
and (31) with angles θs(t) = ∑3

j=0 aj t
j and βs(t) = ∑4

j=0 bj t
j in

simple invariant-based shortcuts, together with “optimal” 
(t) (red,
solid line) and 	(t) (blue, dotted-dashed line) in Fig. 2(a).

invariant-based shortcut. Moreover, the derivative of βs(t) at
boundary times is chosen as β̇s(0) = −β̇s(tf ) = −15π/(17tf ),
so that the maximal detuning |	m

s | � 10 at initial and final
times is the same as for the optimal protocol. βs(t) is
interpolated at intermediate times with a polynomial Ansatz
βs(t) = ∑4

j=0 bj t
j , where the coefficients bj are found by

solving the boundary conditions. With the determined βs(t)
and θs(t), the Rabi frequency 
s(t) and detuning 	s(t) in
the simple invariant-based shortcut can be calculated from
Eqs. (30) and (31). They are plotted in Fig. 6, together with
the Rabi frequency and detuning of the optimal protocol of
Fig. 2(a), which in fact has a slightly smaller pulse area. By
making use of Eq. (25) with mc2 = h̄

2	(t) and αt = h̄
2
(t)

to solve numerically Eq. (20) with the initial state |1〉, the
excitation probabilities P2(p0) at final time tf = 1 based on
the different invariant-based shortcuts are depicted in Fig. 7,
which demonstrates the robustness of the optimal protocol. If
needed, it is possible to systematically increase the width of
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FIG. 7. Probability P2(p0) at the final time tf = 1 vs systematic
momentum noise p0 by solving numerically Eq. (20) with the
Hamiltonian (25) based on the optimal invariant-based shortcut of
Fig. 2(a) (zero sensitivity, red, solid line), and simple ones (nonzero
sensitivity, blue, dotted-dashed line).

the plateau as in [27], by nullifying higher derivatives of the
population at p0 = 0.

VI. TRAPPED-ION IMPLEMENTATION

Even though the basic structure of a trapped-ion imple-
mentation of a 1 + 1 Dirac equation was already proposed in
Refs. [3–5], in our current formalism the simulated mass and
electric field should be time dependent and highly controllable.
The high degree of laser control in trapped ions enables this
kind of approach, given that laser amplitudes can be turned
on and off in situ and their profiles designed according to the
requirements of the proposed protocol.

In the Lamb-Dicke regime, the Hamiltonian describing the
carrier interaction of a pair of internal levels of a single ion
with mass M driven by a laser field takes the form of Hc =
h̄
c(σ+eiφc + σ−e−iφc ), where η = k

√
h̄/2Mν0 is the Lamb-

Dicke parameter [28,29] with k the wave number of the driving
field and ν0 the frequency of a center-of-mass mode, 
c is the
Rabi frequency, φc is the field phase, and σ+ (σ−) is the raising
(lowering) ionic spin-1/2 operator. A Jaynes-Cummings (JC)
Hamiltonian, also known as red-sideband interaction, Hr =
h̄
̃rη(σ+aeiφr + σ−a†e−iφr ), couples the two internal levels
of the ion and one of the vibrational center-of-mass modes,
where a (a†) is the annihilation (creation) operators of the
vibrational mode. In the blue motional sideband, also known
as anti-JC (AJC) interaction, the Hamiltonian can be written as
Hb = h̄
̃bη(σ+a†eiφb + σ−ae−iφb ), where 
̃r(b) and φr(b) are
the Rabi frequency and phase of the light field. By applying
all of these interactions simultaneously with appropriate Rabi
frequencies and relative phases, the Dirac Hamiltonian for
a free particle, Hfree = cσxp + mc2σy , can be completely
mapped by making the identifications mc2 := h̄
c, and c :=
2η�
̃1 [3,4]. Here, p = ih̄(a† − a)/2� with � = √

h̄/4Mν0

the size of zero-point wave packet, and 
̃1 = 
̃r = 
̃b. We
point out that the carrier can generate a mass term with a σy

Pauli matrix at lowest order, which contains the same physics
as the σz, given that the same Clifford algebra is satisfied.
Another possibility that does not employ the carrier is via
a detuning in the red and blue sideband pulses, which will
directly generate the σz term in an appropriate interaction
picture. In general, a time-dependent Rabi frequency 
c or
detuning will induce a simulated time-dependent mass in the
Dirac system, as our protocol does. In addition, as shown
in [5,6], a free Dirac equation can be encoded by a single ion
(ion 1), and external potentials can be implemented by a second
ion (ion 2) driven by another bichromatic light field with
same vibrational mode but a different electronic transition. For
example, by imposing a laser field with appropriate phases
and a time-dependent Rabi frequency 
̃2 on the ion 2, the
Hamiltonian for the two-ion system will take the form of
He = cσxp + mc2σz − eφe, where −e is the electron charge,
φe is a nonzero electric potential, eφe := g(t)σ (2)

x x with g(t) =
h̄η
̃2(t)/�, and x = (a + a†)� is the position operator [5]. If
ion 2 is prepared in the positive eigenstate of Pauli operator
σ (2)

x , this operator could be replaced by its +1 eigenvalue, and
this reduces to a linear potential in the Hamiltonian He, which
is in consistent with the Hamiltonian Hu in Eq. (24), with
α̇t /c := g(t). Up to a unitary transformation U † = eiαt x/(h̄c),
the Hamiltonian H of Eq. (2) is found. Thus, the optimal

022332-6



ROBUST STATE PREPARATION IN QUANTUM . . . PHYSICAL REVIEW A 95, 022332 (2017)

robust quantum state engineering protocol in Dirac dynamics
can be effectively mapped by a string of two trapped ions.
Alternatively, the synthetic electric field may be implemented
directly in H without a second ion with a proper pulse. Unlike
the Schrödinger equation, a π -carrier pulse for Dirac dynamics
does not invert the population perfectly for a wave packet, see
Eq. (44), due to the first term in H , a problem that may be
solved by inverse-engineered optimized pulses as the ones
proposed in Sec. IV.

VII. DISCUSSION AND SUMMARY

Different systems that behave according to the same model
equations—with disparate interpretation of the symbols—
simulate each other. Often one of these systems is easier to
control and manipulate. It may also obey the model for a
domain of parameters hard or impossible to implement in
the other one leading to exotic phenomena. Dirac systems
obeying the Dirac equation represent well this scenario and
offer manipulation possibilities much beyond the ones for
the domain of spin-1/2 relativistic particles. In line with the
current interest to develop quantum technologies, quantum
effects beyond the Schrödinger equation, as those described by
a Dirac equation, are being investigated due to peculiarities of
the spectrum, band structure, rich phase diagrams, remarkable

transport properties [7,30,31], and control possibilities implied
by the coupling between internal states and momentum [32].
This motivates the development of efficient control approaches
for Dirac dynamics. The mentioned coupling may be useful
for well defined momenta, but also limits the controllability
of internal states introducing systematic errors for a wave
packet with a non-negligible momentum width. We have
demonstrated that inverse engineering based on invariants of
motion provides robust protocols for manipulating the qubit
in a 1 + 1 Dirac system implemented by trapped ions. This
example suggests that “shortcuts to adiabaticity” are a useful
tool in the broad context of quantum simulations and more
generally to develop quantum technologies.
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