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We describe a direct method for experimental determination of the negativity of an arbitrary two-qubit state
with 11 measurements performed on multiple copies of the two-qubit system. Our method is based on the
experimentally accessible sequences of singlet projections performed on up to four qubit pairs. In particular, our
method permits the application of the Peres-Horodecki separability criterion to an arbitrary two-qubit state. We
explicitly demonstrate that measuring entanglement in terms of negativity requires three measurements more
than detecting two-qubit entanglement. The reported minimal set of interferometric measurements provides a
complete description of bipartite quantum entanglement in terms of two-photon interference. This set is smaller
than the set of 15 measurements needed to perform a complete quantum state tomography of an arbitrary two-qubit
system. Finally, we demonstrate that the set of nine Makhlin’s invariants needed to express the negativity can
be measured by performing 13 multicopy projections. We demonstrate both that these invariants are a useful
theoretical concept for designing specialized quantum interferometers and that their direct measurement within
the framework of linear optics does not require performing complete quantum state tomography.
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I. INTRODUCTION

Local invariants describe the nonlocal properties of quan-
tum systems and can be applied to check if two quantum
systems are locally equivalent [1], i.e., if they can be trans-
formed into one another only via local unitary operations on
their subsystems. Over the last years, it was shown that local
invariants of quantum systems are very useful in quantum
information processing. In particular, it was also shown that
the invariants of quantum codes can be a useful tool in
quantum error correction [2] necessary for advanced quantum
computations or simulations. Moreover, for the two-qubit
case, Makhlin [3] showed that 18 invariants can be used to
characterize two-qubit gates (see also Ref. [4]) and arbitrary
two-qubit states. The two-qubit case is the most interesting for
practical applications such as quantum communications [5]
and quantum cryptography [6]. Two-qubit invariants were also
analyzed by King and Welsh in Ref. [7]. The authors found 21
fundamental invariants of a two-qubit state. Recently, the local
unitary invariants of multiqubit states have been described by
Jing et al. in Ref. [8]. These authors demonstrated that some
of the formerly studied two-qubit invariants are algebraically
dependent and they provided a set of 12 independent invariants
for two-qubit states.

One of the natural applications of local invariants is detect-
ing and quantifying quantum entanglement [9,10]. In particu-
lar, they can be used to measure entanglement monotones [11].
It was demonstrated by Carteret [12] that the two-qubit invari-
ants of Kempe [13] can be applied to design quantum circuits
for detecting quantum entanglement via the Peres-Horodecki
criterion [14,15]. A more detailed analysis of this problem was
performed by Bartkiewicz et al. in Refs. [16,17]. In particular
in Ref. [17] it was explicitly shown that nine of 18 Makhlin’s

*bark@amu.edu.pl

invariants can be used to measure the negativity [18,19] of an
arbitrary two-qubit quantum state. This negativity is directly
related to the logarithmic negativity, which is an entanglement
measure with a clear physical interpretation. Partial results
for expressing concurrence [20], an alternative entanglement
measure related to the entanglement of formation, via local
invariants were reported in Refs. [21,22]. For a restricted
class of states the concurrence was measured in a simple
experimental setup [23]. Many other interesting results on
measuring the concurrence were reported also in Refs. [24,25].
For comparison of negativity and concurrence as two-qubit
entanglement measures see Refs. [26,27]. The whole topic of
quantum entanglement was also reviewed in several works,
e.g., Refs. [28–30].

Despite these many interesting results there are still some
open problems regarding direct experimental detection and
quantification of quantum entanglement [31–34]. This might
be due to the fact that measuring entanglement even in the
bipartite case is an NP-hard problem [35,36] and it cannot be
performed with a single copy of a given bipartite state without
full quantum state tomography [37]. In this paper we will
demonstrate how to solve this problem for a general two-qubit
case and the negativity as an entanglement measure.

The problem of measuring negativity approximately was
initially studied in Refs. [38,39]. In this paper, we express
the nine relevant local invariants of Makhlin in terms of 13
more fundamental quantities that are measurable directly with
interferometers. By applying our approach one can measure
the negativity of an arbitrary two-qubit state by measuring
11 parameters or detect entanglement in any two-qubit state
by measuring eight parameters with simpler setups than
initially proposed in Refs. [12,16,40]. The most popular way
to measure the entanglement of a given state ρ̂ is to reconstruct
this state by measuring at least 15 parameters, and to calculate
any entanglement measures for ρ̂. However, in this way we
also acquire some unnecessary information related to local
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properties of ρ̂ (see, e.g., Ref. [41]). With deterministic
sources of two-qubit states and highly efficient detectors, the
presented approach could be more efficient than quantum state
tomography.

Here, we present an experimentally feasible scheme for
detecting and measuring quantum entanglement of a given
two-qubit state. To detect entanglement we apply the Peres-
Horodecki separability criterion [14,15] given in terms of
the sign of determinant of a given partially transposed two-
qubit density matrix [40,42]. There are other methods of
detecting entanglement, including the adaptive method of Park
et al. [43], measuring a fully entangled fraction [44] which
detects the entanglement of all entangled Werner states, the
collective witness of Rudnicki et al. [45] and Lemr et al. [46],
or the entropic entanglement witness investigated in Ref. [47].
However, the determinant of a partially transposed density
matrix detects the quantum entanglement of all two-qubit
entangled states. Moreover, it is especially well suited to be
studied in terms of local invariants and their interferometric
constituents. Our analysis reveals a fundamental difference
in detecting and quantifying quantum entanglement. This
difference was not apparent as both the two-qubit negativity
and universal entanglement witness were analyzed as functions
of the same moments of a given partially transposed density
matrix [16,17].

This paper is organized as follows: in Sec. II, negativity is
defined as a function of the relevant Makhlin’s invariants; in
Sec. III, these invariants are defined via experimentally acces-
sible state projections on multiple copies of the two-qubit state.
In particular, we show that one needs the same information to
measure the values of the relevant Makhlin’s invariants and
to determine the negativity. In Sec. IV we describe a direct
method for measuring the multicopy projections with linear
optics. Next, we discuss the operational difference between
measuring and detecting quantum entanglement within our
framework. We conclude in Sec. V.

II. THEORETICAL FRAMEWORK

Negativity is an important entanglement measure with
a clear operational meaning as the entanglement cost un-
der operations preserving the positivity of partial transpose
(PPT) [48,49]. Other interpretations relate negativity to the
number of dimensions of two entangled subsystems [50].
Formally, it is defined as a quantitative version of the Peres-
Horodecki separability criterion [14,15]. It was first introduced
by Życzkowski et al. [18] and subsequently proved to be an
entanglement measure by Vidal and Werner [19]. In particular,
for two-qubit density matrices ρ̂, it can be defined as the only
positive solution (see Ref. [51]) of the following equation for
N [17]:

a4N
4 + a3N

3 + a2N
2 + a1N + a0 = 0, (1)

where a0 = 48 det ρ̂�, a1 = 4(1−3�2 + 2�3), a2 = 6(1−�2),
a3 = 6, a4 = 3, and the moments of the partially transposed
density matrix ρ̂� are given as �n = tr[(ρ̂�)n]. In our definition
of two-qubit negativity N = 2μ where μ is the absolute value
of the negative eigenvalue of ρ̂�. Interestingly, solving Eq. (1)
was shown to provide simpler formulas for negativity than
other equivalent approaches [52]. The determinant of the

partially transposed density matrix can be expressed as [40]

det ρ̂� = 1
24

(
1 − 6�4 + 8�3 + 3�2

2 − 6�2
)
. (2)

By studying the sign of this determinant one can detect the
entanglement for an arbitrary two-qubit state. If there is no
negative solution, the negativity equals zero. In Ref. [16] it
was shown that the moments of the partially transposed density
matrix are given as

4�2 = 1 + x1,

16�3 = 1 + 3x1 + 6x2, (3)

64�4 = 1 + 6x1 + 24x2 + x2
1 + 2x3,

where x1 = I2 + I4 + I7, x2 = I1 + I12, x3 = I 2
2 − I3 +

2(I5 + I8 + I14 + I4I7) are defined in terms of Makhlin’s
invariants In for n = 1,2,3,4,5,7,8,12,14. From Refs. [16,17]
it could appear that we need the same amount of experimental
data to determine both det ρ̂� and negativity N . However,
this is not the case as we will demonstrate in the following
sections. The 18 invariants described by Makhlin in Ref. [3]
are expressed in terms of the correlation matrix β̂ with
elements βij = tr[(σ̂i ⊗ σ̂j )ρ̂], and the Bloch vectors s and
p with elements si = tr[(σ̂i ⊗ σ̂0)ρ̂] and pi = tr[(σ̂0 ⊗ σ̂j )ρ̂],
respectively. The matrices σ̂i for i = 1, 2, 3 are standard
Pauli matrices and σ̂0 is a single-qubit identity matrix. The
invariants [3] required to express negativity as described in
Refs. [16,17] are

I1 = det β̂, I2 = tr(β̂T β̂), I3 = tr(β̂T β̂)2,

I4 = s2, I5 = [sβ̂]2, I7 = p2, I8 = [β̂p]2, (4)

I12 = sβ̂p, I14 = εijkεlmnsiplβjmβkn,

where εijk is the Levi-Civita symbol. Throughout this paper
we use the Einstein summation convention. Moreover, we will
express the double Levi-Civita symbol in terms of Kronecker’s
delta symbols as shown, e.g., in Ref. [7]. In the following
sections we express these nine invariants as the expected values
of singlet projections performed on multiple copies of a given
two-qubit system.

III. MULTICOPY FORMULAS FOR NEGATIVITY
AND UNIVERSAL ENTANGLEMENT WITNESS

Here, we further investigate the operational meaning of
negativity and the universal entanglement witness in the
context of performing joint measurements on up to four
copies of a given two-qubit system in state ρ̂. This is a
completely different approach than the one originally based
on consecutive parity measurements proposed in Ref. [16]. As
we demonstrate here, every negativity-related invariant can
be expressed as a function of positive valued measurements
(projections) performed on multiple copies of the investigated
two-qubit state. These measurements are invariant under
local unitary operations on ρ̂. The basic building block
in our approach is projection onto the singlet state, i.e.,
P̂ = (σ̂0 ⊗ σ̂0 − σ̂i ⊗ σ̂i)/4 ≡ |�−〉〈�−|, where i = 1, 2, 3.

We construct multicopy observables for Makhlin’s invariants
as explained in the following examples.

As the first example let us take I4 = s2 = 〈σ̂ (1)
i ⊗ σ̂

(2)
0 〉ρ̂

〈σ̂ (1)
i ⊗ σ̂

(2)
0 〉ρ̂ , where the subsystems are now numbered
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FIG. 1. The minimal set of singlet-projection-based observables
needed to measure nine negativity-related Makhlin’s invariants given
in Eq. (4), negativity defined in Eq. (1), and universal entanglement
witness from Eq. (2). Singlet projections are marked as solid curves;
dashed lines combine subsystems (black and white discs) of the same
copy of ρ̂.

and the observables are measured for a single copy of a
system ρ̂ and 〈σ̂ (1)

i ⊗ σ̂
(2)
0 〉ρ̂ ≡ tr[σ̂ (1)

i ⊗ σ̂
(2)
0 ρ̂]. To measure

this invariant with an additional copy of the same system
we continue numbering the subsystems so that the copies of
the first and second subsystem are named 3 and 4, respec-
tively. Hence, we have I4 = 〈σ̂ (1)

i ⊗ σ̂
(2)
0 ⊗ σ̂

(3)
i ⊗ σ̂

(4)
0 〉ρ̂⊗ρ̂ =

1 − 4〈P̂1,3〉ρ̂⊗ρ̂ ≡ 1 − 4g13, where the singlet projection is
performed on the first and the third particle in the sequence.
Here, we introduce the notation (g with the proper subscripts,
see Fig. 1) that is used throughout the paper to name the
expected values of the multicopy observables.

In the second example let us first expand I1 in terms of the
moments of matrix β̂ as

I1 = det β̂ = 1
6 [(trβ̂)3 + 2trβ̂3 − 3trβ̂trβ̂2]. (5)

We can express all these moments as

trβ̂ = 〈
σ̂

(1)
i ⊗ σ̂

(2)
i

〉
ρ̂
,

trβ̂2 = 〈
σ̂

(1)
i ⊗ σ̂

(2)
j ⊗ σ̂

(3)
j ⊗ σ̂

(4)
i

〉
ρ̂⊗ρ̂

, (6)

trβ̂3 = 〈
σ̂

(1)
i ⊗ σ̂

(2)
j ⊗ σ̂

(3)
j ⊗ σ̂

(4)
k ⊗ σ̂

(5)
k ⊗ σ̂

(6)
i

〉
ρ̂⊗3 ,

where σ̂
(a)
i ⊗ σ̂

(b)
i = 1 − 4P̂a,b. After some direct algebraic

manipulations we are left with several equivalent expected

values. The equivalent terms are products of the same number
of P̂ operators, and can be represented as 〈⊗(n,m) P̂n,m〉ρ̂⊗N/2 ,

where the tensor product
⊗

is taken over the relevant
N/2 pairs of qubits (m,n). We can find these terms by
rearranging the order of copies of ρ̂. Any two terms are
equivalent, if we can find a natural number k = 1,2,3,4 for
which 〈⊗(n,m) P̂n,m〉ρ̂⊗N/2 = 〈⊗(n,m) P̂n⊕2k,m⊕2k〉ρ̂⊗N/2 , where
⊕ stands for sum modulo the number of particles N ; e.g.,
for N = 6 we get 3 ⊕ 2 = 5, 4 ⊕ 2 = 6, 6 ⊕ 2 = 2, etc. After
identifying equivalent terms in the analyzed expressions, the
moments of β̂ are given as

trβ̂ = 1 − 4g12,

trβ̂2 = 1 − 8g14 + 16g14,23, (7)

trβ̂3 = 1 − 12g14 + 48g14,36 − 64g14,36,25.

In the final example of I14 we first express the invariant in
terms of Kronecker’s delta symbols by means of an identity
given, e.g., in Ref. [7]. This identity reads as

εijkεlmn = δilδjmδkn + δimδjnδkl + δinδjlδkm

− δilδjnδkm − δimδjlδkn − δinδjmδkl . (8)

Now, we can rewrite I14 = εijkεlmnsiplβjmβkn using the above
mathematical identity and the methods introduced for I4 and
I1 as

I14 = 16
[
g2

12(1 − 4g14) + 2g12(4g14,36 − g14)

− g14,23 + 4g14g14,23 + 2g14,36 − 8g14,36,58
]
. (9)

We applied the techniques explained in the three presented
examples to the relevant nine invariants of Makhlin and
after calculations expressed them in terms of multicopy
measurements as

I1 = − 8
3 {g12[g12(4g12 − 3) + 6(g14 − 2g14,23)]

+ 3g14,23 − 6g14,36 + 8g14,36,52},
I2 = 1 + 16g13,24 − 4(g13 + g24),

I3 = 256
(
g2

13 + 4g13,46 + g2
24

) − 8(g13 + g24)

+ 256g13,46,57,28 + 1,

I4 = 1 − 4g13,

I5 = −4g24 + 32g13,46 − 64g13,46,57 + (1 − 4g13)2,

I7 = 1 − 4g24,

I8 = −4g13 + 32g13,46 − 64g24,35,68 + (1 − 4g24)2,

I12 = 1 + 16g13,46 − 4(g13 + g24),

I14 = 16
[
g2

12(1 − 4g14) + 2g12(4g14,36 − g14)

− g14,23 + 4g14g14,23 + 2g14,36 − 8g14,36,58
]
, (10)

where the relevant 13 terms g12, g13, g14, g24,g13,24, g13,46,

g14,23 g14,36,g14,36,52, g13,46,57, g24,35,68,g13,46,57,28, g14,36,58,

are defined as expected values of projections on multiple
singlet states as shown in Fig. 1. This result allows us to study
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the state-dependent parameters

a0 = −16
[
g3

12 + 2g14,36,52

+ 3
(
g2

13,24 − g2
12g14 − g12g14,23 + g14g14,23

)

− 6(g13,46,57,28 − g12g14,36 + g14,36,58)
]
,

a1 = 24
[
g2

12 − g14,23 − g13,24

+ 2(g13,46 − g12g14 + g14,36)
]

− 32
(
g3

12 − 3g12g14,23 + 2g14,36,52
)
,

a2 = 12(g13 − 2g13,24 + g24), (11)

needed to calculate the negativity with Eq. (1) as functions of
the multicopy observables. It turns out that these coefficients
are expressed with 11 terms, i.e., g12, g13, g14, g24,g13,24,

g13,46, g14,23, g14,36,g14,36,52,g13,46,57,28, g14,36,58. The univer-
sal entanglement witness in terms of singlet projections can be
expressed as det ρ̂� = a0/48, where a given two-qubit state
is entangled if and only if det ρ̂� < 0. However, to measure
negativity one needs to know the values of an for n = 0,1,2.
Note that to witness entanglement it is enough to measure
a smaller set of observables than for negativity. This set
has eight elements and it does not include the g13,g24,g13,46

measurements. Thus, these measurements contain the extra
information that is needed to quantify the entanglement
instead of simply detecting it. Our analysis of the solutions
to the quartic Eq. (1) with the help of a computer algebra
system did not reveal any further reductions in the number of
measurements needed to estimate the negativity.

IV. OPTICAL IMPLEMENTATION OF A MINIMAL
SET OF MULTICOPY PROJECTIONS

The singlet projection P̂ is frequently applied to inves-
tigate the quantum properties of polarization-encoded two-
qubit states [44,47,53–56]. In this case, density matrix ρ̂

describes a pair of polarization-encoded qubits with Pauli ma-
trices σ̂1 = |D,D〉〈D,D| − |A,A〉〈A,A|,σ̂2 = |L,L〉〈L,L| −
|R,R〉〈R,R|, and σ̂3 = |H,H 〉〈H,H | − |V,V 〉〈V,V |, which
are expressed in terms of diagonal (|D〉), antidiagonal (|A〉),
left-circular (|L〉), right-circular (|R〉), horizontal (|H 〉), and
vertical (|V 〉) polarization states. The singlet projection P̂

can be implemented by measuring the anticoalescence rate
of photons that interfered on a balanced beam splitter (BS).
Any two-qubit state can be expressed in a basis of the four
following maximally entangled states:

|�±〉 = 1√
2

(|H,V〉 ± |V,H〉),

|
±〉 = 1√
2

(|H,H〉 ± |V,V〉). (12)

We can express these two-photon states in terms of the creation
operators â1e and â2e for polarizations e = H,V (see Fig. 2),
where, e.g., |V,H〉 = â†1Vâ†2H|0,0〉 and |0〉 is the vacuum. Next,

FIG. 2. The 50:50 beam splitter (BS) transforms the input anni-
hilation operators â1e and â2e into output annihilation operators b̂1e

and b̂2e according to â1e = (b̂1e + b̂2e)/
√

2 and â2e = (b̂1e − b̂2e)/
√

2,

where e = H,V represents two orthogonal polarization modes
(see, e.g., [59]).

the states are transformed by the BS (see Fig. 2) as follows:

UBS|�−〉 = −|�−〉,
UBS|�+〉 = 1√

2
(â†

1V â
†
1H − â

†
2V â

†
2H )|0,0〉, (13)

UBS|
±〉 = 1

2
√

2

(
â
†2
1H − â

†2
2H ± â

†2
1V ∓ â

†2
2V

)|0,0〉.

Thus, observing anticoalescence is equivalent to performing a
singlet projection. We will use this well-known fact [57,58] to
design specialized interferometers to detect and measure the
entanglement of an arbitrary two-qubit state.

The measurements that can be used to determine
the nine relevant Makhlin’s invariants can be grouped
into six sets. The first two sets of measurements are
S1 = {g13,46,57,28,g13,46,57,g24,35,68,g13,46,g13,g24} and S2 =
{g14,36,58,g14,36,58,g14,36,g14}. All the elements in these sets
can be measured with interferometers that measure g13,46,57,28

or g14,36,58 on four copies of a given state. A proper analysis
of the coincidence counts provides values of the remaining
less complex measurements from this set (see Table I). The
next measurement set is S3 = {g14,36,52,g14,36,g14}, where all
the relevant outcomes can be obtained with an interferometer
designed to measure g14,36,52 on three copies of ρ̂. The
last three measurement sets are S4 = {g13,24,g13,g24}, S5 =
{g14,23,g14}, and S6 = {g12}, which can be measured with
three interferometers operating with two copies or one copy
of ρ̂. However, to measure all the above-listed quantities with
four copies of ρ̂ we need no more than four experimental
configurations in total. These three configurations measure
(a) S1, (b) S2, (c) S3 and S6, and (d) S4 and S5 and are
shown in the respective panels of Fig. 3. Note, that some
measurements (e.g., g14, g13, and g24) are performed in more
than one configuration (see Table I).

In configuration (b) the interferometer measures observable
g14,36,58,72, which appears in the following expression for the
fourth moment of β̂, i.e.,

trβ̂4 = 1 − 16g14 + 32
(
2g14,36 + g2

14

)

+ 256(g14,36,58,72 − g14,36,58). (14)

Thus, we have

g14,36,58,72 = 1
256

[
trβ̂4 − 1 + 16g14 − 32

(
2g14,36 + g2

14

)]

+ g14,36,58, (15)
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TABLE I. Interpretation of detection events of the interferometers
shown in Fig. 3. Each couple of detectors Dn for n = 1,2,3,4 detects
coalescence or anticoalescence for a pair of impinging photons. The
accumulated counts of (anti) coalescence events can be grouped into c

coalescence or s = a + c sum of coalescence (c) and anticoalescence
(a). Thus, the total number of all detection events is Z. Depending on
the measured quantity, one can choose the required detection events
in accord with Fig. 1.

D1 D2 D3 D4 Fig. 3(a) Fig. 3(b) Fig. 3(c) Fig. 3(d)

s s s s Z Z Z Z

s s s a Zg24 Zg14 Zg12 Zg14

s s a s Zg13 Zg14 Zg14 Zg14

s s a a Zg13,46 Zg14,36 Zg14g12 Zg14,23

s a s s Zg24 Zg14 Zg14 Zg24

s a s a Zg2
24 Zg2

14 Zg14g12 Zg24g14

s a a s Zg13,46 Zg14,36 Zg14,36 Zg24g14

s a a a Zg24,35,68 Zg14,36,58 Zg14,36g12 Zg24g14,23

a s s s Zg13 Zg14 Zg14 Zg13

a s s a Zg13,46 Zg14,36 Zg14g12 Zg13g14

a s a s Zg2
13 Zg2

14 Zg14,36 Zg13g14

a s a a Zg13,46,57 Zg14,36,58 Zg14,36g12 Zg13g14,23

a a s s Zg13,46 Zg14,36 Zg14,36 Zg13,24

a a s a Zg24,35,68 Zg14,36,58 Zg14,36g12 Zg13,24

a a a s Zg13,46,57 Zg14,36,58 Zg14,36,52 Zg13,24g14

a a a a Zg13,46,57,28 Zg14,36,58,72 Zg14,36,52g12 Zg13,24g14,23

where trβ̂4 is calculated using the Cayley-Hamilton theorem
(see, e.g., Ref. [8]) for β̂, i.e.,

trβ̂4 = trβ̂ − 1
2 trβ̂2(tr2β̂ − trβ̂2) + trβ̂ det β̂, (16)

where the moments trβ̂n for n = 1,2,3 are defined in Eq. (7)
and the determinant det β̂ is defined in Eq. (5) or Eq. (10). Thus,

observable g14,36,58,72 can be expressed using the observables
listed in Fig. 1.

V. CONCLUSIONS

Finding a minimal set of 13 interferometric quantities
for expressing the relevant nine Makhlin’s invariants (11
for negativity and eight for detecting entanglement of a
given two-qubit state) is the main result of this paper. It
explicitly proves that one has to perform more measurements
to reconstruct the state (i.e., 15 measurements) than, e.g., to
measure the negativity (i.e., 11 measurements). In contrast to
the previous works [12,16,17], here we explicitly demonstrated
that all the necessary data for detecting or quantifying the
entanglement can be directly measured without collecting
irrelevant information about the state. This was not appar-
ent before, because the previously proposed measurement
schemes were designed for measuring moments of a given
partially transposed density matrix [12,16,17] and required
ignoring some detection events or output modes, or using
ancillary entangled states. The interferometers shown in Fig. 2
measure only the functions of 13 observables depicted in
Fig. 1 and they cannot be further simplified without losing
the ability to measure the entanglement or the relevant nine
Makhlin’s invariants. Measuring local invariants with linear
optics requires collecting less data than performing a complete
quantum state tomography, which for a two-qubit state requires
15 measurements. Hence, we also demonstrated both that
local invariants are useful theoretical concepts for designing
specialized quantum interferometers and that their direct
measurement within the framework of linear optics does not
require performing complete quantum state tomography.

The described set of 11 observables is the minimal set of
measurements needed to determine the value of the negativity.
Because one cannot express the basic measurements as

FIG. 3. Interferometric configurations for measuring all independent observables from Fig. 1 with four copies of polarization-encoded ρ̂.
In configuration (b) the interferometer can additionally measure g14,36,58,72, which can be expressed as a function of other quantities by means
of the Cayley-Hamilton theorem [see Eq. (15)]. Subsystems of a single copy are depicted as black and white discs connected with dashed
lines. Photons interfere on beam splitters BSn for n = 1,2,3,4 and their coalescence or anticoalescence is detected by detector modules Dn for
n = 1,2,3,4 (see, e.g., Ref. [47]). For detailed analysis of all the possible detection events see Table I.
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functions of each other, the presented set seems impossible
to reduce further. Moreover, any attempt to discard some of
the measurements will change the values of parameters an for
n = 0,1, . . . ,2 in the characteristic equation, thus the value of
N calculated from Eq. (1). In contrast to the results presented
in Refs. [12,16], we do not need ancillary qubits and we use
information from all output modes.

Our results provide a perspective on the phenomenon of
quantum entanglement in terms of entanglement cost under
PPT operations. We demonstrated in Figs. 1 and 2 that two-
qubit entanglement can be fully described using two-photon
interference events between subsystems of at most four copies
of a given state. As explicitly shown in Table I, our approach
gives us only the information needed to measure negativity,
universal entanglement witness, and the relevant Makhlin’s
invariants. All the measured information can be interpreted in
terms of the minimal set of observables depicted in Fig. 1.
This approach only requires using beam splitters and photon
detectors, i.e., the basic building blocks of quantum infor-
mation processing within the framework of linear optics [59].
However, singlet projections on multilevel systems can be also
implemented in, e.g., solid-state systems [60].

The presented general approach can be also used for
measuring a different type of quantum correlations than
quantum entanglement [61], i.e., quantum discord. This type
of quantum correlations is hard to compute (NP-complete)

as shown in Ref. [62]. Note, that measuring or detecting
geometric quantum discord could require more complex
measurements than in the case of entanglement, as described
in Refs. [53,54].

One of the open problems related to the topic of this paper
is the degree of complexity of analogous interferometers used
for entanglement measures other than negativity. By studying
this problem one could categorize the entanglement measures
operationally with respect to the amount of experimental effort
required to measure them. We expect that this would also give
us some intuition about the experimental differences between
the particular entanglement measures like, e.g., concurrence
and negativity, the definitions of which are often too abstract
to directly compare.
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