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Entanglement and deterministic quantum computing with one qubit
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The role of entanglement and quantum correlations in complex physical systems and quantum information
processing devices has become a topic of intense study in the past two decades. In this work we present tools
for learning about entanglement and quantum correlations in dynamical systems where the quantum states are
mixed and the eigenvalue spectrum is highly degenerate. We apply these results to the deterministic quantum
computing with one qubit (DQC1) computation model and show that the states generated in a DQC1 circuit
have an eigenvalue structure that makes them difficult to entangle, even when they are relatively far from the
completely mixed state. Our results strengthen the conjecture that it may be possible to find quantum algorithms
that do not generate entanglement and yet still have an exponential advantage over their classical counterparts.
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I. INTRODUCTION

Quantum computing is a promising theoretical field that
mainly deals with problems that are hard for regular computers
and are easy for a quantum computer [1–3]. Experiments in
quantum computing devices do not yet employ many qubits,
and the most successful approaches can deal with only 7–14
qubits [4–7]. While many experimental and theoretical efforts
are geared towards the implementation of universal quantum
machines with more qubits, there could be considerable
advantages with other less powerful models which we call
semiquantum computer (SQC) models.

SQCs outperform classical computers for some tasks
while being less powerful and potentially less technologically
demanding than universal quantum computers. For more than
a decade, there have been various descriptions of SQCs that
could demonstrate a quantum advantage (sometimes called
quantum supremacy [8]). In some cases these models do not
even require or produce entanglement [9–12].

Among the candidate SQC models are those such as
quantum annealers [13], which may be able to beat classical
computers in a benchmarking experiment but do not seem
to offer an exponential advantage (in the input size). Other
candidate models, which we call subuniversal quantum com-
puters (SuQCs), probably do offer an exponential advantage
for a few specific tasks but remain subuniversal. Three
prominent examples of SuQCs are the linear optics model [14],
instantaneous quantum computing [15], and deterministic
quantum computing with one qubit (DQC1) [16].

For each (candidate) SuQC model there are three important
questions we can ask:

(1) What hard problems can it solve efficiently, and are
these problems interesting (e.g., for science or industry)?
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(2) Is it indeed much more feasible experimentally, and if
so, why?

(3) What are the conceptual properties that make it
(exponentially) more powerful than a classical computer?

Briefly, let us mention the status of DQC1 in connection to
the first two questions: A generic problem for the DQC1 model
is the trace estimation problem, i.e., estimating the normalized
trace of an efficiently implementable unitary operation. For
some subsets of n-qubit unitaries this problem is believed
to be hard for a classical computer [17,18]; that is, there is
good evidence that it impossible to find a classical polynomial
time (in n) algorithm for estimating the normalized trace. For
example, it is possible to use the DQC1 model to estimate the
Jones polynomial at a fifth root of unity for the trace closure
of a braid. This special case is complete for DQC1 and was
implemented experimentally on four qubits [19]. The model
is, however, and idealization as it assumes no errors in the
implementation. It is currently unknown if DQC1 is a viable
model that can be scaled up in the presence of imperfections.

Here we deal with the third question with regards to DQC1.
Our approach is to study the space of quantum states that
can be generated during the computational process and, in
particular, study the correlations within these states. This
approach follows earlier works on the circuit model [20,21],
DQC1 [22–27], measurement-based quantum computing [28],
and other models [10]. As in these works, we do not take error
correction into account.

For pure-state quantum circuits, Vidal [21] showed that
a circuit can be efficiently simulated on a classical computer
when the amount of entanglement is not large [i.e., the maximal
Schmidt rank over all bipartition grows slower than log(n)] at
all times. Jozsa and Linden [20] showed that there is an efficient
classical simulation of a quantum circuit if the register has a
p-block structure for constant p at all times. An n-qubit state ρ

has a p-block structure if ρ = ⊗
j �j and �j are mj � p qubit

states. This structure implies that the blocks are not correlated.
When ρ is pure, the lack of correlations means that there is no
entanglement between blocks of qubits. Preliminary results on
the DQC1 model [23,29] have given some reason to suspect
that discord, a more general measure of quantum correlations,
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may play a role similar to pure state entanglement in this
context.

For any measure of quantum correlations (e.g., entangle-
ment or discord) and any specific way of quantifying these
correlationsC, we may ask if one of the following is a necessary
condition for computational speedup:

(1) At some point in the algorithm the register must have
large amounts of quantum correlations C for at least one
bipartition.

(2) At some point in the algorithm the register must
have some quantum correlations for exponentially many
bipartitions.

By large amounts we mean that C scales in a way similar to
its upper bound [for example, if C is the entanglement mono-
tone negativity [30], it should scale faster than polylog(n)].

There is already strong evidence that statement 1 is not valid
for entanglement [17]; that is, it is known that entanglement
quantified by multiplicative negativity at any point in a DQC1
circuit is bounded from above by a constant. Moreover, for
universal quantum computing, it is known that statement
1 can be true only for particular choices of entanglement
measures [31]. There is some evidence to support statement
1 for other types of quantum correlations [29]; that is, in
DQC1 the correlations as measured by the operator Schmidt
rank grow quickly with the system size [22], and there is
discord between the first qubit and the rest of the system [23].
However, the latter statement does not imply that there are
large amounts of discord for a bipartition that can support a lot
of discord; moreover, it is known that the results on discord are
not symmetric; that is, there is no discord if the measurements
are made on the last n qubits [29].

Our results below are related to statement 2. We present
tools to study entanglement in degenerate quantum systems
undergoing unitary evolution and show that while general
DQC1 circuits can generate a state which is entangled over
many bipartitions, this entanglement is always more sensitive
to depolarizing noise than a generic quantum state. We
also show that specific DQC1 complete circuits have less
entangling power than generic circuits. As a conclusion of our
results, we conjecture that statement 2 is probably violated for
entanglement [i.e., for DQC1 with large α; see Eq. (1)]. The
evidence in support of statement 2 for discord is significantly
stronger since discord is more robust to depolarizing noise.

II. DEFINITIONS

A. Entanglement and discord

A state ρ on H = HA ⊗ HB is said to be separable with
respect to the bipartition {A; B} if and only if it can be
decomposed as ρ = ∑

l ρ
A
l ⊗ ρB

l , where ρA
l are states on HA

and ρB
l are states on HB . If ρ is not separable, it is entangled.

A sufficient condition for entanglement is that the partial
transpose of ρ denoted (T ⊗ 1)(ρ) has a negative eigenvalue.
Such a state is said to be a nonpositive partial transpose
(non-PPT) state; non-PPT states are entangled. If there are two
pure states |ψ〉 , |φ〉 such that 〈φ| (T ⊗ 1)(ρ) |φ〉 = 0 while
〈ψ | (T ⊗ 1)(ρ) |φ〉 �= 0, then ρ is non-PPT [32].

While most quantum states on H = HA ⊗ HB are entan-
gled when the Hilbert space dimensions are large, there is

always a ball of separable states around the completely mixed
state; that is, for an n-qubit system and a given bipartition
there is a finite ε such that all τ with ||τ − 1

2n 1||1 < ε are
separable [33]. One implication is that for small n, a room-
temperature liquid-state NMR processor is never entangled for
any bipartition [34].

States on the boundary of separable states are called
boundary separable [32]. Here we define a new subset of
boundary separable states (see Appendix B for proof that this
is a subset).

Definition 1. A separable state ρ is boundary separable in
its unitary orbits if for all ε > 0 there is a unitary Uε with
||Uε − 1|| < ε such that UερUε† is entangled.

This subset is particularly relevant to systems undergoing
unitary dynamics. Some states cannot be entangled by any
unitary operation on the system [35].

Definition 2. A state ρ is called separable from spectrum
if for all unitaries U the state UρU † is separable. Similarly, it
is PPT from spectrum if for all unitaries U the state UρU † is
PPT.

Discord is an asymmetric measure of quantum correlations.
A bipartite quantum state ρ on HA ⊗ HB is zero discord
with respect to a measurement on subsystem A if and only
if [29,36,37] there is a basis of states {|l〉} for HA such
that ρ = ∑

l al |l〉〈l|A ⊗ �B
l , with �B

l states on HB . If ρ is
not zero discord, it is discordant. For pure states, discord
is symmetric and coincides with entanglement; moreover,
any entangled state is always discordant for measurements
on either subsystem [29]. Unlike separable states, the set of
zero-discord states is nowhere dense [38]; that is, there is no
ball of zero discord states.

B. DQC1

The input to an n + 1 qubit DQC1 circuit is a poly(n)
description of a unitary quantum circuit U that can be
implemented efficiently as a poly(n) sequence of one- and
two-qubit gates chosen from a universal gate set. The circuit
is applied to the initial (n + 1)-qubit state

ρα
n = 1 − α

2n
|0〉〈0| ⊗ 1n + α

2n+1
1n+1. (1)

After the evolution, the first qubit is measured, and the
expectation values of an operator σμ ∈ {σy,σx} on the first
qubit are recorded;1 that is, the output of the computation is

tr
[
Uρα

n U †σμ

] = 1 − α

2n
tr[U (|0〉〈0| ⊗ 1n)U †(σμ ⊗ 1n)]. (2)

Note that we define DQC1 as an estimation problem and
use the term complete below in that context.

We define cDQC1 to be the subset of DQC1 circuits with the
restriction U = [ |0〉〈0| ⊗ 1n + |1〉 〈1| ⊗ V ]H1, where V is a
unitary that can be efficiently decomposed into a polynomial

1Our results concern the intermediate states, so they also apply to
more general algorithms where the readout is not restricted. Such
versions of DQC1 have been considered in the past, although it is
not clear how far one can relax this restriction before making DQC1
universal.
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number of one- or two-qubit gates and H1 is a Hadamard
gate on the first qubit. This family of controlled unitaries is
vanishingly small in the set of all (n + 1)-qubit unitaries. Nev-
ertheless, it is sufficient for solving problems that are DQC1
complete [18], and most of the results regarding correlations
in DQC1 were restricted to this model. To falsify statements
about necessary conditions for computational speedup, it is
sufficient to show that they do not hold for a single complete
problem for DQC1,2 so the restriction to cDQC1 is well
motivated.3

We will use the notation n1 to denote the subsystem
consisting of the n qubits that are initially in the maximally
mixed state. In cDQC1 the first qubit in the bipartition {1; n1}
plays a special role since it is the only qubit to have any
coherence at any time. Note that {1; n1} is a special case of
{1; n}, the set of all bipartitions that have one qubit for one
party and n for the rest (there are n + 1 elements in the set). In
general for any k we define the set of bipartitions {k,n + 1 − k}
where one party has k qubits and the other has the rest. There
are overall 2n − 1 nontrivial bipartitions.

III. ENTANGLEMENT IN DQC1

A. The pure α = 0 case

Knill and Laflamme [16] introduced DQC1 as an algorithm
for liquid-state NMR where it is possible to efficiently initialize
ρα with α close to 1. It is, however, instructive to consider
entanglement in the idealized α = 0 case before continuing to
general α.

Lemma 1. The state ρ0
n is boundary separable in its unitary

orbit for all 2n − 1 bipartitions {k; n + 1 − k} where 0 < k � n.
Proof. To find Uε we start with n = 1. Let Rθ be the

unitary that acts trivially on the subspace span(|01〉 , |10〉)⊥
such that Rθ |01〉 = cos θ |01〉 + sin θ |10〉 and Rθ |10〉 =
− sin θ |01〉 + cos θ |10〉; then, for all 0 < θ < π

2 , Rθρ
0
1R

†
θ is

entangled since it is non-PPT. That can be seen by not-
ing that 〈11| (T ⊗ 1)(Rθρ

0
1R

†
θ ) |11〉 = 0, whereas 〈00| (T ⊗

1)(Rθρ
0
1R

†
θ ) |11〉 = 1

2 cos θ sin θ �= 0. Then, since Rθ = 1 for
θ = 0, for any ε > 0 there is 0 < θ < π

2 such that ‖Rθ − 1‖ <

ε due to the continuity of Rθ in θ , and we can take Uε = Rθ .
This is also true for the more general n and any bipartition;
for example, if the first qubit is in part A and the lth qubit is
in part B, it is possible to have Rθ act on those two qubits and
entangle them; the rest of the system will remain in a factorized
maximally mixed state. �

What is rather surprising is that the subclass of unitaries
used in cDQC1 are precisely those that do not produce
entanglement in the {1; n1} bipartition [29].

So, on the one hand, entanglement in the {1; n1} bipartition
is easy in a generic DQC1 circuit (at α = 0); on the other
hand, there is a subclass, cDQC1, which is known to contain
DQC1 complete problems and cannot generate entanglement
in this cut. Our main result from the analysis of α = 0 is that
the existence of entanglement in the general case does not

2Assuming DQC1 is a SuQC.
3However, one should be careful since the reduction may require

additional qubits.

indicate that entanglement should exist in subsets of circuits
that can encode DQC1 complete problems.

B. The {1; n} bipartition (α > 0)

We continue with entanglement at 1 > α > 0 and a general
one-qubit–n-qubit bipartition {1; n} (of which {1; n1} is a
special case).

Lemma 2. A DQC1 circuit cannot generate entanglement at
any {1; n} bipartition if and only if α � 1

2 .
Proof. In [39], Johnston showed that given an (n + 1)-

qubit state with eigenvalue spectrum λ1 � λ2 � · · · λ2n+1 ,
the following is a necessary and sufficient condition for
separability from spectrum in any {1; n} bipartition:

λ1 � λ2n+1−1 + 2
√

λ2n+1−2λ2n+1 . (3)

The DQC1 state has a degenerate spectrum with two
eigenvalues, 2−α

2n+1 and α
2n+1 , each with degeneracy 2n. So

condition (3) is violated for α � 1
2 . �

Lemma 2 is surprising since ||Uρα
n U † − 1

2n+1 1||1 = 1 − α

so Uρ0.5
n U † is separable, but far outside the ball of sep-

arable states at large n. To see this, take the state τ =∑2n+1−1
i=2

1
2n+1−2 |i〉〈i| with ||τ − 1

2n+1 1|| = 2
2n . Since τ has

eigenvalues λ2n+1 = λ2n+1−1 = 0, then, by Eq. (3), for any {1; n}
bipartition there is some U such that UτU † is entangled and
therefore outside the ball of separable states. This result shows
that entanglement in the set Uρα

n U † is particularly sensitive to
noise in the initial state.

The result above complements the result of Datta, Flammia,
and Caves [17], who found an explicit family of unitaries such
that for α < 1

2 the state Uρα
n U † is entangled for any bipartition.

Furthermore, these states are not PPT, which is consistent with
evidence that PPT from spectrum is the same as separable from
spectrum [40].

C. General bipartitions (α � 0)

Moving to the more general case, we build on the results
of Hildebrand [35], who provided a necessary and sufficient
condition for a state to be PPT from spectrum. Hildebrand’s
general condition (see Theorem 1) is generally difficult to
apply to states with a generic eigenvalue spectrum. In Sec. A 2
we show how to apply this result to the highly degenerate states
in the set Sλ+,λ−

m,n defined in Definition 7. The DQC1 states are
in this set, and the following is a special case of Lemma 5:

Lemma 3. Let ρ be a state on Hk ⊗ Hn−k+1 with k < n+1
2 .

If ρ has two eigenvalues λ1 > λ2, each with degeneracy 2n,
then ρ is PPT from spectrum if and only if 1

2 (λ1 + λ2) − 2k−1

(λ1 − λ2) � 0.
Proof. Using the notation defined in Appendix A, we have

p = 2k, p+ = 2k−1(2k − 1) � 2n, and of course p− � 2n, so
that ρ ∈ Sλ2,λ1

k,n−k+1 and Lemma 5 applies. �
Lemma 4. A necessary condition and a sufficient condition

for ρα
n to be PPT from spectrum for all bipartitions of the n + 1

qubits (n � 2) are, respectively,

α � 1 − 1

2	 n
2 
 , α � 1 − 1

2	 n+1
2 
 , (4)

where 	x
 is the floor of x (i.e., x rounded down to the nearest
integer).
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Proof. The two eigenvalues of ρα
n are λ1 = 2−α

2n+1 and
λ2 = α

2n+1 . By Lemma 3, ρα
n is PPT from spectrum for any

{k; (n + 1 − k)} cut with 1 � k < n+1
2 if and only if

α � 1 − 1

2k
. (5)

If n = 2m, k < n+1
2 if and only if k � m = 	 n

2 
 = 	 n+1
2 


and the conditions coincide, giving a necessary and sufficient
condition.

If n = 2m + 1, {m + 1; m + 1} bipartitions are to be han-
dled separately. If Uρα

n U † is not PPT for a {m + 1; m + 1}
bipartition, then (U ⊗ 1)ρα

n+1(U ⊗ 1)† is not PPT for a
{m + 1; m + 2} bipartition; consequently, if α � 1 − 1

2	 n+1
2 
 =

1 − 1
2k for k = m + 1, then by (5), ρα

n+1 is PPT from spectrum
for {m + 1; m + 2} bipartition, and thus ρα

n is PPT from
spectrum also for {m + 1; m + 1} bipartitions. That proves the
sufficiency condition.

If n = 2m + 1 and if Uρα
n−1U

† is not PPT for a {m; m + 1}
bipartition, then (U ⊗ 1)ρα

n (U ⊗ 1)† is not PPT for a {m +
1; m + 1} bipartition; thus, if ρα

n is PPT from spectrum for
{m + 1; m + 1} bipartitions, then ρα

n−1 is PPT from spectrum
for {m; m + 1} bipartitions, implying by Eq. (5) with k = m =
	 n

2 
 that α � 1 − 1

2	 n
2 
 . �

The scaling of this condition means that for any fixed α

or even for α < 1 − 1
Poly(n) there will always be states that

are entangled for some U and large enough n. Moreover, the
number of bipartitions for which this statement holds grows
exponentially with the size of n. In a follow-up paper [41]
we show how to construct an explicit family of U such that
Uρα

n U † is not PPT when condition (5) is violated.

D. Discord

The lack of entanglement for low n in liquid-state NMR
experiments and DQC1 led to various conjectures about
discord as a more appropriate signature of the quantum ad-
vantage [10,25,26]. Datta et al. [23] provided evidence for this
conjecture by showing that the separable {1; n1} bipartite cut in
cDQC1 was usually discordant with respect to a measurement
on the first qubit. This state is, however, never discordant with
respect to a measurement on n1 [29]. Moreover, there are also
(seemingly DQC1 complete) subsets of cDQC1 where the final
state is not discordant for a measurement on the first qubit [42];
however, even in these circuits the state may be discordant at
some intermediate time [29].

For a qualitative study of the role of discord in DQC1 it is
enough to study the “clean” case α = 0. This follows from the
fact that an (n + 1)-qubit state of the form (1 − α)ρ + α 1

2n+1 is
discordant if and only if ρ is discordant [43]. This fact, together
with the fact that entanglement implies discord, means that
for any bipartition and any α there are unitaries U such that
Uρα

n U † is discordant with respect to a measurement on either
subsystem and any other bipartition.

IV. CONCLUSIONS

Questions regarding the role of entanglement in quantum
computing algorithms have been studied since the first quan-

tum algorithms were tested in liquid-state NMR. The DQC1
algorithm was designed as a test bed for answering these
questions, but even with this simplified model the results are
inconclusive. Here we studied the ability of DQC1 to generate
entanglement under various constraints.

Noise in the initial state [i.e., α in Eq. (1)] determines
the ability of a generic circuit to generate entanglement. We
showed that in any {1; n} bipartition, a circuit cannot generate
entanglement when α � 1

2 (Lemma 2). We also provided a
necessary and sufficient condition for the DQC1 circuit to
generate non-PPT states [Eq. (5)].

We defined a property called boundary separable in unitary
orbits (Definition 1) and showed that the initial states of DQC1
at α = 0 are easy to entangle in any bipartition (Lemma 1). On
the other hand, the DQC1-complete subset, cDQC1, cannot
generate entanglement in the {1; n1} cut, despite the fact that
the first qubit is the only one with any coherence at any
time. We conclude that there is no reason to suspect that
families of DQC1-complete circuits are those that generate
more entanglement than other nontrivial families of circuits.

Our most surprising result is that the entanglement in
the set all of states generated in a DQC1 circuit is more
fragile to depolarizing noise than a generic mixed state.
Based on this and the conclusion above, we are optimistic
about the possibility of finding DQC1-complete circuits where
entanglement is never generated at any point for the vast
majority of bipartite cuts (and possibly all bipartite cuts) at
all n. Such circuits would provide extremely strong evidence
that quantum computational speedup can be achieved without
entanglement.

We pointed out that, at the qualitative level, the study of
discord can be restricted to α = 0. Based on that, we conclude
that a subset of circuits that do not generate discord on the one
hand and are DQC1 complete on the other is unlikely to exist.

We believe that the next challenge will be to find a family
of DQC1 circuits which encode classically hard computa-
tional problems and, at the same time, do not generate any
entanglement for most bipartitions at some α < 1 − 1

Poly(n) or,
conversely, give strong evidence that such a family is unlikely
to exist, for example, by finding an algorithm that can simulate
any separable instance of DQC1.

Our results were presented in the context of DQC1. The
approaches developed here will be useful for further study
of entanglement and quantum correlations in other candidate
SuQCs. More generally, our methods can be applied to
the study of entanglement and quantum correlation in other
complex systems involving mixed quantum states.
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APPENDIX A: PPT FROM SPECTRUM
FOR DQC1 STATES

In this Appendix we provide some general results regarding
the possibility that the state Uρα

n U † is not PPT. We begin with
a review of the results by Hildebrand [35] and continue to
explicitly calculate the necessary and sufficient conditions for
PPT from spectrum for a particular set of states where the
largest and smallest eigenvalues are highly degenerate.

1. Recap of definitions and main theorem from Hildebrand [35]

a. Notations and definitions

In the following, [n] denotes the set {1, . . . ,n} of n

elements; H(n) denotes the space of n × n Hermitian matrices
or Hermitian operators on Hn, and H+(nm) denotes the
set of positive semidefinite nm × nm matrices or positive-
semidefinite (PSD) operators on Hn ⊗ Hm.

Definition 3. Let p+ = p(p+1)
2 and p− = p(p−1)

2 for p ∈ N;
also let S

p
+ = {(i,j ) | 1 � i � j � p} and S

p
− = {(i,j ) | 1 �

i < j � p}. A linear ordering of the pairs (i,j ) ∈ S
p
+

(respectively in S
p
−) is a bijective map σ+ : S

p
+ → [p+]

(σ− : S
p
− → [p−]).

Definition 4. The linear ordering σ− : S− → [p−] is said to
be consistent with σ+ : S

p
+ → [p+] if for all (k1,l1),(k2,l2) ∈

S
p
−, σ+(k1,l1) < σ+(k2,l2) implies σ−(k1,l1) < σ−(k2,l2).

Remark 1. For each σ+ : S
p
+ → [p+] there is exactly one

σ− : S
p
− → [p−] that is consistent with σ+.

Definition 5. Let x ∈ Rp be a vector with non-negative
entries. A linear ordering(σ+,σ−) is said to be compatible
with x if σ+(k1,l1) < σ+(k2,l2) implies xk1xl1 � xk2xl2 .

The linear ordering above is a simple way to put the products
xkxl in decreasing order for 1 � k � l � p. If the products
are all distinct, there is just one way. In the case of identical
elements the order is not relevant.


± = {(σ+,σ−) | ∃ x ∈ Rp | x1 > x2 > · · · > xp > 0 :

(σ+,σ−) compatible with x}.

Definition 6. If λ = (λi)1�i�nm is a sorted list of mn real
numbers in decreasing order, p = min(m,n), and (σ+,σ−) is a
consistent pair of orderings of S

p
+ and S

p
−, then �(λ; σ+,σ−) is

the p × p matrix defined by

�(λ; σ+,σ−) =
{

λnm+1−σ+(k,l) k � l,

−λσ−(l,k) k > l.

b. Main result

Theorem 1. If A ∈ H+(nm) has λ = (λi)1�i�nm as eigen-
values in decreasing order, then A has a positive-semidefinite
partial transpose (PPT) for all decompositions of Hnm as a
tensor product space Hn ⊗ Hm if and only if for all (σ+,σ−) ∈

± the following holds:

�(σ+,σ−) + �(σ+,σ−)T 
 0.

Proof. See Theorem 1 of [35]. �

2. Application to special states with a highly degenerate
eigenvalue spectrum

Definition 7. For m < n, we defineSλ+,λ−
m,n as the set of states

τ ∈ H+(2m2n) that have λ+ as their largest eigenvalue with
degeneracy at least p− = 22m−1 − 2m−1 and λ− as the smallest
eigenvalue with degeneracy at least p+ = 22m−1 + 2m−1 (note
that there are 2m+n − 22m free eigenvalues).

Lemma 5. All states τ ∈ Sλ+,λ−
m,n are separable from spectrum

if and only if 1
2 (λ+ + λ−) − 2m−1(λ+ − λ−) � 0.

Proof. Let λ be the list of eigenvalues of τ ∈ Sλ+,λ−
m,n sorted

in decreasing order and p = 2m; all the matrices �(λ; σ+,σ−)
are then equal and have the following form:

�k,l =
{
λ− 1 � k � l � p,

−λ+ p � k > l � 1.

It follows that the off-diagonal entries of � + �T are equal to
λ− − λ+ and the diagonal entries are 2λ−, and thus

� + �T = (λ− + λ+)1 + (λ− − λ+)K,

where Ki,j = 1 for all 1 � i,j � p. For any x ∈ Rp

xT (� + �T )x = (λ+ + λ−)‖x‖2 − (λ+ − λ−)

(∑
i

xi

)2

,

and the minimum value for ‖x‖ = 1 is obtained if all xi

are equal, i.e., xi = 1√
p

for 1 � i � p, giving a minimum of
(λ+ + λ−) − p(λ+ − λ−). By Theorem 1, τ is separable from
spectrum if and only if (λ+ + λ−) − p(λ+ − λ−) � 0 �.

APPENDIX B: BOUNDARY-SEPARABLE STATES

In the main text we stated that the set of states that are
boundary separable in their unitary orbits is a subset of the set
of boundary-separable states. Below is proof of that statement.

Lemma 6. If ρ is boundary separable in its unitary orbits,
then ρ is boundary separable.

Proof. The following inequalities apply whether ‖ · ‖ is the
trace norm, the operator norm, or the Hilbert-Schmidt norm.
Here we assume it is the trace norm. Let U be such that
‖U − 1‖ < ε/2 and UρU † is entangled. Using the fact that
‖ · ‖ is a norm (i.e., the triangle inequality holds) and that
‖A†‖ = ‖A‖, ‖AB‖ � ‖A‖‖B‖, and ‖AB‖ � ‖A‖∞‖B‖,

‖UρU † − ρ‖ = ‖Uρ(U † − 1) + (U − 1)ρ‖
� ‖U‖∞‖ρ‖‖U † − 1‖ + ‖U − 1‖‖ρ‖
< ε.

�
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