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Fast phase gates with trapped ions
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We implement faster-than-adiabatic two-qubit phase gates using smooth state-dependent forces. The forces
are designed to leave no final motional excitation, independently of the initial motional state in the harmonic
small-oscillations limit. They are simple, explicit functions of time and the desired logical phase of the gate, and
are based on quadratic invariants of motion and Lewis-Riesenfeld phases of the normal modes.
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I. INTRODUCTION

Realizing the full potential of quantum information pro-
cessing requires a sustained effort to achieve scalability, and
to make basic dynamical or logical operations faster, more
accurate, and reliable under perturbations. Two-qubit gates are
crucial building blocks in any scheme of universal quantum
computing and have received much attention. An important
step forward was the theoretical proposal of geometric gates
with reduced sensitivity to the vibrational quantum numbers
[1–4], with the first experimental realization in [5]. Soon after,
Leibfried et al. [6] demonstrated a phase gate of the form

|↑↑〉 → |↑↑〉, |↓↓〉 → |↓↓〉,
|↑↓〉 → i|↑↓〉, |↓↑〉 → i|↓↑〉, (1)

with two trapped ions of the same species subjected to
state-dependent forces, where each spin-up or spin-down
arrow represents an eigenstate of the σz operator for one of
the ion qubits. Generalizations of this gate with the potential
of reduced gate times were discussed by Garcı́a-Ripoll et al.
[7,8], and in [9–11]. The gate mechanism satisfies a number of
desirable properties: it is insensitive to the initial motional
state of the ions, at least in the small-oscillations regime
where the motion is inside the Lamb-Dicke regime and the
nonlinearities of the Coulomb coupling are negligible; it
depends on “geometric” properties of the dynamics (phase-
space areas), which makes it resistant to certain errors; it
allows for close distances and thus strong interactions among
the ions; and, finally, it may in principle be driven in short,
faster-than-adiabatic times. The forces designed to make the
ions return to their initial motional state in a rotating frame
of phase-space coordinates [3,4] are different for different
qubit state configurations, leading to qubit state dependent
motional trajectories that produce a differential phase. Pulsed
forces with abrupt kicks were designed [10,12–14], and also
forces with discontinuous but finite derivatives [8,9,11], at
boundary times of the entire operation, or between pulses,
but in practice smooth continuous forces with continuous
derivatives are desirable to minimize experimental errors.

In this paper, we revisit the phase gates and tackle the design
of smooth forces as an inverse problem, via Lewis-Riesenfeld
invariants [15]. For a predetermined operation time, the ap-
proach is applicable to arbitrary masses and proportionalities
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among the spin-dependent forces. This provides a more general
scope than previous proposals to achieve faster than adiabatic
operations. Hereafter, forces are assumed to be induced by off-
resonant lasers that do not change the internal states. However,
the basic ideas should be applicable to Mølmer and Sørensen
type gates that flip the qubit spins during gates as well1 [16].
Specifically we design forces to implement the operation

|↑↑〉 → eiφ(↑↑)|↑↑〉, |↓↓〉 → eiφ(↓↓)|↓↓〉,
|↑↓〉 → eiφ(↑↓)|↑↓〉, |↓↑〉 → eiφ(↓↑)|↓↑〉, (2)

such that �φ ≡ φ(↑↓) + φ(↓↑) − φ(↑↑) − φ(↓↓) = ±π ,
where the qubits could be realized with two different species,
which may have practical importance to scale up quantum
information processing with trapped ions [17]. Gates of the
form (2) are computationally equivalent, up to single-qubit z

rotations to the standard phase gate diag[1,1,1,−1] written in
the basis {|↑↑〉,|↑↓〉,|↓↑〉,|↓↓〉} [18].

Our analysis demonstrates that invariant-based inverse
Hamiltonian design is not limited to population control and
may be adjusted for phase control as well. It was known that
the phase of a given mode of the invariant (a time-dependent
eigenstate of the invariant which is also a solution of the
time-dependent Schrödinger equation) could be controlled
[19], but the fact that “global phases,” for a given internal state
configuration, of arbitrary motional states can be controlled as
well in a simple way had been overlooked. This is interesting
for applying shortcuts to adiabaticity [20] in quantum infor-
mation processing. In particular, we will derive ready-to-use,
explicit expressions for the state-dependent forces, and may
benefit from the design freedom offered by the invariant-based
method to satisfy further optimization criteria.

To evaluate the actual performance of the phase gate at
short times we have to compute fidelities, excitation energies,
and/or their scaling behavior, according to the dynamics
implied by the Hamiltonian including the anharmonicity
of the Coulomb repulsion. This is important, as inversion
protocols that work nearly perfectly in the small-oscillations
regime fail for the large amplitudes of ion motion that occur in

1The Mølmer and Sørensen gate [1,4] can be mathematically
described in the same language, replacing the eigenvectors of σz,
|↑〉, and |↓〉, by the eigenvectors of σx , |+〉, and |−〉. This allows for
an interchange of methods among the gate (2) and the Mølmer and
Sørensen gate.
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fast gates, and only a rough estimate of the domain of validity
could be found in [8]. Here, we have numerically checked
the validity of the phase gate up to gate times less than one
oscillation period without assuming the approximations used
in the small-amplitude regime. An additional perturbing
effect with respect to an idealized limit of homogeneous
spin-dependent forces is the position dependence of the forces
induced by optical beams. This may be serious at the large
motional amplitudes required for short gate times, when the
ion motion amplitude becomes comparable to the optical
wavelength as we illustrate with numerical examples.

The analytical theory for small oscillations is worked out in
Secs. II, III, and IV. Then, we consider in Sec. V two ions of the
same species, which implies some simplifications, assuming
equal forces on both ions if they are in the same internal state,
and opposite forces with equal magnitude when the ions are
in different internal states (more general forces are treated in
Appendix A). We also consider a more complete Hamiltonian
including the anharmonicity of the Coulomb force and the spa-
tial dependence of the light fields to find numerically the devi-
ations with respect to ideal results within the small-oscillations
approximation. Finally, in Sec. VI we study phase gates
between ions of different species. The Appendices present
generalizations of the results for arbitrary proportionalities
between the state-dependent forces, alternative useful expres-
sions for the phases, an analysis to determine the worst possible
fidelities, the calculation of the width of the position of one ion
in the two-ion ground state, and alternative inversion protocols.

II. THE MODEL

Consider two ions of charge e, masses m1 and m2, and
coordinates x1 and x2, trapped within the same radially tight
effectively one-dimensional trap. We assume the position
x1 of “ion 1” to fulfill x1 < x2 at all times due to Coulomb
repulsion, with x2 the position of “ion 2.” Qubits may be
encoded for each ion in two internal levels corresponding
to the “spin-up” (|↑〉) eigenstate of σz with eigenvalue
σ z

i = 1, and the “spin-down” eigenstate (|↓〉) with eigenvalue
σ z

i = −1, i = 1,2. Off-resonant lasers induce state-dependent
forces that are assumed first to be homogeneous over the
extent of the motional state (Lamb-Dicke approximation).
Later in the paper we shall analyze the effect of more
realistic position-dependent light fields when the Lamb-Dicke
condition is not satisfied. For a given spin configuration, ↑↑,
↓↓, ↑↓, or ↓↑, the Hamiltonian can be written as

H = p2
1

2m1
+ 1

2
u0x

2
1 + F1

(
t ; σ z

1

)
x1

+ p2
2

2m2
+ 1

2
u0x

2
2 + F2

(
t ; σ z

2

)
x2

+ Cc

x2 − x1
− E0, (3)

where Cc = e2

4πε0
, u0 = m1ω

2
1 = m2ω

2
2, and ε0 is the vacuum

permittivity. A constant E0 is added for convenience so that
the minimum of

V = 1

2
u0x

2
1 + 1

2
u0x

2
2 + Cc

x2 − x1
− E0 (4)

is at zero energy when x1 and x2 assume their equilibrium
positions. The laser induced, state-dependent forces may be

independent for different ions as they may be implemented by
different lasers on different transitions. For equal-mass ions,
the same lasers, and equal and opposite forces on the qubit
eigenstates, they may simplify to Fi = σ z

i F (t). In principle,
the proportionality between the force for the up and the down
state could be different, but, as shown in Appendix A, the
forces for a general proportionality can be related by a simple
scaling to the ones found for the symmetric case Fi = σ z

i F (t).
We can determine normal modes for the zeroth-order

Hamiltonian:

H0 = p2
1

2m1
+ p2

2

2m2
+ V. (5)

The equilibrium positions of both ions under the potential V
are

x
(0)
1 = − 3

√
Cc

4u0
, x

(0)
2 = 3

√
Cc

4u0
, (6)

with equilibrium distance x0 = x
(0)
2 − x

(0)
1 , which yields E0 =

3u0x
2
0/4.

Diagonalizing the mass scaled curvature matrix Vij =
1√

mimj

∂2V
∂xi∂xj

|{xi ,xj }={x(0)
i ,x

(0)
j }, that describes the restoring forces

for small oscillations around the equilibrium positions, we get
the eigenvalues

λ± = ω2
1

[
1 + 1

μ
±

√
1 − 1

μ
+ 1

μ2

]
, (7)

where ω1 = (u0/m1)1/2 and μ = m2/m1, with μ � 1. The
normal-mode angular frequencies are


± =
√

λ±, (8)

and the orthonormal eigenvectors take the form v± = (a±
b±),

where

a± =
[

1

1 + (
1 − 1

μ
∓

√
1 − 1

μ
+ 1

μ2

)2
μ

]1/2

,

b± =
(

1 − 1

μ
∓

√
1 − 1

μ
+ 1

μ2

)√
μa± (9)

fulfill

a2
± + b2

± = 1,

a+a− + b+b− = 0,

a+b− − a−b+ = 1. (10)

The mass-weighted, normal-mode coordinates are

x+ = a+
√

m1
(
x1 − x

(0)
1

) + b+
√

μm1
(
x2 − x

(0)
2

)
,

x− = a−
√

m1
(
x1 − x

(0)
1

) + b−
√

μm1
(
x2 − x

(0)
2

)
, (11)

and the inverse transformation to the original position coordi-
nates is

x1 = 1√
m1

(b−x+ − b+x−) − x0

2
,

x2 = 1√
μm1

(−a−x+ + a+x−) + x0

2
. (12)
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Finally, the Hamiltonian (3), neglecting higher-order an-
harmonic terms, and using conjugate “momenta” p± =
−ih̄∂/∂x±,2 takes the form

H = HNM + f̃ (t), (13)

where

HNM = H+ + H−,

H± = p2
±
2

+ 1

2

2

±x2
± − f±x±,

f̃ = x0

2
(F2 − F1),

f±(t) = ∓F1b∓√
m1

± F2a∓√
μm1

. (14)

The function f̃ depends on time and on the internal states.
By restricting the calculation to a given spin configuration,
the dynamics may be worked out in terms of HNM alone,
ih̄∂ψNM/∂t = HNMψNM , and the wave function that evolves
with H in Eq. (13) is e(−i/h̄)

∫ t

0 dt ′f̃ ψNM . Purely time-dependent
terms in the Hamiltonian are usually ignored as they imply
global phases. In the phase-gate scenario, however, they are not
really global, since they depend on the spin configuration. As
the spin configuration may be changed after applying the phase
gate, e.g., by resonant interactions, they may lead to observable
interference effects and in general cannot be ignored. However,
in the particular gate operation studied later the extra phase
vanishes at the final time tf , so we shall focus on the dy-
namics and phases generated by the Hamiltonian HNM , which
represents two independent forced harmonic oscillators with
constant frequencies. We can now apply Lewis-Riesenfeld
theory [15] in an inverse way [20]: The desired dynamics
are designed first, and from the corresponding invariant the
time-dependent functions in the Hamiltonian are inferred [21].
Note that in the inverse problem the oscillators are “coupled,”
as only one physical set of forces that will act on both normal
modes of the uncoupled system must be designed [22].

III. ONE MODE

In this section we consider just one mode and drop the
subscripts ± to make the treatment applicable to both modes.
The goal is to find expressions for the corresponding invariants,
dynamics, and phases. The Hamiltonian describing a harmonic
oscillator with mass-weighted position and momentum is
written as

H = H0 + V, (15)

H0 = p2

2
+ 1

2

2x2, (16)

V = −f (t)x. (17)

Following the work of Lewis and Riesenfeld [15], it is
possible to find a dynamical invariant of H solving the

2The dimensions of the mass-weighted coordinates are length times
square root of mass, mkg1/2, while the dimensions of the conjugate
momenta are kg1/2m/s.

equation

dI

dt
≡ ∂I

∂t
+ 1

ih̄
[I,H ] = 0. (18)

For a moving harmonic oscillator, a simple way to find an
invariant is to assume a quadratic (in position and momentum)
Ansatz with parameters that may be determined by inserting
the Ansatz in Eq. (18). This leads to the invariant

I (t) = 1
2 (p − ẏ)2 + 1

2
2(x − y)2, (19)

where the dot means “time derivative,” and the function y(t)
must satisfy the differential (Newton) equation

ÿ + 
2y = f, (20)

so it can be interpreted as a “classical trajectory” (with
dimensions kg1/2m) in the forced harmonic potential [21].

This invariant is Hermitian, and has a complete set of
eigenstates. Solving

I (t)ψn(t) = λnψn(t), (21)

we get the time-independent eigenvalues

λn = h̄

(

1
2 + n

)
(22)

and the time-dependent eigenvectors

ψn(x,t) = e
i
h̄
ẏxφn(x − y), (23)

where φn(x) is the nth eigenvector of the stationary oscillator,

φn(x) = 1√
2nn!

(



πh̄

)1/4

e
−
x2

2h̄ Hn

(√



h̄
x

)
, (24)

and the Hn are Hermite polynomials. The Lewis-Riesenfeld
phases θn must satisfy

h̄
dθn

dt
= 〈ψn|ih̄ ∂

∂t
− H |ψn〉, (25)

so that the wave function (23) is indeed a solution of the
time-dependent Schrödinger equation. Using Eq. (23), they
are given by

θn(t) = −1

h̄

∫ t

0
dt ′(λn + ẏ2/2 − 
2y2/2)

= −(n + 1/2)
t − G(t), (26)

where

G(t) = 1

2h̄

∫ t

0
dt ′(ẏ2 − 
2y2). (27)

Finally, the solution of the Schrödinger equation for the
Hamiltonian H can be stated in terms of the eigenstate and
Lewis-Riesenfeld phases of the invariant as

ψ(x,t) =
∑

n

cne
iθn(t)ψn(x,t). (28)

Hereafter we consider that f is such that there are particular
solutions y = α of Eq. (20) that satisfy at the boundary times
tb = 0,tf the boundary conditions

α(tb) = α̇(tb) = 0. (29)
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They guarantee that all states �n(x,t) = eiθn(t)ψn(x,t) end up
at the original positions and at rest:

�n(x,tf ) = eiθn(tf )φn(x). (30)

In other words, each initial eigenstate of the Hamiltonian is
driven along a path that returns to the initial state with an
added path-dependent phase. Moreover, we assume that the
force vanishes at the boundary times tb = 0,tf , f (tb) = 0, and,
therefore, from Eq. (20),

α̈(0) = α̈(tf ) = 0. (31)

Integrating by parts and using Eq. (20) as well as the boundary
conditions α(tb) = 0, the phase factor common to all n takes
the form

φ(tf ) = −G(tf ) = 1

2h̄

∫ tf

0
dtf α. (32)

To determine the stability of the results with respect to a
systematic perturbation let us assume that the force is subjected
to a homogeneous, small constant offset δf . Substituting
f → f + δf , in first order, the phase shift is

δφ(tf ) = δf

h̄

∫ tf

0
dtα. (33)

Note that this could vanish if the zeroth-order trajectory
α nullifies the integral, as it happens for the symmetrical
functions used in this paper.

As the phases θn(tf ) in Eq. (26) have an extra n-dependent
term, an arbitrary motional state ψ(t) that superposes different
n components does not generally return to the same initial
projective ray. To remedy this it is useful to consider a rotating
frame, i.e., we define ψI (t) = eiH0t/h̄ψ(t), so that

ψI (tf ) = e−iG(tf )ψI (0), (34)

with total phase −G(tf ) for an arbitrary motional state. To
decompose this phase into dynamical and geometric phases,
we first note that

ih̄
∂ψI

∂t
= VIψI , (35)

where VI = −f eiH0t/h̄xe−iH0t/h̄. The dynamical phase is

φd = −1

h̄

∫ tf

0
dt〈ψI (t)|VI (t)|ψI (t)〉

= −1

h̄

∫ tf

0
dt〈ψ(t)|V (t)|ψ(t)〉

= 1

h̄

∫ tf

0
dtf (t)〈x(t)〉. (36)

The expectation value of x corresponds to a classical trajectory,
i.e., to a solution of Eq. (20), but not necessarily the one
corresponding to α. To describe a general trajectory it is useful
to define dimensionless positions and momenta as

Y =
√




2h̄
y, P =

√
1

2h̄

p (37)

(similarly for other coordinates such as x or α) as well as
complex-plane combinations z = Y + iP .

The general solution of the position and momentum of a
classical particle, or the corresponding expectation values for
any quantum state, is compactly given in complex form as

zg(t) = e−i
t

{
zg(0) + i√

2h̄


∫ t

0
dτei
τf

}
= z̃ + z0, (38)

where

z̃ ≡ e−it
zg(0), (39)

z0 ≡
√




2h̄
y0 + i

√
1

2
h̄
ẏ0, (40)

and y0 is a particular solution satisfying y0(0) = ẏ0(0) = 0. For
an f such that y0(t) = α(t), and thus z0 = zα , the boundary
conditions at tf are satisfied as well in the particular solution
[see Eq. (29)]. By separating into real and imaginary parts, it
can be seen that

Re(z̃)
1√
2
h̄

f = ∂Im(zαz̃∗)

∂t
, (41)

so that ∫ tf

0
dt Re(z̃)f = 0, (42)

since zα(tb) = 0. With these results, we rewrite Eq. (36) as

φd = 1

h̄

∫ tf

0
dt

[
α +

√
2h̄



Re(z̃)

]
f = 1

h̄

∫ tf

0
dtf α. (43)

Therefore, the geometric phase φg is minus the total phase:

φg = φ − φd = − 1

2h̄

∫ tf

0
dtf α = −φ. (44)

It is interesting to use the phase-space trajectory in the
rotating frame zr = ei
tzg = Xr + iPr to write f 〈x〉/h̄ =√

2
h̄


Re(zg) = 2Im( dzr

dt
z∗
r ) = 4dA/dt , where dA is the dif-

ferential of area swept in the rotating phase space, dA/dt =
Xr

2
dPr

dt
− Pr

2
dXr

dt
. Thus Eq. (36) becomes

φd = 4A. (45)

Consequently, φg = −2A, and φ = 2A. The area is equal for
all trajectories [values of zg(0)] due to Eq. (42), so it may be
calculated using zg(0) = 0, i.e., the simple particular solution
zg = zα . Equations (44) and (45) are known results [8] but they
are relevant for our work, so we have rederived them without
using coherent states or a concatenation of displacement
operators [6]. This is convenient when expressing the wave
function as a superposition in an orthonormal basis.

IV. INVARIANT-BASED INVERSE HAMILTONIAN DESIGN

The results of the previous section may now be combined to
inverse engineer the force. The Hamiltonian HNM involves the
two modes so that superscripts or subscripts have to be added
to the functions of the previous section to denote the mode.

We assume that forces vanish at the boundary times
tb = 0,tf , F1(tb) = F2(tb) = 0. Thus f±(tb) = 0. In the
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rotating frame ψI (t) = eiH 0
NM t/h̄ψNM (t), where

H 0
NM = H 0

+ + H 0
−, H 0

± = p2
±
2

+ 1

2

2

±x2
±, (46)

so that

ψI (tf ) = e−i[G−(tf )+G+(tf )]ψI (0). (47)

Thus, the phase we are interested in for a given configuration
is

φ(tf ) = −[G+(tf ) + G−(tf )]

= − 1

2h̄

∫ tf

0
dt(α̇2

+ + α̇2
− − 
2

+α2
+ − 
2

−α2
−)

= 1

2h̄

∫ tf

0
dt(f+α+ + f−α−), (48)

where the last step was done integrating by parts. An
alternative double-integral expression used in Appendix A is
shown in Appendix B. The inverse strategy is to design the
α± consistently with the boundary conditions, leaving free
parameters that are fixed to produce the desired phase. The
following section shows this in detail for equal masses.

V. EQUAL-MASS IONS

For two equal-mass ions, m = m1 = m2, ω = ω1 = ω2,
a+ = −b+ = a− = b− = 1/

√
2, 
− = ω (center-of-mass

mode), and 
+ = √
3ω (stretch mode). This implies [see

Eq. (14)] that

f± = ±F2 − F1√
2m

, (49)

and F1 and F2 are defined as Fi = σ z
i F (t) (see the general

case in Appendix A), so that the following values are found:

f+(P ) = f−(A) = 0,

f−(↑↑) = f+(↑↓) = −2F/
√

2m,

f−(↓↓) = f+(↓↑) = 2F/
√

2m, (50)

where P stands for parallel spins, and A stands for antiparallel
ones. If both ions have the same spin, then f+(P ) = 0 and
no stretching is induced, but the center-of-mass (−) mode is
transiently excited. In that case, α+(P ) = 0 and

α−(↑↑) = −α−(↓↓), (51)

according to Eqs. (20) and the established boundary condi-
tions. For opposite spins α−(A) = 0, and only the stretching
(+) mode is transiently excited. In that case

α+(↑↓) = −α+(↓↑). (52)

The phase (48) takes two possible forms:

φ(P ) = 1

h̄

∫ tf

0
dt

−F√
2m

α−(↑↑),

φ(A) = 1

h̄

∫ tf

0
dt

−F√
2m

α+(↑↓). (53)

To inverse engineer the phase we use the Ansatz for α+(↑↓; t)
as a sum of Fourier cosines, with enough parameters to satisfy

all boundary conditions:

α+(↑↓; t) = a0 +
4∑

n=1

ai cos

[
(2n − 1)πt

tf

]
. (54)

This is an odd function of (t − tf /2) which implies that
α̈+(↑↓; t), and thus f+(↑↓; t) are odd functions too with
respect to the middle time of the process tf /2. The parameters
a0, a1, and a2 are fixed to satisfy the corresponding boundary
conditions for α+(↑↓) in Eqs. (29) and (31):

a0 = 0,

a1 = 2a3 + 5a4,

a2 = −3a3 − 6a4. (55)

We get f+(↑↓; t) from Eq. (20), f+(↑↓; t) = α̈+(↑↓; t) +

2

+α+(↑↓; t). Due to the boundary conditions, f+(0) =
f+(tf ) = 0. As f−(↑↑) = f+(↑↓), we may solve Eq. (20) for
α−(↑↑; t) satisfying α−(↑↑; tb) = 0, which, as can be seen
in Eq. (20), will be different from α+(↑↓; t) because the
frequencies of both normal modes are different (
+ �= 
−),
although the forces are equal [α̈−(↑↑; tb) = 0 is automati-
cally satisfied since f−(↑↑,tb) = 0]. The expression is rather
lengthy but can be considerably simplified by imposing as well
α̇−(↑↑; tb) = 0. This fixes a3 as

a3 = −5a4
(
25π2 − t2

f ω2
)

49π2 − t2
f ω2

. (56)

At this point α+(↑↓; t) and α−(↑↑; t) are left as functions of
the parameter a4:

α+(↑↓; t) =
11π2 + t2

f ω2 + (
49π2 − t2

f ω2
)

cos 2πt
tf

49π2 − t2
f ω2

× 32a4 cos
πt

tf
sin4 πt

tf
,

α−(↑↑; t) =
11π2 + 3t2

f ω2 + (
49π2 − 3t2

f ω2
)

cos 2πt
tf

49π2 − t2
f ω2

× 32a4 cos
πt

tf
sin4 πt

tf
. (57)

These are both odd functions with respect to (t − tf /2) and
guarantee a vanishing final excitation in the two modes. They
also have vanishing third derivatives at the time boundaries
and thus imply the continuity in the force derivative at
time boundaries, i.e., Ḟ (tb) = 0. Note that − 1

h̄

∫ tf
0 dt[f̃ (A) −

f̃ (P )] vanishes [see Eq. (14)], since f̃ (P ) = 0 and f̃ (A) is
also an odd function of t − tf /2.

The differential phase takes the form [see Eq. (48)]

�φ ≡ 2[φ(A) − φ(P )]

= 2

h̄

∫ tf

0
dt

F√
2m

[α−(↑↑) − α+(↑↓)]. (58)

With the expressions (57) for α+(↑↓) and α−(↑↑) the integral
can be solved to give

�φ = 12a2
4 tf ω2

(−2051π4 + 476π2t2
f ω2 − 33t4

f ω4
)

h̄
(−49π2 + t2

f ω2
)2 . (59)
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Setting �φ = γ , the last free parameter is fixed as

a4 = ± 1

ω

(−147π2 + 3t2
f ω2

)√ h̄

6tf

×
[

γ /2

−2051π4 + 476π2t2
f ω2 − 33t4

f ω4

]1/2

. (60)

The polynomial denominator in the last term is negative
for all tf (there are no real roots) so, to get a real a4, γ

must be chosen as a negative number. We choose γ = −π

to implement the gate (2). There are real solutions for a4 for
all tf , no matter how small tf is. In this sense there is no
fundamental lower bound for the method, as long as the small
amplitude and Lamb-Dicke approximations are valid. As for
the sign alternatives in a4, the different choices imply sign
changes for the α and the forces. We, hereafter and in all
figures, choose the positive sign. The resulting force takes the
form

F (t) =
g1(tf ) + g2(tf ) cos

(
2πt
tf

) + g3(tf ) cos
(

4πt
tf

)
t2
f

√
2051π4tf ω2 − 476π2t3

f ω4 + 33t5
f ω6

× 2
√

2πh̄m cos

(
πt

tf

)
sin2

(
πt

tf

)
, (61)

where

g1(tf ) = 3
(
401π4 − 36π2t2

f ω2 + 3t4
f ω4),

g2(tf ) = −4
(
181π4 − 76π2t2

f ω2 + 3t4
f ω4

)
,

g3(tf ) = 2401π4 − 196π2t2
f ω2 + 3t4

f ω4, (62)

which is shown in Fig. 1 for different values of tf . [All
simulations in this section are for two 9Be + ions and a trap
frequency ω/(2π ) = 2 MHz.] The results are qualitatively
similar to those found in [8] (also the asymptotic behavior
for short operation times, F ∼ t

−5/2
f ) with a very different

numerical method, but in our case the expression of F is
explicit, has a continuous envelope, and the derivatives vanish
at the edges, adding stability.

With this force, the trajectories of α+(A) and α−(P ) [see
Eqs. (51) and (52)] are given in Fig. 2 for two given times tf in
a dimensionless (quadrature) phase space, and in the rotating
frame (the phase is twice the area swept in the rotating frame,

FIG. 1. F (t) for two 9Be + ions in a trap with frequency ω/2π =
2 MHz. tf = 0.5 μs (solid blue line), tf = 0.8 μs (dotted black line),
and tf = 1 μs (dashed red line). The forces on each ion are state
dependent, Fi = σ z

i F (t), i = 1,2.

FIG. 2. Parametric plots of the quadratures, X =
√


±
2h̄ α± and

P =
√

1
2h̄
± α̇±. The quadratures in the rotating frame are defined as

Xr = Re(ei
±tZ), Pr = Im(ei
±tZ), where Z = X + iP . The solid
blue lines represent the stretch (+) mode for antiparallel spins and the
dashed red lines represent the center-of-mass (−) mode for parallel
spins. (a) tf = 0.8 μs, (b) tf = 1 μs, (c) tf = 0.8 μs, and (d) tf =
1 μs in the rotating frame. The other parameters are chosen as in
Fig. 1.

see Sec. III [8]). If the initial state is the ground state, they
describe, respectively, the dynamics of the stretch mode for
antiparallel spins and the center-of-mass mode for parallel
spins. Notice that the trajectories lead to larger phase-space
amplitudes for shorter times.

The phases within the harmonic (small amplitude) approxi-
mation are exact by construction for arbitrarily short times, but
we should compare them with the phases when the system is
driven by the full Hamiltonian (3) that contains the anharmonic
Coulomb interaction. To that end we solve numerically the
Schrödinger equation with the Hamiltonian (3) by using the
“split-operator method” [23]. First, we fix the initial state
as the ground state of the system |�0〉, which is found by
making an initial guess and evolving it in imaginary time
[24]. Then, the split-operator method is applied in real time
to get the evolution of the wave function |�t〉. Phases are
much more sensitive than populations to numerical errors,
so we need a much shorter time step than the one usually
required until the results converge. At the final time, the overlap
S = 〈�0|�tf 〉 between the initial and the final state, which
depends on the spin configuration, is calculated. The phase of
the overlap is defined as ϕf = argS ∈ [0,2π ). In the quadratic
approximation this includes a global term −(
+ + 
−)tf /2
[see Eq. (26)], absent in the rotating frame, that is canceled
by calculating the phase differential between antiparallel and
parallel spins, 2[ϕf (↑↓) − ϕf (↑↑)], displayed in Fig. 3. The
corresponding infidelities, 1 − |S|2 cos2(�φ − π ) = 1 − F ,
are shown in Fig. 4 for the worst possible case, which
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FIG. 3. �φ for an exact evolution with the Hamiltonian in Eq. (3),
and the target value of this phase (dashed red line). Same parameters
as in Fig. 1. The initial motional state is the ground state.

is realized for an initial state with antiparallel spins (see
Appendix C). The numerical results agree with the ideal
result of the quadratic approximation reasonably well at least
up to operation times ten times smaller than an oscillation
period 2π/ω, i.e., 0.05 μs for the parameters considered. The
approximation may hold for even shorter times, but they are
very demanding computationally.

A different type of stability check is displayed in Fig. 5,
where a realistic x-dependent sinusoidal force on each ion
Fi(t) sin (�kx + π/2) is considered instead of the homoge-
neous one. This force comes about because of the finite
wavelength of the lasers used to generate the forces [6].
Close to the ground state, the motional wave function of
the ion only overlaps with a small part of the optical wave
which can then be approximated as having a constant gradient
over the wave function (Lamb-Dicke approximation). In more
excited motional states, this approximation breaks down and
the sinusoidal shape of the light wave has to be taken into
account. For driving a phase gate, the wave-vector difference
�k is adjusted so that the forces at the equilibrium positions
±x0/2 are the Fi(t), with an integer number of periods 2π/�k

among them. �k can be adjusted by changing the direction(s)
of the beam(s) in laser-based experiments. We choose �k so
that the ions in the equilibrium position for the frequency
ω/(2π ) = 2 MHz are placed in extrema of the sine function.
In Figs. 5(a) and 5(b) we depict the differential phase and worst
case fidelity versus tf for this x-dependent force, starting in
the motional ground state and performing the evolution for
the full Hamiltonian as described in the previous paragraph.
The two curves correspond to the ions being eight periods
apart at equilibrium, similar to [6], or four periods apart. As

FIG. 4. Worst case infidelity vs final time, which is realized for
the initial state |↑↓〉 [see Eq. (C8)]. Same parameters as in Fig. 1.

FIG. 5. Simulation of two 9Be + ions with trap frequency
ω/(2π ) = 2 MHz. Instead of homogeneous forces more realistic x-
dependent forces Fi(t) sin (�kx + π/2) are applied. In (a) and (b) the
initial motional state is the ground state. �k = 8.67 × 106 m−1, solid
(blue) line (ions separated by eight lattice periods at equilibrium);
�k = 4.33 × 106 m−1, dashed (black) line (ions separated by four
lattice periods). In (a) we display the final phase vs the final time.
In (b) we display the worst case infidelity (realized for antiparallel
spins). In (c) and (d) the phase and worst case fidelity (corresponding
to antiparallel spins) for different initial excited states are depicted,
for a time tf = 0.5 μs and the ions separated by eight lattice periods.

expected, the results degrade for very short times faster than
for the ideal homogeneous case represented in Fig. 4 since
the ions explore a broader region where the forces deviate
significantly from Fi(t). The range of validity of the ideal
results (the ones for a homogeneous force) in the limit tf ω � 1

is approximately given by �k
ω

√
h̄

tf m
� 1, which may be found

by estimating maximal amplitudes of α± in Eq. (57), using
Eq. (12) to calculate deviations from equilibrium positions,
and comparing them to half a lattice period π/�k. Note
that for eight periods the phase does not really converge to
the ideal value even at longer times, when the deviation is
quite small compared to the period of the force. The reason
is that the wave-function width also implies that the ions
do not strictly experience a homogeneous force, which can
lead to squeezing of the state of motion rather than just a
coherent displacement. Starting with the ground-state wave
function in the harmonic approximation (i.e., a product of
ground-state wave functions for each mode), the width of the
position of one ion is �x = 1

2 (1 + 1/
√

3)1/2√h̄/(mω) (see
Appendix D), which should be compared to π/�k. For the
parameters in Figs. 5(a) and 5(b) the ratios �x�k/π are 0.04
(eight oscillations) and 0.02 (four oscillations).

In Figs. 5(c) and 5(d), the evolved state begins in some
excited Fock state so that the Lamb-Dicke approximation
breaks down more easily. We only consider excitations of the
stretch mode, |n− = 0,n+〉, as the full Hamiltonian only has
nonzero cubic terms for this mode.

We also study the scaling with tf of spontaneous emission
due to the transitions induced by intense off-resonant fields.
The transition rate will be proportional to the intensity of the
field, and to the effective potential acting on the ions, i.e., to
|F |. In Fig. 6 we have integrated this quantity over time for
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FIG. 6. S = ∫ tf

0 dt |F (t)| (dots). F (t) is designed for equal-mass
ions (9Be + ions) according to Eq. (61) for a trap frequency ω/(2π ) =
2 MHz. The solid line is a fit proportional to t

−3/2
f .

different values of tf . Since F ∼ t
−5/2
f the result scales as t

−3/2
f .

We have normalized the integral by the force |F (0.05 μs)|
as the scattering probability will depend on different factors
which are not explicitly considered here such as �k or the
detuning.

Finally, in Table I we calculate the maximum value of
the driving force in Eq. (61) for different ion species. Their
potential performance for phase gates was analyzed in [9].

VI. DIFFERENT MASSES

For different mass ions, m1 = m, m2 = μm, and u0 =
mω2

1 = μmω2
2. In this case, due to their different structure, both

ions will react to different laser fields, thus F1 and F2 can in
principle be designed independently, such that F1 = σ z

1 Fa(t),
F2 = σ z

2 Fb(t) (more general cases are studied in Appendix A),
yielding

f±(↑↑) = −f±(↓↓) = ∓ b∓√
m

Fa ± a∓√
μm

Fb,

f±(↑↓) = −f±(↓↑) = ∓ b∓√
m

Fa ∓ a∓√
μm

Fb, (63)

which, as in the previous section, implies that

α±(↓↑) = −α±(↑↓),

α±(↓↓) = −α±(↑↑) (64)

TABLE I. Maximum value of the force F in Eq. (61) for
different ions, and their corresponding mass and trap frequency. The
parameters were chosen so that they all have the same spring constant.
The calculated maximum force is for an operation time tf = 0.5 μs.

m (a.u.) ω/(2π ) (MHz) Fmax (zN)

Be 9 2 223.89

Mg 24 2
√

9
24 656.85

Ca 40 2
√

9
40 1119.89

Sr 88 2
√

9
88 2511.53

Ba 138 2
√

9
138 3961.61

Yb 172 2
√

9
172 4947.72

[see Eqs. (14) and (20)], so if the protocol is designed to satisfy
the boundary conditions for the ↑↓ and ↑↑ configurations,
it will automatically satisfy the conditions for the remaining
configurations. Inversely, from Eqs. (63) and (10),

Fa = −√
m[a−f−(↑↓) + a+f+(↑↓)],

Fb = √
μm[b−f−(↑↓) + b+f+(↑↓)]. (65)

The procedure to design the forces is summarized in the
following scheme:

α±(↑↓) ��� f±(↑↓) ��� Fa, Fb ��� f±(↑↑) ��� α±(↑↑).

(66)

To start with, Ansätze are proposed for α+(↑↓) and α−(↑↓):

α+(↑↓) = a0 +
4∑

n=1

an cos

[
(2n − 1)πt

tf

]
,

α−(↑↓) = 0. (67)

It is also possible to design them so as to cancel α+(↑↓) = 0
instead of α−(↑↓), as discussed in Appendix E. Similarly to
the previous section, a0, a1, and a2 are fixed to satisfy the
boundary conditions for α+(↑↓) in Eqs. (29) and (31):

a0 = 0, a1 = 2a3 + 5a4, a2 = −3a3 − 6a4. (68)

Introducing these Ansätze in Eq. (20), expressions for
f±(↑↓; t) are found, in particular f−(↑↓) = 0, and from
these, expressions for the control functions Fa(t),Fb(t) follow
according to Eq. (65). Since α+(t)(↑↓) is an odd function of
(t − tf /2), the same symmetry applies to Fa(t), Fb(t), and to
the spin-dependent forces F1, F2. Thus the time integral of f̃

[see Eq. (14)] is zero for different masses as well and does not
contribute to the phase.

Using the last line of Eq. (14), the effective forces f±(↑↑)
are found. Plugging these functions into Eq. (20) we solve
the differential equations imposing the boundary conditions
α±(↑↑; tb) = 0 to fix the integration constants. At this point the
boundary conditions for α̈±(↑↑; tb) are automatically satisfied,
and α̇±(↑↑; 0) = α̇±(↑↑; tf ) by symmetry. Thus, imposing
that the first derivatives vanish at the boundary times, a3 is
fixed as

a3 = −25π2 + t2
f 
2

−
49π2 − t2

f 
2−
5a4. (69)

Once the α± are given for both configurations, such that they
do not produce any excitation in the modes at the final time,
the final phase difference is, as in the previous section,

�φ(tf ) = 2[φ(A) − φ(P )]

= −1

h̄

∑
μ=±

∫ tf

0
dt

[
α̇2

μ(↑↓) − 
2
μα2

μ(↑↓)
]

+ 1

h̄

∑
μ=±

∫ tf

0
dt

[
α̇2

±(↑↑) − 
2
μα2

μ(↑↑)
]
. (70)

The integrals can be evaluated and give a function of a4. This
parameter is finally set by imposing some value to the phase
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difference, �φ(tf ) = γ :

a4 =
√

γh̄(1 + (−1 + μ)μ)
( − 49π2 + t2

f 
2−
)2

�
,

� = 6μ(
− − 
+)(
− + 
+)tf
[
2051π4

+ 11t4
f 
2

−
2
+ − 119π2t2

f (
2
− + 
2

+)
]
. (71)

The function � has zeros at

t
(0)
f = 0,

t
(1)
f = ±π

√
119(
2− + 
2+) − δ

22
2−
2+
,

t
(2)
f = ±π

√
119(
2− + 
2+) + δ

22
2−
2+
, (72)

where

δ =
√

7(2023
4− − 8846
2−
2+ + 2023
4+). (73)

Considering only the positive times, in the intervals (t (0)
f ,t

(1)
f )

and tf > t
(2)
f , � is negative, so we chose γ = −π to make a4,

and thus Fa,Fb, real. In the interval (t (1)
f ,t

(2)
f ) � is positive, so

we can choose γ = π .
The explicit expressions for the control functions are finally,

from Eq. (65),

Fa =
[
ga

1 + ga
2 cos

(
2πt

tf

)
+ ga

3 cos

(
4πt

tf

)]

×
8a4a+

√
m cos

(
πt
tf

)
sin2

(
πt
tf

)
−49π2t2

f + t4
f 
2−

,

Fb = −b+
√

μ

a+
Fa, (74)

where

ga
1 = 3

[
401π4 + t4

f 
2
−
2

+ − 9π2t2
f (
2

− + 
2
+)

]
,

ga
2 = 4

[−181π4 − t4
f 
2

−
2
+ + 19π2t2

f (
2
− + 
2

+)
]
, (75)

ga
3 = (

49π2 − t2
f 
2

−
)(

49π2 − t2
f 
2

+
)
.

Fa,Fb diverge for the final times in Eq. (72), so these times
must be avoided. The positions of the divergences depend
on the chosen Ansatz. In particular, for a polynomial, rather
than cosine Ansatz, the only divergence is at tf = 0. We have,
however, kept the cosine Ansatz as it needs fewer terms and it
simplifies the results and the treatment of boundary conditions.

Figure 7 shows the phase found numerically with the exact
Hamiltonian for 9Be (ion 1) and 25Mg (ion 2) in the Lamb-
Dicke limit beginning in the ground motional state. Figure 8
shows the quadratures for such a protocol at final time tf =
0.5 μs, and Fig. 9 shows the worst case infidelities at final time,
which, as in the previous section, correspond to initial states
with antiparallel spin (see Appendix C). Around an oscillation
period 2π/ω1 = 0.5 μs, the results are slightly worse than in
the previous section for equal-mass ions, but still with a high

FIG. 7. Total final phase �φ in Eq. (70) vs the final time (solid
and dotted blue lines) for an exact wave function evolving with the
Hamiltonian in Eq. (3), and the target value of this phase (dashed red
line). The simulation is done for a 9Be + and a 25Mg + ion, initially
in the motional ground state, within a trap of frequency ω1/(2π ) =
2 MHz. At final times tf ∼ 0.8 and 1.03 μs we change solutions [see
the discussion below Eq. (73)]. The solid line is for γ = −π and the
dashed line is for γ = π .

fidelity. For final times close to t
(1)
f ∼ 0.8 μs and t

(2)
f ∼ 1.03 μs

the solutions change, with a drop in the stability of the phase
(Fig. 7) and in the fidelity (Fig. 9). The phase and fidelity
improve and stabilize again for times tf > 1.03 μs.

In the limit where both ions are equal, Fa = Fb = F , and
the results of the previous section are found consistently.

FIG. 8. Parametric plots of the quadratures, X =
√


±
2h̄ α± and

P =
√

1
2h̄
± α̇±. The quadratures in the rotating frame are defined

as Xr = Re(ei
±tZ), Pr = Im(ei
±tZ), where Z = X + iP at tf =
0.5 μs. The solid blue lines represent the stretch (+) mode and the
dashed red lines represent the center-of-mass (−) mode. (a) and (c)
represent the phase-space trajectory for |↑↓〉 and |↓↑〉, in the normal
and the rotating frame, respectively, while (b) and (d) represent the
phase-space trajectories for |↑↑〉, in the normal and rotating frames,
respectively. The other parameters are chosen as in Fig. 7.
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FIG. 9. Infidelity vs final time for the worst case, which corre-
sponds to antiparallel spins [see Eq. (C8)]. Same parameters as in
Fig. 7. The solid line is for γ = −π and the dashed line is for γ = π .

VII. DISCUSSION

In this paper, we have designed simple and explicit
protocols to perform fast and high fidelity phase gates with
two trapped ions by using the invariant-based method to bypass
adiabaticity. The scheme of the gate expands on methods that
have been already tested in the laboratory. Experimentally, the
state-dependent forces may be created by a standing wave with
time-varying intensity produced by two crossed laser beams
the amplitude of which is modulated following a smoothly
designed trajectory to excite motion in both normal modes. In
the limit of small oscillations, we can use both a normal-mode
harmonic approximation and the Lamb-Dicke limit and apply
the inverse-design method assuming homogeneous forces. We
have also numerically simulated the system dynamics and
gate behavior without these approximations, namely, including
the anharmonicity and the position dependence of the forces.
Good fidelities are obtained at times around 1 μs, which is a
significantly shorter time compared to the best experimental
results so far and close to the center-of-mass oscillation period
which was assumed to be 0.5 μs in this work. Moreover,
state-of-the-art technology allows for higher trap frequencies
than those used in our simulations, which should further
improve the results. Expressions for the forces have been
found for different scenarios, specifically for equal or different
masses, as well as for different proportionality factors between
the spin-dependent forces.

At present, technical limitations for the laser intensity and
Raman detuning will constrain the shortest gate times that
can be reached. However, technical limitations can change,
especially if there is motivation to push them. The goal of our
paper is to also explore the possibilities that exist beyond what
is presently doable.

Extensions of this work are possible in several directions.
For example, the deviations from the ideal conditions may be
taken into account to design the forces. The force design given
here, based on symmetrical trajectories of the modes, gives
already stable results (a vanishing first-order correction to the
phase) with respect to a systematic, homogeneous deviation
of the forces [see Eq. (33)]. Moreover the freedom offered
by the approach may also be used to choose stable protocols
with respect to different noises and perturbations (see, e.g.,
[25–28]).
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APPENDIX A: GENERALIZATION FOR
AN ARBITRARY FORCE RATIO

1. Equal-mass ions

In the main text we have studied state-dependent forces
which are equal and opposite to each other for up and
down spins, Fi = σ z

i F (t). However, depending on laser beam
polarization and specific atomic structure, different propor-
tionalities among the two forces will arise. Let us consider
a general force ratio Fi(↑) = −cF̃ (t) and Fi(↓) = −F̃ (t),
where c is a constant. Then, for equal-mass ions, instead of
Eq. (50) (corresponding to c = −1), we find [see Eq. (49)]

f+(↑↑) = f+(↓↓) = 0,

f−(↑↑) = cf−(↓↓) = 2F̃ c√
2m

,

f+(↑↓) = −f+(↓↑) = −1 − c√
2m

F̃ ,

f−(↑↓) = f−(↓↑) = 1 + c√
2m

F̃ . (A1)

To inverse engineer the forces we start choosing the same
Ansatz for α+(↓↑) as in Eq. (54). a0 through a2 are also
fixed in the same manner to satisfy the boundary conditions.
Using Eq. (20) this gives f+(↓↑; t) as a function of a3, a4, and
in fact all other f± by scaling them according to Eq. (A1).
As in the main text, the same a3 in Eq. (56) guarantees that
α̇±(tb) = 0 for all spin configurations. Now, using Eq. (48) we
can write down the phase produced by each spin configuration.
Individually, they depend on c but, adding them all in �φ =
φ(↑↓) + φ(↓↑) − φ(↑↑) − φ(↓↓), the dependence on c is
canceled, as can be seen from Eq. (B1) or Eqs. (20) and (A1).
Following the method described in the main text, imposing
�φ = γ fixes the remaining parameter a4, so that the same
expression in Eq. (60) is found. Using Eqs. (50) and (A1), the
generic control function F̃ is simply proportional to that for
c = −1 [see Eq. (61)]:

F̃ = 2

1 − c
F. (A2)

2. Different masses

Similarly, for different-mass ions in the generic case both
ions could have different proportionality factors for the spin-
dependent forces:

F1(↑) = −c1F̃a, F1(↓) = −F̃a,

F2(↑) = −c2F̃b, F2(↓) = −F̃b. (A3)
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Instead of Eq. (63), the normal-mode forces are now [see
Eq. (14)]

f±(↑↑) = ± b∓√
m

c1F̃a ∓ a∓√
μm

c2F̃b,

f±(↑↓) = ± b∓√
m

c1F̃a ∓ a∓√
μm

F̃b,

f±(↓↑) = ± b∓√
m

F̃a ∓ a∓√
μm

c2F̃b,

f±(↓↓) = ± b∓√
m

F̃a ∓ a∓√
μm

F̃b. (A4)

This implies that the α± are in general all different and the
inverse scheme in Eq. (66) is replaced by

α±(↑↓) ��� f±(↑↓)

��� F̃a,F̃b ���

⎧⎪⎨
⎪⎩

f±(↑↑) ��� α±(↑↑)

f±(↓↑) ��� α±(↓↑)

f±(↓↓) ��� α±(↓↓)

.

︸ ︷︷ ︸
functions of c1,c2

(A5)

Using Eqs. (10) and (A4) we may rewrite the control functions
F̃a and F̃b as

F̃a = √
m[a−f−(↑↓) + a+f+(↑↓)]/c1,

F̃b = √
μm[b−f−(↑↓) + b+f+(↑↓)]. (A6)

As in the special case c1 = c2 = −1 of the main text, we use
the Ansätze in Eq. (67) for α±(↑↓), and the parameters in
Eq. (68). In particular α−(↑↓) = 0 and f−(↑↓) = 0, so F̃a

and F̃b are proportional to each other [see Eq. (A6)], and thus
all the f± are proportional to f+(↑↓) according to Eq. (A4).
Thus, from Newton’s equations, all (nonzero) solutions α+(t)
are proportional to each other, and similarly all (nonzero) α−(t)
are proportional to each other. The parameter choice in Eq. (68)
assures that α+(tb) = α̇+(tb) = 0 for all configurations. Fixing,
for example, α−(↑↑)(tb) = 0, a3 may be fixed as in Eq. (69),
so that α̇−(tb) = 0, and therefore α−(tb) = α̇−(tb) = 0 as well
for all configurations. Using Eq. (48) to calculate the phases,
and imposing �φ = γ , the remaining parameter (a4) is fixed
as

a4 = Ca0
4, (A7)

where a0
4 ≡ a4(c1 = c2 = −1) is given in Eq. (71) and

C = 2

√ −c1

(c1 − 1)(c2 − 1)
. (A8)

All coefficients in α+(↑↓) are proportional to a4, so α+(↑↓)
is just scaled by the factor C with respect to the ones for
c1 = c2 = −1 in the main text, and f+(↑↓) is also scaled by
the same factor according to Eq. (20). Comparing Eqs. (A6)
and (65), and using f−(↑↓) = 0, we find that

F̃a = − C

c1
Fa,

F̃b = CFb, (A9)

in terms of the forces Fa, Fb given in Eq. (74) for c1 = c2 =
−1. All these functions have odd symmetry with respect to the
middle time tf /2 so that there is no contribution to the phase
from the time integral of f̃ [see Eq. (14)].

Finally, let us analyze the limit of equal masses where c1 =
c2 = c and μ = 1. In the main text, this implies c1 = c2 = c =
−1 and Fa(μ → 1) = Fb(μ → 1) = F , in agreement with
the physical constraint of using the same laser for both
ions. However, when c �= 1, F̃a(μ → 1) �= F̃b(μ → 1) [see
Eq. (A9)]. Physically this implies the use of two different
lasers which is not possible in practice, so equal masses with
c �= 1 have to be treated separately, as specified in Sec. A1.

APPENDIX B: INTEGRAL EXPRESSION FOR THE PHASE

For α±(0) = α̇±(0) = 0, Eq. (20) may be solved as α±(t) =
1


±

∫ t

0 dt ′f±(t ′) sin[
±(t − t ′)] [see Eq. (38)]. Thus the phase
(48) can be also expressed by double integrals of the form

φ(tf ) =
∑
μ=±

∫ tf

0
dt ′

∫ t ′

0
dt ′′fμ(t ′)fμ(t ′′)

sin[
μ(t ′ − t ′′)]
2h̄
μ

=
∑
μ=±

∫ tf

0

∫ tf

0
dt ′dt ′′fμ(t ′)fμ(t ′′)

sin(
μ|t ′ − t ′′|)
4h̄
μ

(B1)

(see also [8,9,11]).

APPENDIX C: WORST CASE FIDELITY

To simplify notation, let us denote the internal state
configurations by a generic index s = ↑↑,↑↓,↓↑,↓↓. Assume
an initial state |ψm〉(∑s cs |s〉), where

∑ |cs |2 = 1 and the m

here stands for “motional.” The ideal output state, up to a
global phase factor, is

|ψid〉 =
(∑

s

cse
iφ(s)|s〉

)
|ψm〉, (C1)

where

φ(↑↓) + φ(↓↑) − φ(↑↑) − φ(↓↓) = ±π. (C2)

The actual output state is generally entangled,

|ψac〉 =
∑

s

cse
iφ′(s)|s〉|ψms〉, (C3)

with a different motional state |ψms〉 for each spin configura-
tion, and actual phases φ′(s). First we can compute the total
overlap:

〈ψid |ψac〉 =
∑

s

|cs |2ei[φ′(s)−φ(s)]〈ψm|ψms〉. (C4)

Moreover, writing each motional overlap in the form
〈ψm|ψms〉 = |〈ψm|ψms〉|eiφms = εse

iφms , we have

〈ψid |ψac〉 =
∑

s

|cs |2εse
iδs = Re + iIm, (C5)
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where δs ≡ φ′(s) − φ(s) + φms , and

Re =
∑

s

|cs |2εs cos δs, Im =
∑

s

|cs |2εs sin δs. (C6)

The fidelity is

F = |Re + iIm|2 = Re2 + Im2 � Re2

=
(∑

s

|cs |2εs cos δs

)2

. (C7)

Assuming a “good gate,” such that |δs | � 1 for all s, then the
fidelity is bounded from below by the worst possible case:

F � Min[(εs cos δs)
2]. (C8)

APPENDIX D: SPREAD OF THE POSITION OF ONE ION
IN THE GROUND STATE OF THE TWO IONS

An approximate analytical wave function for the ground
state of the two ions subjected to the Hamiltonian (5) is given
by multiplying the ground states of the two normal modes [see
Eq. (24)]:

ψNM =
(


+
−
π2h̄2

)1/4

e− 1
2h̄ (
+x2

++
−x2
−). (D1)

In laboratory coordinates, and for the specific case of equal-
mass ions, the normalized ground state is

ψ(x1,x2) =
(

m
√

3ω2

π2h̄2

)1/4

e− mω
4h̄ [(1+√

3)(x1+ x0
2 )2+(1+√

3)(x2− x0
2 )2+2(1−√

3)(x1+ x0
2 )(x2− x0

2 )]. (D2)

The expectation values of x1 and x2
1 are calculated as

〈x1〉 =
∫ ∞

−∞

∫ ∞

−∞
dx1dx2x1ψ

2(x1,x2) = −x0

2
,

〈
x2

1

〉 =
∫ ∞

−∞

∫ ∞

−∞
dx1dx2x

2
1ψ

2(x1,x2) = x2
0

4
+ (3 + √

3)h̄

12mω
,

(D3)

so that the wave packet width for ion 1 is

�x1 =
√〈

x2
1

〉 − 〈
x1

〉2 = 1

2

√
1 + 1√

3

√
h̄

mω
. (D4)

APPENDIX E: ALTERNATIVE INVERSION PROTOCOLS

In the inversion protocol used in Sec. VI for different
masses, we have set α−(↑↓; t) = 0 so this mode does not

produce any excitation or any phase. It is also possible to have
the other mode at rest, α+(↑↓; t) = 0, by plugging in

α+(↑↓) = 0,

α−(↑↓) = b0 +
4∑

n=1

bn cos

[
(2n − 1)πt

tf

]
. (E1)

When choosing the alternative Ansatz in Eq. (E1), the critical
times (72) are exactly the same. Alternatively, we may
cancel one of the normal modes in the parallel configuration
substituting the inversion scheme in Eq. (66) by

α±(↑↑) ��� f±(↑↑) ��� Fa,Fb ��� f±(↑↓) ��� α±(↑↓).

(E2)

This type of freedom may be useful to further minimize the
forces.
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