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In this study, we propose the concept of judgment space to investigate the quantum-secret-sharing scheme
based on local distinguishability (called LOCC-QSS). Because of the proposing of this conception, the property
of orthogonal mutiqudit entangled states under restricted local operation and classical communication (LOCC)
can be described more clearly. According to these properties, we reveal that, in the previous (k,n)-threshold
LOCC-QSS scheme, there are two required conditions for the selected quantum states to resist the unambiguous
attack: (i) their k-level judgment spaces are orthogonal, and (ii) their (k − 1)-level judgment spaces are equal.
Practically, if k < n (this is almost always true in the LOCC-QSS scheme), it is very difficult to satisfy the
two conditions simultaneously. In the current study, we further establish a simple encoding method, which can
concurrently ease the selection of quantum states and ensure the scheme’s security, i.e., even if the (k − 1)-level
judgment spaces of the selected quantum states are not equal, these states can still be used for defeating the
unambiguous attack. With this encoding method, we propose a more secure (k,n)-threshold LOCC-QSS scheme,
and give two specific examples for illustration.
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I. INTRODUCTION

Classical secret sharing (CSS) is an important branch
of cryptography, which was invented independently by
Shamir [1] and Blakely [2] in 1979. The (k,n)-threshold CSS
can be described as follows: a secret is divided into n shares
in such a way that any k or more sharers can reconstruct
the secret while any k − 1 or fewer ones cannot. It has been
known that the security of most classical cryptosystems is
based on the assumptions of computational complexity, which
might be broken by the strong power of advanced algorithms
such as quantum computation [3,4]. In addition, another main
drawback of CSS schemes is that they are not perfectly
secure from eavesdropper attack. Fortunately, all of these
problems can be solved by the quantum cryptography [5].
In 1999, Hillery et al. [6] and Cleve et al. [7] simultaneously
proposed the concept of quantum secret sharing (QSS), that is
a secret sharing with quantum means. Subsequently, a number
of QSS schemes were proposed in theoretical [8–14] and
experimental [15–21] ways. In these QSS schemes, not only
the classical secret can be shared but also the quantum secret.

The security requirements of the QSS scheme and the
CSS scheme are the same. The difference between them is
that the QSS scheme shares the (classical or quantum) secret
via quantum states and can share quantum states directly.
Although the QSS schemes have some advantages in defeating
the eavesdropper attack, there are still some limitations in
one way or another [8–11]. For example, the dealer needs
to be involved in the step of revealing the secret, or the
participants require the joint quantum measurement to reveal
the secret. In order to deal with these restrictions, Rahaman
et al. [22] demonstrated a simple and very efficient model for
(k,n)-threshold quantum secret sharing based on only local
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quantum operations and classical communication (called an
LOCC-QSS scheme). The main idea of LOCC-QSS scheme
is that the dealer encodes his or her (classical) secret into
several pairs of locally distinguishable orthogonal multipartite
entangled states and distributes the particles according to
the context, in such a way that only a sufficient number of
cooperating parties can distinguish these pairs of orthogonal
entangled states under LO and reconstruct the secret. In
addition, the eigenvalue equations are adopted in this scheme
for eavesdropping detection, in such a way that the external
attack can be resisted perfectly.

According to the local distinguishability of GHZ sates
and Dicke states, (2,n)-threshold and (k,n)-threshold LOCC-
QSS (k < n) were proposed in Ref. [22]. However, in the
(2,n)-threshold LOCC-QSS, the two cooperating participants
must come from different groups. In order to remove this
restriction, Yang et al. [23] proposed a standard (2,n)-threshold
LOCC-QSS scheme with a specified pair of orthogonal n-qudit
entangled states. Moreover, they found that Rahaman et al.’s
(k,n)-threshold LOCC-QSS schemes are ramp (or imperfect)
schemes, i.e., there are some groups of cooperating participants
less than k that can obtain partial information about the secret.
In addition, for quantifying the information leakages, Yang
et al. proposed two kinds of conspiracy attacks [23]: (i) No
matter whether eavesdroppers obtain the shared secret or not,
it is not allowed that they obtain a wrong shared secret and
disturb the authorized groups to recover the shared secret.
(ii) In order to obtain information about the shared secret as
much as possible, it is allowed that eavesdroppers minimize the
errors that occur in a state discrimination task and can disturb
the authorized groups to recover the shared secret. The two
eavesdropping probabilities of success are called unambiguous
probability and guessing probability, respectively. From the
definition of the two probabilities, in a perfect (k,n)-threshold
LOCC-QSS scheme, the unambiguous probability is zero and
the guessing probability is 1/2 for k − 1 cooperating parties,

2469-9926/2017/95(2)/022320(7) 022320-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevA.95.022320


WANG, LI, PENG, AND YANG PHYSICAL REVIEW A 95, 022320 (2017)

while both of them are 1 for the case of k cooperating parties.
For convenience, we call the two kinds of conspiracy attacks
unambiguous attack and guessing attack.

In the LOCC-QSS schemes, the emphasis is on the chosen
of the pair of orthogonal entangled states, which will affect
the efficiency and security of the schemes. For example, Yang
et al. introduced a pair of generalized Bell states in a d-qudit
system and designed a standard (2,n)-threshold LOCC-QSS
scheme, which can resist the unambiguous attack and guessing
attack. Therefore, a further study of the local distinguishability
of a pair (or a set) of orthogonal multiqudit entangled states is
necessary for designing more secure LOCC-QSS schemes. In
addition, the two conspiracy attacks have different influence
on the security of the scheme. The unambiguous attack is
very terrible, because in this case those unauthorized parties
can obtain partial correct information directly without being
spotted. The guessing attack is inevitable, but it can be
acceptable or can be reduced to a safe range by taking
some measures. For example, there exists guessing probability
in BB84 protocol [5], but the error correction and privacy
amplification can be used to ensure the security. Thus, we
focus on how to reduce the information leakages caused by
unambiguous probability in this work.

In the current study we introduce the definition of judgment
space for describing the local distinguishability of a pair of
orthogonal entangled states in high-qudit systems. According
to its properties, the conditions, which the quantum states
should be satisfied for resisting the unambiguous attack, can
be proposed. Especially, if there are three or more quantum
states for local discrimination, the unambiguous attack would
be divided into two cases. In order to resist these attacks,
we present a very simple and efficient encoding method.
Moreover, the construction of (k,n)-threshold LOCC-QSS
schme based on local distinguishability of three orthogonal
multiqudit entangled states is proposed, which can resist the
unambiguous attack perfectly.

The rest of this paper is organized as follows. In Sec. II, we
give the properties of the local distinguishability of orthogonal
multiqudit entangled sates and propose an encoding method
for resisting the unambiguous attack in Sec. III. The scheme of
(k,n)-threshold LOCC-QSS and two examples are presented
in Sec. IV, and Sec. V is our conclusion.

II. LOCAL DISTINGUISHABILITY OF MULTIQUDIT
ENTANGLED STATES

The problem of local discrimination can be described as
follows: a number of parties share a multipartite quantum
state, which is chosen from a known set of orthogonal
quantum states. Their goal is to determine which one is
shared using LOCC. In this paper, the discussion of local
distinguishability is under restricted local operations and
classical communication (rLOCC) [24]. Here, rLOCC means
that only a subset of the parties is allowed to communicate
with each other. Now, we consider the local distinguishability
of a pair of orthogonal multiqudit states.

Let {|0〉,|1〉, . . . ,|d − 1〉} be a standard orthonormal basis
of a d-dimensional Hilbert space H . A multipartite qudit
system can be denoted as H⊗n. Let H⊗k and H⊗(n−k) be
two joint subspaces of H⊗n, and {|e(k)

i } and {|e(n−k)
j } are their

standard orthonormal basis respectively. Suppose that |ϕ1〉 and
|ϕ2〉 are a pair of n-qudit orthogonal entangled states, for a
proper choice of basis, which can be written as

|ϕ1〉 =
∑
i,j

aij

∣∣e(k)
i

〉∣∣e(n−k)
j

〉
,

|ϕ2〉 =
∑
i,j

a′
ij

∣∣e(k)
i

〉∣∣e(n−k)
j

〉
, (1)

where
∑

i,j |aij |2 = 1 = ∑
i,j |a′

ij |2, and aij · a′
ij = 0,∀i,j .

Let us define two subspaces of the Hilbert space H⊗k , S
(k)
1 =

{|e(k)
i 〉,if ∃ j,s.t.aij �= 0} and S

(k)
2 = {|e(k)

i 〉,if ∃ j,s.t. a′
ij �= 0},

which are called the k-level judgment space of |ϕ1〉 and |ϕ2〉,
respectively. Similarly, we can rewrite the |ϕ1〉 and |ϕ2〉 as
the form of (k − 1,n − k + 1)-bipartite states, and define the
corresponding (k − 1)-level judgment space S

(k−1)
1 and S

(k−1)
2 .

Consequently, we have a Lemma as follows.
Lemma 1. Let |ϕ1〉 and |ϕ2〉 be a pair of orthogonal n-qudit

symmetric entangled states, their judgment spaces have the
following properties:

(i) if S
(k)
1 ⊥ S

(k)
2 , then S

(k+1)
1 ⊥ S

(k+1)
2 ;

(ii) if S
(k)
1 = S

(k)
2 , then S

(k−1)
1 = S

(k−1)
2 ;

(iii) if S
(k)
1 ⊂ S

(k)
2 , then S

(k−1)
1 ⊆ S

(k−1)
2 .

Proof. (i) For any |e(k+1)
i1

〉 ∈ S
(k+1)
1 and |e(k+1)

i2
〉 ∈ S

(k+1)
2 ,

we have |e(k+1)
i1

〉 = |e(k)
i1

〉 ⊗ |l〉,|e(k+1)
i2

〉 = |e(k)
i2

〉 ⊗ |m〉, where

|e(k)
i1

〉 ∈ S
(k)
1 ,|e(k)

i2
〉 ∈ S

(k)
2 and |l〉,|m〉 ∈ {|0〉,|1〉, · · · ,|d − 1〉}.

Because S
(k)
1 ⊥ S

(k)
2 , we have 〈e(k)

i1
|e(k)

i2
〉 = 0, for any

|e(k)
i1

〉 ∈ S
(k)
1 and |e(k)

i2
〉 ∈ S

(k)
2 . Therefore, 〈e(k+1)

i1
|e(k+1)

i2
〉 = 〈l| ⊗

〈e(k)
i1

|e(k)
i2

〉 ⊗ |m〉 = 0. Because of the arbitrary of |e(k+1)
i1

〉 and

|e(k+1)
i2

〉, we have S
(k+1)
1 ⊥ S

(k+1)
2 .

(ii) For any |e(k)
i1

〉 ∈ S
(k)
1 , there exists a j1 such

that ai1j1 �= 0. Since ai1j1 |e(k)
i1

〉|e(n−k)
j1

〉 = ai1j1 |e(k−1)
i 〉 ⊗ |l〉 ⊗

|e(n−k)
j 〉 = ai1j1 |e(k−1)

i ′1
〉|e(n−k+1)

j ′
1

〉, then there exists a j ′
1 such

that ai ′1j
′
1
= ai1j1 �= 0. According to the definition of the

judgment space, we have |e(k−1)
i ′1

〉 ∈ S
(k−1)
1 . Therefore, the

(k − 1)-level judgment space of |ϕ1〉 can be written as S
(k−1)
1 =

{Trk(|e(k)
i 〉),if |e(k)

i 〉 ∈ S
(k)
1 }, where Trk is tracing over the kth

particle. Similarly, the (k − 1)-level judgment space of |ϕ2〉 is
S

(k−1)
2 = {Trk(|e(k)

i 〉),if |e(k)
i 〉 ∈ S

(k)
2 }. Therefore, if S

(k)
1 = S

(k)
2 ,

then S
(k−1)
1 = S

(k−1)
2 .

(iii) It has been shown that S
(k−1)
1 = {Trk(|e(k)

i 〉),if |e(k)
i 〉 ∈

S
(k)
1 }. Because S

(k)
1 ⊂ S

(k)
2 , S

(k−1)
1 ⊆ {Trk(|e(k)

i 〉),if |e(k)
i 〉 ∈

S
(k)
2 } = S

(k−1)
2 . This completes the proof. �

Theorem 1. Let |ϕ1〉 and |ϕ2〉 be a pair of orthogonal n-
qudit symmetric entangled states. If their k-level judgment
spaces are orthogonal, then they can always be unambiguously
distinguished by no less than k cooperating participants under
LOCC.

Proof. If there are k participants, let all of them measure
their own particle in the computational basis {|j 〉}d−1

j=0 locally.

Assume that their measurement result is |e(k)
i 〉. Without loss of

generality, taking k measurement results randomly, and their
tensor product can be written as a quantum state |e(k)

i 〉. Since
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S
(k)
1 ⊥ S

(k)
2 , then their intersection is empty. That is to say,

|e(k)
i 〉 only belongs to one of the judgment spaces S

(k)
1 and

S
(k)
2 . If |e(k)

i 〉 ∈ S
(k)
1 , then the shared state is |ϕ1〉. Otherwise,

the shared state is |ϕ2〉. Similarly, according to the Lemma
1(i), the theorem still holds when there are more than k

participants. �
Corollary 1. Let |ϕ0〉,|ϕ1〉, . . . ,|ϕn−1〉 be a set of n-qudit or-

thogonal symmetric entangled states. If their k-level judgment
spaces are orthogonal, then they can always be unambiguously
distinguished by no less than k cooperating participants under
LOCC.

Theorem 2. Let |ϕ1〉 and |ϕ2〉 be a pair of orthogonal n-qudit
symmetric entangled states. If their (k − 1)-level judgment
spaces are equal, they cannot be unambiguously distinguished
by less than k cooperating participants under LOCC.

Proof. We consider that the number of the cooperating
participants is less than k. For the case of k − 1, since S

(k−1)
1 =

S
(k−1)
2 , then their measurement result |e(k−1)

i 〉 belongs to both
S

(k−1)
1 and S

(k−1)
2 . Therefore, k − 1 cooperating participants

cannot unambiguously distinguish the shared states under
LOCC. According to the Lemma 1(ii), the theorem works
in the case of less than k − 1. �

Corollary 2. Let |ϕ0〉,|ϕ1〉, . . . ,|ϕn−1〉 be a set of orthogonal
n-qudit symmetric entangled states. If their (k − 1)-level
judgment spaces are equal, they cannot be unambiguously
distinguished by less than k cooperating participants under
LOCC.

According to the Theorem 1 and Theorem 2, a (k,n)-
threshold LOCC-QSS scheme can be designed by a pair (or
a set) of orthogonal orthogonal n-qudit symmetric entangled
states, when their judgment spaces satisfy the conditions S

(k)
1 ⊥

S
(k)
2 ,S

(k−1)
1 = S

(k−1)
2 . Here, when the number of cooperating

participants is no less than k, the unambiguous probability is
1. Otherwise, the unambiguous probability is zero. It is easy
to satisfy one of the conditions, while it is difficult to meet
the two conditions at the same time. Next, we consider how to
weaken these conditions.

Theorem 3. Let |ϕ0〉,|ϕ1〉,|ϕ2〉 be a set of orthogonal n-qudit
symmetric entangled states. If their (k − 1)-level judgment
spaces satisfy the conditions

S
(k−1)
0 ⊆ S

(k−1)
1 ∪ S

(k−1)
2 ,

S
(k−1)
1 ⊆ S

(k−1)
0 ∪ S

(k−1)
2 ,

S
(k−1)
2 ⊆ S

(k−1)
0 ∪ S

(k−1)
1 ,

(2)

then they cannot be unambiguously distinguished by less than
k cooperating participants under LOCC.

Proof. Without loss of generality, let k − 1 participants
measure their own particle in the computational basis {|j 〉}d−1

j=0

locally. Assume that their measurement result is |e(k−1)
i 〉, which

belongs to S
(k−1)
0 . Since S

(k−1)
0 ⊆ S

(k−1)
1 ∪ S

(k−1)
2 , then |e(k−1)

i 〉
belongs to at least two groups simultaneously. Therefore,
the k − 1 cooperating participants cannot unambiguously
distinguish the shared states under LOCC. Similarly, when
the measurement result belongs to S

(k−1)
1 or S

(k−1)
2 , we can

get the same conclusion. According to the Lemma 1(iii), the

theorem still holds when the number of participants is less
than k − 1. �

Corollary 3. Let |ϕ0〉,|ϕ1〉, . . . ,|ϕn−1〉 be a set of orthogonal
n-qudit symmetric entangled states. If their (k − 1)-level judg-
ment spaces satisfy the condition S

(k−1)
j ⊆ ∪n−1

i=0,i �=j S
(k−1)
i ,j =

0,1, . . . ,n − 1, they cannot be unambiguously distinguished
by less than k cooperating participants under LOCC.

Through careful analyses, it can be found that if
S

(k−1)
0 = S

(k−1)
1 = . . . = S

(k−1)
n−1 , then S

(k−1)
j ⊆ ∪n−1

i=1,i �=j S
(k−1)
i ,

j = 0,1, . . . ,n − 1. That is to say, Corollary 2 is just a special
case of Corollary 3. Therefore, according to the Corollary
3, the conditions for designing a (k,n)-threshold LOCC-QSS
scheme can be reduced. We can find more qualified entangled
states to design the scheme.

III. ENCODING METHOD AND ITS COMPLETENESS

Although the conditions have been reduced, that will cause
another problem. When these (k − 1)-level judgment spaces
are not equal to each other, there exists k − 1 cooperating
parties who can determine at least one state that is not the
shared state. For example, in the Theorem 3, assume that
S

(k−1)
0 is not a subset of S

(k−1)
1 . There exists at least one state

|e(k−1)
i 〉, which belongs to S

(k−1)
0 and not to S

(k−1)
1 . Meanwhile,

since S
(k−1)
0 ⊆ S

(k−1)
1 ∪ S

(k−1)
2 , we have that |e(k−1)

i 〉 belongs
to S

(k−1)
2 . Therefore, if the k − 1 party’s measurement result

is |e(k−1)
i 〉, they cannot unambiguously determine whether

the shared state is |ϕ0〉 or |ϕ2〉, but they can determine that
the shared state is not |ϕ1〉. A general encoding method is:
|ϕ0〉 → 0,|ϕ1〉 → 1,|ϕ2〉 → 2. If we use the three quantum
states in Theorem 3 for information communication, then k − 1
or less of the cooperating participants can unambiguously
narrow the range of secret space. Therefore, the unambiguous
attack can be divided into two types: the first class and the
second class, as follows.

(i) The first class of unambiguous attack: the cooperating
participants can correctly determine the data information from
the secret set.

(ii) The second class of unambiguous attack: the cooperat-
ing participants can correctly determine which one is not in
the secret set.

According to the previous analysis, it can be indicated that a
(k,n)-threshold LOCC-QSS scheme can resist the two classes
of unambiguous attack if and only if the (k − 1)-level judgment
spaces of the selected set of orthogonal entangled states are
equal. Therefore, in order to reduce the conditions and resist
the unambiguous attack, an alternate encoding method is
needed. In this paper, we propose a simple encoding method
for the case of three quantum states as follows.

Encoding method. Let {|ϕ0〉,|ϕ1〉,|ϕ2〉} be a set of quantum
states, {0,1,2} be a set of data information, the mapping
between the two sets is:

|ϕi〉|ϕi⊕1〉 → 0,

|ϕi〉|ϕi〉 → 1,

|ϕi〉|ϕi�1〉 → 2,

(3)

where i ∈ {0,1,2}, ⊕ and � denote modulo-3 addition and
modulo-3 subtraction, respectively.
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Consequently, the k-level judgment space of 0 can
be denoted as U

(k)
0 = ⋃2

i=0(S(k)
i S

(k)
i⊕1). Similarly, U

(k)
1 =⋃2

i=0(S(k)
i S

(k)
i ), U

(k)
2 = ⋃2

i=0(S(k)
i�1S

(k)
i ). Under this encoding

method, each of the cooperating participants needs to measure
two particles for determining a unit of data. It should be noted
that the two measures are independent. In order to evaluate the
completeness of our encoding method, we give a definition.

Definition 1. Let {0,1, . . . ,n − 1} be a set of data infor-
mation. A encoding method is k-level complete, if all of the
k-level judgment spaces of each data element are equal, i.e.
U

(k)
0 = U

(k)
1 = · · · = U

(k)
n−1.

Therefore, according to the Definition 1, the encoding
method should be (k − 1)-level complete for designing a
(k,n)-threshold LOCC-QSS scheme, which can resist the
unambiguous attack. Now, we consider the case of where the
number of quantum states is three.

Theorem 4. Let {0, 1, 2} be a set of data information, which
is encoded into the set of quantum states in the Theorem 3, then
the encoding method is (k − 1)-level complete, i.e., U

(k)
0 =

U
(k)
1 = U

(k)
2 .

Proof. Assume that n participants share two n-qudit
quantum states |ϕ?1〉,|ϕ?2〉, which are chosen from {|ϕ0〉, |ϕ1〉,
|ϕ2〉} in Theorem 3, independently. Let

I
(k−1)
0 = S

(k−1)
1 ∩ S

(k−1)
2 ,

I
(k−1)
1 = S

(k−1)
0 ∩ S

(k−1)
2 ,

I
(k−1)
2 = S

(k−1)
0 ∩ S

(k−1)
1 ,

(4)

then according to the Eq. (2), we have

S
(k−1)
0 = I

(k−1)
1 ∪ I

(k−1)
2 ,

S
(k−1)
1 = I

(k−1)
0 ∪ I

(k−1)
2 , (5)

S
(k−1)
2 = I

(k−1)
0 ∪ I

(k−1)
1 .

The (k − 1)-level judgment space of the data 0 can be
rewritten as

U
(k−1)
0 =

2⋃
i=0

(
S

(k−1)
i S

(k−1)
i⊕1

)

=
2⋃

i=0

[(
I

(k−1)
i�1 ∪ I

(k−1)
i⊕1

) ⊗ (
I

(k−1)
i ∪ I

(k−1)
i�1

)]

=
2⋃

i=0

[(
I

(k−1)
i�1 ⊗ I

(k−1)
i

) ∪ (
I

(k−1)
i�1 ⊗ I

(k−1)
i�1

)
∪ (

I
(k−1)
i⊕1 ⊗ I

(k−1)
i

) ∪ (
I

(k−1)
i⊕1 ⊗ I

(k−1)
i�1

)]
=

2⋃
i=0

2⋃
j=0

(
I

(k−1)
i I

(k−1)
j

)
. (6)

Similarly, we can calculate the U
(k−1)
1 and U

(k−1)
2 . Then, we

have U
(k−1)
0 = U

(k−1)
1 = U

(k−1)
2 = ⋃2

i=0

⋃2
j=0 (I (k−1)

i I
(k−1)
j ).

The Theorem 4 is proved completely. �

IV. AN IMPROVEMENT OF (k,n)-THRESHOLD
LOCC-QSS SCHEME

In a perfect (k,n)-threshold QSS scheme, k − 1 cooperating
participants cannot obtain any information about the secret.
There are two kinds of eavesdropping probabilities of success
in the (k,n)-threshold LOCC-QSS scheme, i.e., unambiguous
probability and guessing probability [23]. Therefore, it is
difficult to design such a scheme without any information
leakage. However, according to our previous analysis, we
can propose a (k,n)-threshold LOCC-QSS scheme, where
the unambiguous probability is zero if the number of
the cooperating participants is less than k. This means that
the scheme can resist the unambiguous attack. Since the basic
model of LOCC-QSS in Ref. [22] is very simple and efficient,
we still use it in this paper.

Step 1 (preparation). The dealer Alice prepares a large
number (say L > n) of states chosen randomly from a set
of orthogonal n-qudit (n = d) symmetric entangled states
{|ϕ0〉,|ϕ1〉,|ϕ2〉}. For the set of states, their k-level judgment
spaces should be orthogonal, and their (k − 1)-level judgment
spaces should satisfy the conditions in Theorem 3. Let us
denote the prepared states by |S(a,bt )〉 to keep details of each
prepared state in each run. Here, |S(a,bt )〉 represents that Alice
prepared a state a at time t(= 1,2, . . . ,L), and the position of
all n qudits in the state are recorded as bt (= 1t ,2t , . . . ,nt ).

Step 2 (distribution). Alice prepares a different sequence, at
random, ri = �i(1,2,3, . . . ,L), for each Bobi , and sends the
it th qudit (i = 1,2, . . . ,n; t = 1,2, . . . ,L) to Bobi according to
the ri sequence order, where �i is an arbitrary permutation of
the sequence (1,2,3, . . . ,L). No one has the information about
�i except for Alice. After receiving their associated sequence
of qudits, all of the receivers share L n-qudit entangled states
|S[a,r(bt )]〉. Here, r(bt ) = [�1(t),�2(t), . . . ,�n(t)].

Step 3 (measurement). After all of the receivers confirm the
receipt of all their L qudits, Alice randomly chooses some run,
say {ts}us=1(⊂ {1,2, . . . ,L}), and also computes n arbitrarily
chosen permutations, pi of {1,2, . . . ,u}, only known to herself.
She then prepares the list Ci = {[σi(tpi (s)),�i(tpi (s))]}us=1 for
Bobi (for i = 1,2, . . . ,n) and sends it to him. For convenience,
we denote the n-tuple observable as Ots ∈ {O}.

After receiving the list Ci , Bobi measures his �i(tpi (s))th
qubit in the σi(tpi (s)) basis and sends the measurement outcome
vi(tpi (s)) to Alice.

It should be noted that each of the prepared states is the
eigenstate of at least one element of {O}. This means that there
exists at least one Ots ∈ {O}, which satisfies the following
eigenvalue relation:

Ots |S[a,r(btp(s) )]〉 = λ(a,ts)|S[a,r(btp(s) )]〉, (7)

where λ(a,ts) is an eigenvalue and r(btp(s) ) = [�1(tp1(s)),
�2(tp2(s)), . . . ,�n(tpn(s))]. Therefore, the product of all in-
dividual local out comes vi(tpi (s)) for the observable Ots

must be equal to the corresponding eigenvalue for the state
|S[a,r(btp(s) )]〉 i.e., λ(a,ts) = ∏n

i=1 vi(tpi (s)).
In this step, Alice does still not give the information of �i

to Bobi . The list Ci only contain the measurement basis for
each selected qudits. This means that Bobi still does not know
which n qudits come from the same entangled state. Therefore,
the eavesdropper has the same problem.
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Step 4 (detection). For each selected run ts , Alice checks
whether or not the product of local results of each measurement
satisfies the eigenvalue relations λ(a,ts) = ∏n

i=1 vi(tpi
(s)).

Because the eavesdropper does not have any information about
the sequence of qudits, he or she cannot create a measurement
outcome to satisfy all of the relations.

Therefore, by analyzing the measurement results and
associated measurement settings, Alice can easily detect the
eavesdropper. If there is one, she aborts the scheme and starts
again with a new set of resources.

Step 5 (reconstruction). If no eavesdropper is detected,
Alice announces, to the respective parties, all qubit positions
of two unmeasured states |S[a,r(bt1 )]〉 and |S[a,r(bt2 )]〉. Alice
selects the two quantum states according to her (classical)
secret a (= 0, 1, or 2). The mapping between classical bit value
and quantum states is fixed with our encoding method and is
securely communicated from Alice to all Bobs in advance. If
Alice’s secret is more than one bit, then she reveals the qubit
positions of a sequence of unmeasured states |S[a,r(bt )]〉.

To discuss the scheme in detail including the choice of
states in Step 1, the measurements in Step 3 and Step 4, and
the ability of resisting the unambiguous attack for different
threshold scenarios, here we give two examples as follows.

A. (3, 4)-threshold LOCC-QSS scheme

Step 1. Alice prepares the states, each chosen at random
from the set of quantum states as follows:

|ϕ0〉 = 1√
4

3∑
j=0

|jjjj 〉,

|ϕ1〉 = 1√
24

∑
Pi∈P

Pi(|0123〉), (8)

|ϕ2〉 = 1√
36

∑
Pi∈P

3∑
k,j=0;k>j

Pi(|jjkk〉).

Step 3. If |S[a,r(btp(s) )]〉 = |ϕ0〉or|ϕ1〉, Alice chooses ran-
domly the same measurement settings [i.e., σ1(tp1(s)) =
σ2(tp2(s)) = σ3(tp3(s)) = σ4(tp4(s))] from {X,Z,Z2} for all Bobsi

for the run tpi (s), whereas for |ϕ1〉, Alice chooses from
{X,Z2}. Here, X and Z are the generalized Pauli operators
in d-dimensional Hilbert space,

X =
d−1∑
j=0

|j + 1〉〈j |,

Z =
d−1∑
j=0

ωj |j 〉〈j |, (9)

where ω = e2πI/d , ‘+’ is performed modulo d. In this scheme,
d = n = 4. Therefore, the set {O} can be given as {O} =
{X⊗4,Z⊗4,(Z2)⊗4}. It should be noted that there is a mistake
in Ref. [23], i.e., the definition of generalized Pauli operators
should not have the coefficient 1/

√
d before the summation

notation.
Step 4. If |S[a,r(btp(s) )]〉 = |ϕ0〉, then

λ(a,ts) = +1, ∀Ots ∈ {O}, (10)

if |S[a,r(btp(s) )]〉 = |ϕ1〉, then

λ(a,ts) =
{

−1, if Ots = Z⊗4

+1, if Ots = X⊗4or (Z2)⊗4
(11)

and if |S[a,r(btp(s) )]〉 = |ϕ2〉, then

λ(a,ts) = +1, if Ots = X⊗4 or (Z2)⊗4. (12)

Now, let us prove that this scheme is a (3, 4)-threshold
LOCC-QSS. The three-level judgment spaces of the set of
quantum states can be given as follows:

S
(3)
0 = {|jjj 〉; j = 0, . . . ,3},

S
(3)
1 = {|ijk〉; i �= j �= k,i,j,k = 0, . . . ,3},

S
(3)
2 = {Pi(|jjk〉); Pi ∈ P,j �= k,j,k = 0, . . . ,3}. (13)

The three judgment spaces are orthogonal. Therefore, ac-
cording to the Corollary 1, three cooperating participants can
always exactly distinguish the prepared states. In the Step 5,
they can recover the shared secret with their measurement
results and the encoding method in advance.

The two-level judgment spaces of the set of quantum states
are

S
(2)
0 = {|jj 〉; j = 0, . . . ,3},

S
(2)
1 = {|jk〉; j �= k,j,k = 0, . . . ,3},

S
(2)
2 = {|jk〉; j,k = 0, . . . ,3}. (14)

Let |jk〉 be an arbitrary element of the S
(2)
2 . We have that if j =

k, then |jk〉 ∈ S
(2)
0 ; if j �= k, then |jk〉 ∈ S

(2)
1 . Therefore, S(2)

2 ⊆
S

(2)
0

⋃
S

(2)
1 . Similarly, we have S

(2)
0 ⊆ S

(2)
1

⋃
S

(2)
2 , S

(2)
1 ⊆

S
(2)
0

⋃
S

(2)
2 . Therefore, the (k − 1)-level judgment spaces of

the set of quantum states satisfy the Eq. (2). With our encoding
method, any two cooperating participants cannot distinguish
the shared states completely, i.e., the unambiguous probability
is zero. Hence, the (3,4)-threshold LOCC-QSS scheme can
resist the unambiguous attack.

B. (5, 6)-threshold LOCC-QSS scheme

Step 1. Alice prepares the states, the desired set of quantum
states are in the Eq. (15)

|ϕ0〉 = 1√
1800

∑
Pi∈P

5∑
j,k,l=0;l>k>j

Pi(|jjkkll〉),

|ϕ1〉 = 1√
1020

⎡
⎣∑

Pi∈P

Pi(|012345〉)

+
∑
Pi∈P

5∑
k,j=0;k>j

Pi(|jjjkkk〉)
⎤
⎦

|ϕ2〉 = 1√
1800

∑
Pi∈P

5∑
k,j=0;m>l>k>j

Pi(|jjjklm〉). (15)

Step 3. Alice chooses randomly the same measurement set-
tings from {X,Z2}, {X,Z3}, and X when |S[a,r(btp(s) )]〉 is |ϕ0〉,

022320-5



WANG, LI, PENG, AND YANG PHYSICAL REVIEW A 95, 022320 (2017)

|ϕ1〉 or |ϕ2〉, respectively. Here, X and Z are the generalized
Pauli operators in d-dimensional Hilbert space, and d = n= 6.
Therefore, the set {O} is {O} = {X⊗6,(Z2)⊗6,(Z3)⊗6}.

Step 3. If |S[a,r(btp(s) )]〉 = |ϕ0〉, then

λ(a,ts) = +1, if Ots = X⊗6or (Z3)⊗6 (16)

if |S[a,r(btp(s) )]〉 = |ϕ1〉, then

λ(a,ts) = +1, if Ots = X⊗6or (Z2)⊗6 (17)

and if |S[a,r(btp(s) )]〉 = |ϕ2〉, then

λ(a,ts) = +1, if Ots = X⊗6. (18)

Now, let us prove that this scheme is a (5, 6)-threshold
LOCC-QSS. The five-level judgment spaces of the set of
quantum states can be given as follows:

S
(5)
0 = {Pi(|jjkkl〉); Pi ∈ P,l > k > j,j,k,l = 0, . . . ,5},

S
(5)
1 = {Pi(|jjjkk〉) or Pi(|jklmn〉);

Pi ∈ P,n > m > l > k > j,j,k,l,m,n = 0, . . . ,5},
S

(5)
2 = {Pi(|jjjkl〉) or Pi(|jjklm〉);

Pi ∈ P,m > l > k > j,j,k,l,m = 0, . . . ,5}. (19)

The three judgment spaces are orthogonal. Therefore, ac-
cording to the Corollary 1, three cooperating participants can
always exactly distinguish the prepared states. In the Step 5,
they can recover the shared secret with their measurement
results and the encoding method in advance.

The four-level judgment spaces of the set of quantum states
are

S
(4)
0 = {Pi(|jjkk〉) or Pi(|jjkl〉);

Pi ∈ P,l > k > j,j,k,l = 0, . . . ,5},
S

(4)
1 = {Pi(|jjjk〉),Pi(|jjkk〉) or Pi(|jklm〉);

Pi ∈ P,m > l > k > j,j,k,l,m = 0, . . . ,5},
S

(4)
2 = {Pi(|jjjk〉),Pi(|jjkl〉) or Pi(|jklm〉);

Pi ∈ P,m > l > k > j,j,k,l,m = 0, . . . ,5}. (20)

It is obvious that S
(4)
0 ⊆ S

(4)
1

⋃
S

(4)
2 , S

(4)
1 ⊆ S

(4)
0

⋃
S

(4)
2 , S

(4)
2 ⊆

S
(4)
0

⋃
S

(4)
1 . Therefore, according to the previous analysis, the

(5, 6)-threshold LOCC-QSS scheme can resist the unambigu-
ous attack, i.e., the unambiguous probability is zero when the
number of cooperating participants is less than 5.

In the Ref. [23], Yang et al. introduced two parameters
k1, k2 into (k,n)-threshold LOCC-QSS scheme, denoted as
(k1,k2,k,n), to describe the information leakages. If k2 = k,
then the scheme can resist the unambiguous attack; if k1 = k,
then the scheme can resist the guessing attack. For perfect
LOCC-QSS scheme, it has k1 = k2 = k. Therefore, according
to Yang et al.’s definition, the (k,n)-threshold LOCC-QSS

scheme in this current study can be denoted as (k1,k,k,n),
since our QSS scheme can resist the unambiguous attack.
In addition, the guessing probability formula p = 1

2 (1 +
tr|q2ρ2 − q1ρ1|) [25] indicates that the (k − 1)-level reduced
density matrix of each unit data should be equal for resisting the
guessing attack. Moreover, we can find that the two examples
in this paper can be denoted as (2, 3, 3, 4)-threshold and
(2, 5, 5, 6)-threshold.

V. CONCLUSION

The original (k,n)-threshold LOCC-QSS scheme [22]
proposed a novel idea for designing a QSS scheme based on the
local distinguishability of orthogonal multipartite entangled
states. It can defeat the external attack perfectly, but cannot
defeat the conspiracy attack, i.e., unambiguous attack and
guessing attack. Yang et al. have quantified the information
leakages, but didn’t reveal the type of quantum states that
can be chosen for defeating these attacks. In this current
study, we investigate the local distinguishability of a pair
of orthogonal multiqudit entangled states and extend it to a
set. To resist the unambiguous attack, we should choose the
quantum states whose (k − 1)-level judgment spaces are equal.
However, these types of quantum states are very difficult to be
found when k < n. In the current study, we propose a very
simple and efficient encoding method, and the completeness
of that is proved in detail. With our encoding method, to
resist the unambiguous attack, the selected three quantum
states just need to satisfy the inclusion relation in Eq. (2).
Moreover, combined with the original LOCC-QSS scheme,
we state our scheme in detail and present a (3,4)-threshold and
a (5,6)-threshold LOCC-QSS schemes as our examples. In
our scheme the participants need to measure two particles for
determining a unit secret data, but the security of the schemes
has been improved greatly. Therefore, the increased cost is
acceptable. Although the guessing attack was still not 100%
resisted, the study of local distinguishability in the current
study helps us to to better understand the type of quantum states
suitable for designing a (k,n)-threshold LOCC-QSS scheme
and it may move the QSS study one step forward.
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