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Entanglement detection in a coupled atom-field system via quantum Fisher information
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We consider a system of finite number of particles collectively interacting with a single-mode coherent field
inside a cavity. Depending on the strength of the initial field compared to the number of atoms, we consider
three regimes of weak-, intermediate-, and strong-field interaction. The dynamics of multiparticle entanglement
detected by quantum Fisher information and spin squeezing are studied in each regime. It is seen that in
the weak-field regime, spin squeezing and quantum Fisher information coincide. However, by increasing the
initial field population toward the strong-field regime, quantum Fisher information is more effective in detecting
entanglement compared to spin squeezing. In addition, in the two-atom system, we also study concurrence. In this
case, the quantum Fisher information as a function of time is in good agreement with concurrence in predicting
entanglement peaks.
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I. INTRODUCTION

The Dicke model [1], first discussed in 1954 by Dicke,
consists of N two-level atoms which are coherently coupled to
a single mode of radiation field. It was proved that the collective
emission rate of N atoms in the same environment boosts by
the factor N2 (super-radiance) and not N as expected. The
Dicke Hamiltonian is not generally integrable. Nevertheless,
it is possible to use some approximations to simplify the model.
In 1968, Tavis and Cummings solved the problem under the
rotating-wave approximation (RWA) [2], which is valid for the
weak atom-field coupling in the near-resonant situation.

In recent years, the Dicke model has experienced a
renaissance of interest. The model has been realized in systems
of a Bose-Einstein condensate coupled to a high-finesse
cavity [3,4] as well as atoms in a cavity QED setup [5],
and its phase transition [6,7] has been observed [3]. On
the other hand, the Dicke model has been employed to
study [8–10] and create [11,12] multiparticle entanglement.
Being composed of atoms coherently coupled to the field, the
system basically paves the way for exploring the different
kinds of entanglement, e.g., atom-atom or/and atom-field
entanglement. In this regard, multiparticle entangled states are
not only interesting from a fundamental point of view, but also
have practical applications in quantum information [13] and
quantum metrology [14]. Particularly in the case of quantum
metrology, it has been proved that exploiting the multiparticle
entangled resources improves measurement precision beyond
the “standard quantum limit.” The essence of multiparticle
entanglement in the Dicke model refers to the fact that the
common field mode acts as a virtual data bus which mediates
the interaction between the atoms at arbitrary positions.

All in all, despite the importance of entanglement, a
global—necessary and sufficient—criterion for multiparticle
entanglement does not exist. For the simplest case of a pair
of particles, the concurrence C [15]—which is closely related
to the entanglement of formation—has been widely used for
quantifying the entanglement. However, when it comes to
more than two particles, different measures have been used for
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different purposes. Thus, the choice of entanglement criterion
itself is an issue depending on the application we want to
harness the entanglement for. Specifically, in an ensemble
of N particles, the spectroscopic spin squeezing [16] has
been extensively used [17–20] as a criterion for detecting
entanglement [21]. Nevertheless, spin-squeezed states are a
small family of the whole multiparticle entangled states. In
other words, while the all spin-squeezed states are entangled,
the opposite statement is not necessarily true. For example, the
important family of GHZ entangled states are not detectable
using spin squeezing.

On the other hand, it has been proved [22] that quantum
Fisher information (QFI) gives a sufficient condition for
detecting entanglement in a multiparticle system. Being linked
to phase estimation theory, QFI is also a sufficient and
necessary criterion of metrological useful entanglement [23],
which is desirable in atomic clocks [24] as well as quantum
sensors [25]. In general, quantum Fisher information witnesses
a larger family of entangled states than spin squeezing,
including NOON or GHZ [26]. Experimentally, the entangled
twin Fock [27] and non-Gaussian [28,29] spin states have been
detected by measuring Fisher information.

In the following, we will use the quantum Fisher informa-
tion to study the dynamics of entanglement among the finite
number of particles interacting with a single coherent mode
of the field. In a broad range of initial coherent fields, we
detect multiparticle entanglement. For small atomic ensem-
bles interacting with a strong coherent field, an oscillating
entanglement signature is observed. In Sec. II, we introduce
the physical model considering RWA. Afterward, in Sec. III,
we briefly present the (multiparticle) entanglement witnesses
that we use later, which are the quantum Fisher information
flag, spin squeezing, and concurrence. In this work, our focus
is on the quantum Fisher information flag, while we compare
it with the other two measures frequently. In Sec. IV, we
study the entanglement temporal behavior. Depending on the
initial average photonic population n̄ and number of atoms N ,
we consider three regimes of interaction, i.e., (a) weak-field
(n̄ � N ), (b) intermediate-field (n̄ ∼ N ), and (c) strong-field
(n̄ � N ) regimes, and investigate the dynamics of the QFI
flag of the atomic subsystem. In the two extreme limits of
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weak- and strong-field regimes, the analytical approximate
outputs are discussed. The analysis and discussion of the
results are presented in Sec. V, and in Sec. VI we give the
conclusion.

II. THE MODEL AND ITS SOLUTIONS

We consider the resonant interaction between N two-level
atoms with ground (excited) energy state |g〉 (|e〉) and the
single mode of radiation field of frequency ω inside the cavity.
The dipole and RWA approximations are imposed and we
neglect the losses from both cavity and atoms. The interaction
Hamiltonian of the system is given by (h̄ = 1)

Hint = g(aS+ + a†S−). (1)

Here, g is the atom-field interaction strength and a (a†) is the
annihilation (creation) operator of the field. Moreover, S± =
Sx ± iSy are defined in terms of the standard Pauli matrices
via Sα = 1

2

∑N
i=1 σ (i)

α (α ∈ {x,y,z}). The constants of motion
are a†a + Sz and S2 = S2

z + (S+S− + S−S+)/2. In the case of
symmetry under any permutation of the particles, the atomic
states are conveniently described by Dicke states, |N/2,M〉,
which are the simultaneous eigenvectors of S2 and Sz with
−N/2 � M � N/2.

During this work, we assume that all of the atoms are
initially in the ground state, |N/2,−N/2〉, and the initial field
is a coherent state,

|α〉 = e−|α|2/2
∞∑

n=0

αn

√
n!

|n〉 ≡
∞∑

n=0

cn|n〉, (2)

with |n〉 referring to Fock states of the field with probability
amplitude cn. For simplicity, we consider real values of α.
Therefore, the initial state of the system is

|ψ(0)〉 =
∞∑

n=0

cn|N/2,−N/2〉 ⊗ |n〉. (3)

The Hilbert space of the joint atom-field system is given
by the tensor product H = Ha ⊗ Hf , where Ha and Hf

denote the Hilbert space of atoms and electromagnetic field,
respectively. In general, the Hilbert space of the atomic state
has the dimension of N + 1, while the latter has infinite
dimensions. In order to apply the numerical calculations, we
have imposed a cutoff on the number of bosons in the field
such that there is no modification in the final results by its
change.

In the interaction picture, the wave function of the system
is expressed as

|ψ(t)〉 =
N/2∑

M=−N/2

∞∑
n=0

CM,n(t)e−iω(M+n)t |N/2,M〉 ⊗ |n〉,

(4)

where CM,n is the probability amplitude of being the system
in |N/2,M〉 and |n〉 atomic and field states, respectively. By
applying the Hamiltonian (1) over (4), the equation of motion

gives

ĊM,n = −ig

{√(
N

2
+ M

)(
N

2
− M + 1

)
(n + 1)CM−1,n+1

+
√(

N

2
− M

)(
N

2
+ M + 1

)
nCM+1,n−1

}
, (5)

where the initial condition is CM,n(0) = cnδM,−N/2. Generally,
this equation represents the coupled set of equations from
M = −N/2 to N/2. Nevertheless, in practice, depending on
the initial photonic population, the set of equations couple up
to −N/2 + nmax, where nmax is the smallest populated Fock
state of the field with nonzero amplitude cn [30].

III. MULTIPARTICLE ENTANGLEMENT WITNESSES

In order to detect multiparticle entanglement in a phys-
ical system, many different witnesses (detectors) have been
presented [21,22,31–33]. In the following, we are mainly
interested in quantum Fisher information as well as spin
squeezing, which are both linked to quantum metrology
applications.

Let us consider an ensemble of spin-half particles in a
mixed state. Specifically, for the coupled atom-field system
introduced in Sec. II, this mixed state would be the reduced
atomic density matrix after tracing out the field degrees of
freedom, ρa = trf |ψ〉〈ψ | = ∑

i pi |φi〉〈φi |. Here, pi and |φi〉
represent the eigenvalues and eigenstates of the atomic density
matrix ρa . The quantum Fisher information for the multispin
system is given by [22]

F (ρa,S�n) = 2
∑
i 
=j

(pi − pj )2

pi + pj

|〈φi |S�n|φj 〉|2, (6)

with S�n being the collective spin operator along direction �n,
i.e., S�n = �S · �n. It has been proved that the quantity

χ2 ≡ N

max{F (ρa,S�n)} (7)

implies multiparticle entanglement when χ2 < 1 [22]. The
maximization in the denominator of Eq. (7) is taken over all
possible directions of �n. Since χ2 detects (flags) entanglement,
we call it the quantum Fisher information flag [34] in the
following. The upper bound of F for an N-spin system is
N2, which is saturated for maximally entangled states [26].
This corresponds to the ultimate QFI flag of 1/N . On the
other hand, the quantum Fisher information F for the spin
coherent states [35] is N , which gives the shot-noise limit,
χ2 = 1 [22]. The inequality χ2 < 1 is a sufficient condition
for multiparticle entanglement and a necessary and sufficient
condition for detecting the useful entanglement [23]. The term
useful refers to the family of entangled states which enhances
the interferometry precision beyond the classical limit when
used as the input resource.

On the other hand, the relation between spectroscopic spin
squeezing [16],

ξ 2 = N min{�S2
⊥}

|〈S〉|2 , (8)
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and multiparticle entanglement has been established by ξ 2 < 1
[21]. In Eq. (8), |〈S〉| = √〈Sx〉2 + 〈Sy〉2 + 〈Sz〉2 is the mean
spin length, while S⊥ represents the spin directions normal to
the mean spin. The minimization in the nominator of Eq. (8)
should be taken over all normal directions. It is proved [22] that
the quantum Fisher information as an entanglement criterion is
stronger than spin squeezing χ2 � ξ 2, while it is more difficult
to measure in practice.

Moreover, Wootters concurrence is used as a quantifier of
pairwise entanglement [15],

C = max{0, λ1 − λ2 − λ3 − λ4}, (9)

where the quantities λi are the square roots of the eigenvalues
in the matrix product 
12 = ρ12(σ1y ⊗ σ2y)ρ∗

12(σ1y ⊗ σ2y) in
descending order. Here, ρ12 denotes the two-particle density
matrix. The value of C varies between 0 and 1, indicating the
separable and maximally entangled states, respectively. In this
work, we also use the concurrence as an entanglement measure
for two-atom systems.

IV. ENTANGLEMENT DETECTION

In this section, we study the dynamics of the QFI flag in
comparison with spin squeezing in order to detect multiparticle
entanglement in the three regimes of interaction.

A. Weak-field limit

When n̄ is much less than the number of atoms N , we are
in the weak-field regime. In order to get the analytical results,
let us take n̄ = |α|2 � 1. In this case, one can expand the field
amplitudes cn in (2) up to terms of α2 and dismiss the upper
orders approximately. By solving the equation of motion (5),
the lowest-order nonvanishing coherent amplitudes are [30]

C−N/2,0(t) = 1 − α2/2,

C−N/2,1(t) = α cos(
√

Ngt),

C−N/2,2(t) = α2
√

2

4N − 2
[N − 1 + N cos(

√
4N − 2gt)],

C−N/2+1,0(t) = −iα sin(
√

Ngt),

C−N/2+1,1(t) = − iα2
√

N√
4N − 2

sin(
√

4N − 2gt),

C−N/2+2,0(t) = −α2√2N (N − 1)

4N − 2
[1 − cos(

√
4N − 2gt)],

(10)

which lead to the following average spin components:

〈Sx(t)〉 = 0,

〈Sy(t)〉 =
√

Nα sin(
√

Ngt),

〈Sz(t)〉 = −N

2
+ α2 sin2 (

√
Ngt). (11)

One observes that the mean spin direction is in a plane
normal to the x direction (yz plane) with |〈S〉| ≈ N/2.
Moreover, Eqs. (10) give 1 − tr(ρ2

a ) ≈ 0; i.e., the atomic state
is pure and thus (6) simplifies to F = 4�S2

�n [22]. Hence, the

quantum Fisher information flag (7) may be written as

χ2 = N

4 max{(�S�n)2} . (12)

Now, let us take an axes yz in the plane perpendicular to
the mean spin direction and x. By optimizing �S2

n in (12), we
get �S2

�n � max{�S2
x ,�S2

yz} [36]. Correspondingly, if S⊥ =
cos θSx + sin θSyz in (8), one finds �S2

⊥ � min{�S2
x ,�S2

yz}
[37]. It means that the optimal spin variance is either along x

or yz. Thus,

χ2 = N

4 max{�S2
x ,�S2

yz}
, (13)

and

ξ 2 = 4 min
{
�S2

x ,�S2
yz

}
N

, (14)

with the following spin fluctuations in normal directions:

�S2
x (t) ≈ N/4 + Nn̄

{
N − 1

N
sin2(

√
Ngt)

−2(N − 1)

2N − 1
sin2[

√
(2N − 1)/2gt]

}/
2,

�S2
yz(t) ≈ N/4 − Nn̄

{
N − 1

N
sin2(

√
Ngt)

−2(N − 1)

2N − 1
sin2[

√
(2N − 1)/2gt]

}/
2. (15)

Specifically, from Eqs. (15), we get

�S2
x�S2

yz ≈ N2

16
= |〈S〉|2

4
. (16)

This means that if the maximum of normal spin is along Sx ,
its minimum occurs along Syz, and vice versa. Making use
of Eqs. (13), (14), and (16), we get χ2 = ξ 2. This equality
is a reduced form of χ2 � ξ 2, which is valid for minimum
uncertainty (Gaussian) spin states.

From spin variances of (15) and (13), we get the slow and
fast periods of χ2 equal to 4π

√
N and π/2

√
N , respectively

(unit of g). The first quantity is known to be the revival time of
the Tavis-Cummings model in a weak-field regime extracted
by perturbation theory [38,39]. Moreover, we can find that the
minimum of χ2—being of the order of ∼1 − 2n̄—occurs at
2π

√
N . Thus, by increasing the number of particles, maximum

entanglement take place at longer times.
Figure 1 gives the time evolution of the optimal quantum

Fisher information flag for N = 2 and n̄ = 0.01 by exact
numerical simulations. Furthermore, the analytical results
along x and yz are given using Eqs. (13) and (15). The
envelope of χ2 has the period of 4π

√
2 = 17.78. In order to

exactly calculate χ2, we have numerically solved the equation
of motion (5) for the joint atom-field system. Thereafter, the
reduced atomic density matrix has been used in Eqs. (6)
and (7).

To investigate the effect of increasing N on entanglement,
in Fig. 2, we have plotted the minimum of the envelope of
χ2 versus N for n̄ = 0.1 derived with numerical simulations.
One observes that by increasing the number of particles, χ2

min
decreases. However, as we see, the amount of entanglement is
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FIG. 1. Quantum Fisher information flag along χ 2
x (dashed red),

χ 2
yz (dotted blue), and optimal direction χ 2 (solid black) as a function

of gt for N = 2 and n̄ = 0.01.

not very large. This is in agreement with the spin-squeezing
results given in Ref. [30].

For a system composed of a pair of particles, it is interesting
to compare χ2 with the pairwise entanglement measured by
concurrence (9). In Fig. 3, we have plotted the quantum
Fisher information flag χ2, concurrence C, and linear entropy
1 − tr(ρ2

a ) for n̄ = 0.1. We see a good agreement in the peaks
of entanglement measures. Moreover, 1 − tr(ρ2

a ) ≈ 0 indicates
that the collective spin state remains almost pure during
interaction. The linear entropy has been used as a measure of
bimodal entanglement in atom-field interaction systems [8,41].

We would like to add that for a system having a number of
atoms much larger than unity and much larger than the average
number of photons in the field, it is possible to use perturbation
theory along with the Holstein-Primakoff approximations to
generalize the analytical results in the wider range of n̄ � N .
The same procedure has been used to get the spin [30] and

N
2 4 6 8 10 12 14 16 18 20

χ
2 m

in

0.83

0.84

0.85

0.86

0.87

0.88

0.89

FIG. 2. The minimum values of χ 2 as a function of N for n̄ = 0.1.
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FIG. 3. Time evolution of χ 2(= ξ 2) (upper panel), concurrence
C (middle panel), and 1 − trρ2

a (lower panel) for N = 2 and n̄ = 0.1.

field [42] squeezing. In our work, the analytical results are
sufficient as we consider small ensembles of particles with
weak-field regimes which practically do not exceed much in
the n̄ > 1 range.

All in all, in the weak-field regime composed of small
ensembles, the entanglement amount is moderate. Thus, in the
next sections, we discuss the effect of stronger initial coherent
fields on entanglement witnesses.

B. Intermediate-field limit

In the intermediate-field limit, we consider the initial
photonic population of the order of number of atoms n̄ ∼ N . In
this regime, one has to consider coefficients with upper orders
of α in (2) and we have used the numerical simulations to solve
the equation of motion (5). Figure 4 gives the quantum Fisher
information flag χ2, spin squeezing ξ 2, and concurrence C

0 5 10 15 20 25 30

χ
2

0.5

1

1.5

2

0 5 10 15 20 25 30

ξ2

1

2

3

gt
0 5 10 15 20 25 30

C

0

0.5

1

FIG. 4. Time evolutions of χ 2 (upper panel), ξ 2 (middle panel),
and C (lower panel) for N = 2 and n̄ = 1.
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FIG. 5. The minimum values of χ 2 (dash-dotted black), mini-
mums of ξ 2 (dashed blue), and maximums of C (solid red) as a
function of n̄ for N = 2 (gtcutoff = 200).

as a function of gt for N = 2 and n̄ = 1. At first glance, we
observe that by increasing n̄, the entanglement measures lose
their regular behaviors of the weak-field regime. Moreover,
the χ2 and ξ 2 do not coincide, while there is relatively more
agreement in entanglement peaks between χ2 and C. We have
to keep in mind that the QFI and concurrence do not necessarily
coincide, in general. This is due to the fact that the kind of
entanglement detected by QFI has the feature of being useful
for interferometric proposes. This condition is not always met
when we utilize concurrence as an entanglement measure.

To observe the effect of increasing the initial coherent
field population on entanglement, in Fig. 5, the minimums
of quantum Fisher information flag χ2, minimums of spin
squeezing ξ 2, and maximums of concurrence C versus n̄ are
given. To get to this plot, we have put a cutoff on time at
gtcutoff = 200 and then, for every n̄, we have extracted the
optimal values of entanglement measures over the time span.
Moreover, we have replaced any χ2,ξ 2 > 1 with unity because
we are interested in the multiparticle entangled states (neither
coherent nor unentangled states).

Figure 5 shows that when we go beyond the weak regime,
the quantum Fisher information flag begins to detect more
entanglement than spin squeezing (χ2 < ξ 2). As we see, by
increasing the initial field population in the intermediate-field
regime, both metrological measures decrease up to certain
minimums for their respective values of n̄. Nevertheless, after
surpassing these peaks, there are different trends for χ2 and ξ 2

with increasing n̄. In this case, spin squeezing decreases and is
almost diminished for n̄ > 2.5. On the other hand, the quantum
Fisher information flag varies while it keeps χ2 < 1. This
indicates the presence of multiparticle entanglement even if
there are moderate coherent fields in the system. We can see the
same qualitative behavior as the QFI flag for the concurrence
in the same figure.

Furthermore, we have noticed that the minimums of the
quantum Fisher information flag occur at longer time scales

than the weak-field regime. For example, for N = 2 and n̄ = 5,
we have found the optimal value of χ2 at gtmin = 195.5, which
resides very close to the cutoff bound (gtcutoff = 200), while for
the weak field of n̄ = 0.1, we get it at gtmin ≈ 2π

√
2 = 8.88.

The same behavior for spin squeezing has been reported [30].
We have derived similar plots for different numbers of

particles within 2 � N � 20 for χ2 and ξ 2 versus n̄ [43].
The typical behavior is that by increasing the initial field
intensity, χ2 and ξ 2 decrease up to their respective minimums.
Afterward, while the spin squeezing decreases and approaches
unity, quantum Fisher information makes some variations and
show other local peaks; but it remains χ2 < 1. The point is
that by passing the weak-field regime, the spin-squeezing and
quantum Fisher information values begin to defer and we
see χ2 < ξ 2. For instance, when N = 10 and 16, we have
the optimal values of χ2

min/ξ
2
min ≈ 0.22/0.63 and 0.17/0.61

corresponding to the respective optimal n̄’s in the intermediate
regime.

Note that the values of spin squeezing and quantum Fisher
information in Fig. 5 (and similar plots for N > 2) are obtained
considering a chosen cutoff on time. Consequently, these
values are not the most global optimized factors. Nevertheless,
they give the general trend of entanglement. All in all, in the
intermediate-field regime, there is not a regular behavior in the
QFI flag (and, correspondingly, the entanglement dynamics)
and the optimal values may occur in very long times. This is a
flaw when it comes to measure the entanglement, in practice.
In the next section, we study the entanglement dynamics when
the atomic ensemble is interacting with strong coherent fields.

C. Strong-field limit

In the strong-field regime n̄ � N , we can get the approxi-
mate solutions for the dynamics of the system (and principally
χ2) taking advantage of factorization approximations, which
is discussed as follows.

For large coherent photonic populations, the boson op-
erators of the field are replaced with c-numbers, a,a† →
α ≡ √

n̄, and the interaction Hamiltonian (1) reduces to the
semiclassical form of Hcl = 2g

√
n̄Sx . Correspondingly, the

semiclassical states are defined as simultaneous eigenfunctions
of Hcl and Sx such that Sx |N/2,mx〉x = mx |N/2,mx〉x . If
atoms initiate in a semiclassical state and the field in a strong
coherent state, the factorization approximation implies that the
wave function of the joint system can be approximately written
as a factorized product of the atomic |Amx(t)〉 and field parts
|�mx(t)〉 such that |ψ(t)〉 ∼= |Amx(t)〉 ⊗ |�mx(t)〉 [44,45]. The
validity range of the approximation is for times which are short
compared to t ≈ n̄/g and accuracy of order N/

√
n̄ [44,45].

The semiclassical states form a convenient (complete) basis to
use in describing the state of the atomic ensemble. Therefore,
any arbitrary initial state of the atom-field system (including
3) is given by

|ψ(0)〉 =
N/2∑

mx=−N/2

dmx |N/2,mx〉x ⊗ |α〉, (17)

where |dmx |2 is the probability of atoms being initially in
the semiclassical state |N/2,mx〉x . Correspondingly, the atom-
field state can be written as a superposition of factorized states
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at any time t ,

|ψ(t)〉 =
N/2∑

mx=−N/2

dmx |Amx(t)〉 ⊗ |�mx(t)〉. (18)

In order to get the analytical results for the quantum Fisher
information flag χ2, let us begin with N = 2 and discuss the
larger ensembles in the following. For a two-atom system,
three symmetric eigenstates of Sx are labelled by mx = −1,0,
and 1. Thus, Eq. (18) gives the state of the system as |ψ(t)〉 =∑1

mx=−1 dmx |Amx(t)〉 ⊗ |�mx(t)〉. After tracing out the field
degrees of freedom, the reduced two-atom density matrix is
obtained as

ρa(t) =
∑
mx,lx

dmxd
∗
lx |Amx(t)〉〈Alx(t)|fml(gt,n̄), (19)

where fml(gt,n̄) = ∑
n〈n|�mx(t)〉〈�lx(t)|n〉. As explained in

Ref. [8], this function has memory only for t � √
n̄/g and

afterward shows a δ-function behavior. In fact, the presence
of large-dimensional Hilbert space of the field resembles a
reservoir for the atoms. In this case, the atomic states |Am(t)〉
act effectively as a pointer basis for decoherence of the
atomic density matrix. This Markoff approximation is valid
for times of the order of 2π

√
n̄/g. Consequently, one gets

the density matrix of atoms in the semiclassical basis as
ρa(t) ≈ ∑

mx |dmx |2|Amx(t)〉〈Amx(t)| [8]. For two atoms in the
initial ground state |gg〉, we have d1 = d−1 = 1

2 , d0 = 1√
2
. As

a result, the reduced atomic density matrix is obtained as

ρa(t) =

⎛
⎜⎜⎝

3
8 − i

4
√

2
sin (t ′) cos (2t ′)

8 − 1
4

i

4
√

2
sin (t ′) 2

8 − i

4
√

2
sin (t ′)

cos (2t ′)
8 − 1

4
i

4
√

2
sin (t ′) 3

8

⎞
⎟⎟⎠,

(20)

with t ′ = gt/
√

n̄. From the above equation, we get tr(ρ2
a ) < 1.

Therefore, the atomic state is mixed and we must use the
general definition of F given in (6) [46]. In fact, in the
weak-field limit, we used the reduced form of F = 4�S2

n ,
since the atomic state remains approximately pure during the
time evolution. By diagonalization of the atomic density matrix
(20) followed by using Eqs. (6) and (7), one gets the analytical
expression for χ2. We have not brought the final form of
the quantum Fisher information flag due to the lengthiness.
Instead, the ultimate analytical as well as exact numerical
solutions of χ2 as a function of gt are given in Fig. 6. Here, we
have given the QFI flag along the optimal z direction where
there is a reasonable agreement with the exact results in the
validity region of the approximations. The violation of the
results in the very short times and also π

√
n̄/g is due to

breaking the Markoff approximations in this region [8]. All
in all, the values in which χ2 > 1 are not interesting from an
entanglement point of view.

In the two-atom system, the quantum Fisher information
flag χ2 shows a quasiregular behavior with the period of
π

√
n̄/g and minimum values in every half period (see Fig. 6).

The approximate minimums are derived equal to 2/3. In
reality, after a number of periods, the quasiregular pattern of χ2

is lost while entanglement eventually decays. The irregularities
of χ2 are related to the loss of regularities of atomic inversion.

gt
0 20 40 60 80 100 120 140

χ
2

0

1

2

3

4

5

6

exact
approximate

FIG. 6. Time evolution of χ 2 within exact (solid blue) and
approximate (dashed red) approaches for N = 2 and n̄ = 100.

In fact, as time passes, the neighboring revivals begin to spread
and finally overlap. Losing regularities with increasing time in
the large coherent field limit has been observed for concurrence
[8,47] and squeezing of the field [42].

In Fig. 7, we have given the temporal behavior of the χ2

(upper panel) and C (middle panel) for N = 2 and n̄ = 100,
which are consistent in predicting peaks of entanglement.
For the two-qubit systems, concurrence is a sufficient and
necessary witness of entanglement, while QFI detects the
particular family of metrologically useful entangled states.
Thus, these measures do not necessarily coincide all the time.
The linear entropy 1 − tr(ρ2

a ) in the lower part shows the
mixed nature of the atomic state in this regime. Moreover,
to investigate the effect of increasing n̄ on entanglement
measures, in Fig. 8, we have used the exact numerical results
to plot the first minimum of χ2 and first maximum of C as a
function of n̄. By increasing the coherent field strength, the

0 20 40 60 80 100 120 140

χ
2

0

5

0 20 40 60 80 100 120 140

C

0

0.5

1

gt
0 20 40 60 80 100 120 140

1-
tr
ρ

a2

0

0.5

1

FIG. 7. χ 2 (upper panel), C (middle panel), and 1 − trρ2
a (lower

panel) as a function of gt for N = 2 and n̄ = 100.
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n̄
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0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

χ2

C

FIG. 8. The first minimum of χ 2 (squared blue) and the first
maximum of C (circled red) vs n̄ for N = 2.

minimum value of χ2 decreases and eventually approaches to
an asymptotic value in agreement with C. The asymptotic limit
of 2/3 are the minimum values of χ2, which is derived from
factorization and Markoff approximations for strong enough
fields.

On the other hand, it has already been discussed in Ref. [30]
that the spin squeezing approaches unity and effectively
vanishes moving toward strong-field limits. In this case, the
Mollow transformations [48] has been employed to transform
the interaction Hamiltonian to that of a classical field having
amplitude α plus a fluctuating field. The decreasing of spin
squeezing by increasing α has been attributed to decreasing
the ratio of the fluctuations to the average field strength. It
is possible to verify this for N = 2. Using the atomic density
matrix (20), one gets the explicit expressions for the mean spin
values,

〈Sx(t)〉 = 0,

〈Sy(t)〉 = sin(gt/
√

n̄)

2
,

〈Sz(t)〉 = 0, (21)

and the corresponding variances [49],

�S2
x = cos(2gt/

√
n̄)

8
+ 3

8
,

�S2
y = 3

4
,

�S2
z = 3

4
(22)

(see Fig. 9). Equations (21) show that the mean spin direction
is along y and always satisfies 0 � |〈S〉|2 � 1/4. As a result,
the normal spin fluctuations are located in the xz plane. Using
optimal rotations in this plane, we get the minimum value of
spin squeezing (8) along x, which fulfills 1/4 � �S2

x � 1/2
[50]. Consequently, the spin squeezing (8) gives ξ 2 > 1 (within
the range of approximations).

gt
0 10 20 30 40 50 60 70 80 90 100

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

S
y

S
y app

ΔS
x
2

ΔS
x,app
2

FIG. 9. Time evolutions of exact 〈Sy〉 (solid blue), approximate
〈Sy〉app (dashed red), exact �S2

x (dotted green), and approximate
�S2

x,app (dashed black) solutions with N = 2 and n̄ = 100.

Finally, let us consider the strong-field limit for n̄ � N > 2.
By increasing both N and n̄, the full numerical simulations
get more cumbersome due to the significant size of the Hilbert
space. Nevertheless, it is possible to derive the approximate so-
lutions for the wave function of the system and principally get
χ2. Making use of Markoff and factorization approximations,
we have extracted the dynamics of χ2 as a function of gt . The
interesting finding is that in small ensembles of particles, a
quasiregular pattern of χ2 and correspondingly entanglement
dynamics regain. Our approximate solutions suggest that the
minimums of χ2—of the order of ∼2/(N + 1)—occur around
odd multiples of π

√
n̄/N . However, the structure of the

oscillations of χ2 becomes more complicated by increasing
N . Figure 10 gives the temporal behavior of χ2 for N = 4
and n̄ = 100, which declare the semiregular pattern of the

gt
0 5 10 15 20 25 30 35 40 45 50

χ
2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

exact
approximate

FIG. 10. Quantum Fisher information flag χ 2 vs time gt for
N = 4 and n̄ = 100.
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t m
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FIG. 11. The first minimum of quantum Fisher information flag
χ 2

min (upper panel) and its corresponding time tmin (lower panel) vs N

for n̄ = 100.

entanglement. By increasing the ratio of N/
√

n̄, the violation
of the approximate results from exact ones increases due to
decreasing the accuracy of factorization approximation.

In order to observe the effect of increasing N on en-
tanglement, in Fig. 11, we have plotted the first minimums
of χ2 for different number of atoms (upper panel) when
n̄ = 100. The amount of entanglement detected by χ2 grows
with increasing N with the factor around χ2

min ≈ 1.1N−0.63

compared to N−1 which is the Heisenberg limit. In the lower
panel of the same figure, we have given the time in which
the first minimums occur, tmin. We see that as opposed to the
weak-field regime, with increasing the number of particles,
tmin decreases. For the given data in Fig. 11, we have derived
tmin = 33N−1.1 ∼= O(π

√
n̄/N ).

It is worthwhile to mention that the regular and semiregular
dynamics of the Tavis-Cummings model—in the weak- and
strong-field regime—has been studied [38,39]; probably the
most known effect is the collapse and revival of the population
inversion of the atomic system. Moreover, the collapse and
revival of entanglement for Schrödinger cat states in the strong-
field regime has been studied [51,52].

By approaching very strong fields, the interaction Hamil-
tonian (1) reduces to the semiclassical Hamiltonian which is
proportional to Sx and not capable of creating multiparticle
entanglement. We can understand this by considering the
fact that with increasing the initial photonic population, the
minimum value of χ2 occurs in longer time scales (with a
factor ∼√

n̄). Thus, for n̄ → ∞, the first minimum appears in
a very long time, i.e., no entanglement appears.

V. DISCUSSION AND ANALYSIS

In this section, we briefly summarize all of the findings of
the three regimes of interaction.

In the weak-field regime, the dynamics of the system
is known to be regular making use of perturbation theory
[38,39]. Here, we have derived a regular function of χ2 versus

time which coincides with spin squeezing ξ 2 because of the
Gaussian nature of atomic spin states. The minimum amount
of entanglement increases with increasing the amplitude of the
field ∝ 1 − 2n̄, while it is moderate for small ensembles, ∼1.
Nevertheless, for larger ensemble of particles, it is possible
to gain more entanglement. The time in which the first
minimum of χ2 occurs (2π

√
N ) increases by increasing of

N . In addition, the concurrence is considered for N = 2 and
we have found good agreement between regular peaks of the
entanglement measures.

In the intermediate-field regime, the quantum Fisher infor-
mation and spin squeezing begin to differ. Compared to the
weak-field regime, the corresponding minimums of χ2 and ξ 2

decrease, while χ2 < ξ 2. Moreover, the minimums may occur
in long-time scales.

When the field increases continuously, the fully different
behavior of χ2 and ξ 2 is observed. While for strong-field
amplitude, it has already been studied that spin squeezing
approaches unity [30], the quantum Fisher information pre-
dicts considerable entanglement. For N = 2, χ2 regains a
quasiregular pattern with period π

√
n̄ and minima which

coincide with concurrence peaks. Considering N number of
particles, the time for the first minimum of entanglement is
close to ∼π

√
n̄/N . Thus, as opposed to the weak-field regime,

by increasing N (and fixed n̄), entanglement appears at shorter
times, ∝ N−1. For very strong coherent fields, there is no
multiparticle entanglement as expected.

VI. CONCLUSION

Aristotle once said “the whole is something beside the
parts” [53]. The Dicke model is a very good physical man-
ifestation of this perception. In this paper, we have provided
a simple scheme for generating and detecting multiparticle
entanglement. By changing the initial coherent field, we have
evaluated the entanglement, making use of quantum Fisher
information. In comparison to spin squeezing, we have found
more entanglement in a wider range of initial field states.
Due to the intrinsic connection of the Fisher information to
estimation theory, the useful entanglement detected between
particles can be exploited for atomic interferometric purposes.
Specifically, in small ensemble of spins, the effectiveness of the
QFI in a strong-field regime makes it a useful tool in detecting
mesoscopic cat states of particles or collapse and revival of
entanglement [51,52].

To conclude, we would like to comment on two different
important points. First, in a many-body system with very
large number of particles, measurement of the quantum
Fisher information needs the full tomography of the atomic
density matrix, which is a difficult task in practice. In this
case, the measurement of Fisher information (as the lower
bound of QFI) would be helpful in order to investigate
the entanglement [27,29]. Without relying on tomographic
reconstruction of the atomic quantum state, the method [27]
utilizes a specific set of experimental probability distributions
after small rotations of the quantum states. The Euclidean
distance in the space of probability amplitudes—Hellinger
distance—is related to Fisher information. Second, cavities
are prone to atomic and photonic losses [54,55]. The realistic
possibility to create entanglement depends on the competition
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between the nonlinear unitary dynamics and decoherence,
whose coupling parameters are determined by the specific
experimental implementation.
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[27] B. Lücke, M. Scherer, J. Kruse, L. Pezze, F. Deuretzbacher,
P. Hyllus, O. Topic, J. Peise, W. Ertmer, J. Arlt, L. Santos, A.
Smerzi, and C. Klempt, Science 334, 773 (2011).

[28] H. Strobel, W. Muessel, D. Linnemann, T. Zibold, D. B. Hume,
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