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Born-Kothari condensation in an ideal Fermi gas
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“Condensation” in Fermi-Dirac statistics [D. S. Kothari and B. Nath, Nature 151, 420 (1943)], which appears
as a natural consequence of Born’s reciprocity principle [M. Born, Proc. R. Soc. London A 165, 291 (1938);
Nature 141, 328 (1938)], is examined from a theoretical perspective. Since fermions obey the Pauli exclusion
principle, it is conceptually different from Bose-Einstein condensation, which permits macroscopic occupation
of bosons at the single-particle level below a critical temperature. Yet, in accordance with the Cahill and Glauber
[Phys. Rev. A 59, 1538 (1999)] formulation for fermionic fields, and in close kinship to bosonic fields, we
have shown that in analogy to Bose-Einstein condensation, it is possible to associate an intrinsic notion of
symmetry breaking and the thermodynamic “order parameter” to characterize the foregoing hitherto unexplored
phenomenon in an ideal Fermi-Dirac gas as condensation-like coherence within fermions.
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I. INTRODUCTION

Trapped dilute, atomic gases have proven to be remarkable
model systems for the realization of quantum statistical
effects at the fundamental level, such as the direct observation
of Bose-Einstein condensation (BEC) [1–3] at ultracold
temperatures. Perhaps not as dramatic as the phase transition
of bosons, the behavior of trapped Fermi gases also merits
attention in its own right, both as a degenerate quantum system
and as a possible precursor to a paired Fermi condensate at very
low temperatures [4–6]. The use of mean-field theory, the pseu-
dopotential, and consideration of fluctuations around the mean
field has already led to interesting advancements in the
understanding of basic physics of ultracold Fermi gases [7–9].

Here, instead, we invoke a seldom used but reasonable
basis for the possible existence of a “condensed phase” for
an ideal Fermi-Dirac (FD) gas [10] that is based on the notion
of Born’s reciprocity theory [11], which is considered one
of the cornerstones for the development of the theory of
elementary particles [12,13] and other related fields [14,15].
The attempt was made many decades ago by Kothari and
Nath [10] in the course of examining the relationship between
Born’s reciprocity principle [11] with FD statistics. In the
present study we put forward a convenient description of such
states following Cahill and Glauber [16], on the basis of close
parallelism between the expressions found for fermionic fields
and the more familiar ones for bosonic fields that resulted in a
unification between the two seemingly distinct seminal works.
Our approach, however, is not in contradiction to the standard
pairing theory for fermions [17].

A key element of our formulation is the fermionic coherent
state, defined as a unitary displaced state of all singly occupied
filled up modes. The transformation with this displacement
operator displaces the fermionic field operators over anticom-
muting (Grassmann) numbers [18–20]. This resembles the
harmonic oscillator coherent state, for which the displacement
operator displaces the bosonic field operators over classical
commuting variables [21–23]. The basic question behind the
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present approach is whether a state of macroscopic coherence
for an FD gas can be described as a fermionic coherent state.
This approach gives an equivalent result to the problem of
a fixed number of particles N in the limit N −→ ∞ for the
BEC case [24–26]. In the same spirit, here, we have extended
the coherent-state approach of Cahill and Glauber [16] to its
fermionic counterpart. It forms an essential ingredient for
demonstration of the thermodynamic limit, fermionic order
parameter, and spontaneous symmetry breaking of the state
comprising FD statistics.

The paper is organized as follows: In Sec. II we revisit
the Born-Kothari approach to stimulate the motivation for
the present work. Since the fermionic coherent state plays
a crucial role in the formulation of the problem, in Sec. III
we briefly review the relevant parts of the coherent state
of fermions as developed by Cahill and Glauber [16]. The
aspect of the thermodynamic limit, spontaneous symmetry
breaking and the fermionic analog of the order parameter are
then introduced to comprehend the Born-Kothari criterion for
so-called “condensation” as a state of macroscopic coherence
that can be depicted as a fermionic coherent state. The paper
is concluded in Sec. IV.

II. REVISITING “CONDENSATION” IN FD STATISTICS:
THE BORN-KOTHARI APPROACH

In the spirit of condensation phenomena for a Bose-Einstein
gas (where a condensed phase is formed by the particles
in the lowest energy state), Kothari and Nath have shown
condensation in FD statistics [10] as a direct consequence
of Born’s reciprocity principle [11–15], where the condensed
phase is formed by particles in the highest energy state.
According to Born’s reciprocity theory [11], the number of
wave functions of a particle of weight factor g (due to its
internal degrees of freedom) within the momentum range p to
p + dp is given by

a(p)dp = 4πVg

(2πh̄)3

p2dp

(1 − p2/b2)1/2
. (1)

It is indeed essential to limit the momentum p in the above
equation by an absolute constant b (whose existence is ensured
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by the fundamental laws of quantum mechanics, which are
symmetric in space-time xk and momentum energy pk), since
the reciprocity theory “is based on a demand for symmetry” as
mentioned by Born (see, for example, letters to Einstein [15]).
Therefore the total number of wave functions (a0) possible in
a volume V is (according to Born [11])

a0 =
∫ b

0
a(p)dp = g

π2V b3

(2πh̄)3
. (2)

As is evident for an FD gas, any independent wave function
cannot accommodate more than one particle due to the Pauli
exclusion principle, and Eq. (2) imposes an upper limit (N ≡
N0 = a0) on the number of particles that can be contained in
volume V . So, the natural question arises, What will happen to
an FD gas when the number of particles N in the given volume
exceeds N0?

The answer was given by Kothari and Nath [10] that, upon
replacing the sum of all possible eigenstates extending from
(p = 0) to (p = b) with the integral in Eq. (2), the total
number of eigenstates has become limited, though it is in
reality infinite. The total number of states a thus becomes

a = a0 + a1, (3)

where a1 takes care of the infinitely large number of eigenstates
corresponding to p → b. It follows, therefore, that unlike in
an ideal Bose gas, when the number of particles N in an
FD gas exceeds N0, irrespective of any critical temperature,
a condensed phase (a band of dense eigenstates) containing
(N − N0) particles will be formed, all possessing momentum
b [10]. The existence of such a condensed phase, consisting of
particles in the highest energy state, p = b, depends on Born’s
reciprocity theory [11].

One point should be noted here. The above inference
respects the Pauli exclusion principle and does not contradict
our basic knowledge, which rules out the possibility of
macroscopic occupation for fermions at the single-particle
level [27]. The question thus remains whether it is possible to
attribute the condensation in Ref. [10] with a close connection
to BEC. In the following, we have shown that it is, however,
possible to reach such a consensus in the framework of
coherent states using the statistical properties of fermionic
fields as a close equivalent to bosonic fields, pioneered by
Cahill and Glauber [16]. The decisive advantage of this
coherent-state formalism is that it is no longer restricted by the
stringent Yang criterion [27] of a large occupation number for
fermionic fields that must abide by the single-particle picture.
This accounts for a consistent theory of so-called Born-Kothari
condensation in terms of fermionic coherent states.

To proceed further toward a systematic description, we
consider a noninteracting FD gas consisting of N particles.
The Hamiltonian can be expressed in terms of the field operator
ψ̂(r) as

Ĥ =
∫ (

h̄2

2m
∇ψ̂†(r)∇ψ̂(r)

)
dr. (4)

The field operator ψ̂(r) annihilates a particle at a position r

and can be expressed as ψ̂(r) = ∑
k φk(r)âk . âk (â†

k) is the

annihilation (creation) operator of a particle in the single-
particle state φk(r) that obeys anticommutation relations:

{âk,â
†
l } = δkl, {âk,âl} = {â†

k,â
†
l } = 0. (5)

The wave functions φk(r) satisfy the orthonormal condition∫
φ∗

k (r)φl(r) = δkl . (6)

The field operator then follows the anticommutation relation
{ψ̂(r),ψ̂†(r ′)} = ∑

k φk(r)φ∗
k (r ′) = δ(r − r ′).

We first separate the field operator ψ̂(r) into a noncommut-
ing “classical” field ψ(r) and the quantum fluctuation δψ̂(r)
about its classical component as

ψ̂(r) = ψ(r) + δψ̂(r). (7)

We do this separation by taking a hint from the Bogoliubov
approximation [28] for bosons and the close similarity of the
expressions evaluated for bosonic and fermionic fields [16].
When the quantum fluctuation is neglected, as happens for a
dilute Bose gas at a very low temperature, the field operator
coincides with the classical field ψ(r) and the system behaves
as a classical object [24–26]. Here lies an important difference
between the bosonic fields and their fermionic counterparts
since the latter always remain “classical”. This sense of
“classicality” for fermionic fields is revisited in the next
section, where we consider the fermionic “order parameter”
from the physical point of view.

The ansatz for the field operator in Eq. (7) can be interpreted
as an expectation value 〈ψ̂(r)〉 different from 0. Such states
are coherent states, which are well known for bosonic fields
and form the basis for understanding BEC [24–26]. However,
a straightforward extension of the scheme to their fermionic
counterparts is nontrivial. The primary reason may be traced
to the basics; as pointed out by Schwinger [29], since fermions
anticommute, their eigenvalues must be anticommuting num-
bers. While such numbers are well studied in mathematics [18]
and quantum-field theory [19,20], other applications of such
anticommuting (Grassmann) numbers are much less popular.
However, in recent times, a number of investigations of
fermionic systems by adopting Grassmann variables have
appeared in the literature [30–37]. Among them are the
phase-space methods for degenerate Fermi gases [30], super-
fluidity [33] and Cooper-like pairing in trapped fermions [34],
quantum Monte Carlo methods and counting statistics of
strongly correlated fermions [32], the fermionic analog of a
parametric amplifier [36], and treatment of dissipation and
the stochastic Schrodinger equation in fermionic baths [35],
to name just a few. In the next section we digress slightly
to discuss this algebra of anticommuting numbers centering
around the fermionic coherent state [16], which forms an
integral part of our analysis in the remainder of the paper.

III. FERMIONIC COHERENT STATES: CONNECTION
TO MACROSCOPIC COHERENCE FOR FERMIONS

For a system of fermions described by the creation a
†
k and

annihilation ak operators obeying Eq. (5), the set of Grassmann
variables γ = {γk} satisfies the following anticommutation
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relations:

γkγl + γlγk ≡ {γk,γl} = 0. (8)

This immediately suggests that γ 2
k = 0 for any given k. For

the general properties of such anticommuting numbers and a
description of fermionic coherent states, we refer the reader
to the classic book of Berezin [18] and other related works
[30–38]. Here instead we follow the approach developed
by Cahill and Glauber [16] for the statistical properties of
fermionic fields and cite only the parts necessary to make our
presentation self-contained.

The Grassmann number γk and its complex conjugate
γ ∗

k are independent numbers and obey {γk,γ
∗
k } = 0. They

also anticommute with their fermionic operators {γk,âl} =
0; {γk,â

†
l } = 0. Hermitian conjugation reverses the order of all

fermionic quantities, both the operators and the anticommuting
variables.

A. Fermionic coherence theory

In analogy to the harmonic oscillator coherent state |α〉 [21],
which is defined as a displaced state where the displacement
operator D̂(α) = exp (

∑
i(αiâ

†
i − α∗

i âi)) acts on the vacuum
|0〉 as |α〉 = D̂(α)|0〉, {αi} being a set of complex numbers
[21–23], it is possible to construct the displacement operator
for fermions [16] as

D̂(γ ) = exp

(∑
i

(â†
i γi − γ ∗

i âi)

)
(9)

for a set of γ = {γi} Grassmann variables.
The normalized fermionic coherent state can then be con-

structed by the action of this displacement operator [Eq. (9)]
on the vacuum state as |γ 〉 = D̂(γ )|0〉. Using the displacement
operator [Eq. (9)] we may show that the coherent state is an
eigenstate of every annihilation operator âk, âk|γ 〉 = γk|γ 〉,
with eigenvalue γk . The adjoint of the coherent state |γ 〉 can
be similarly defined as 〈γ |â†

k = 〈γ |γ ∗
k . The inner product of

two coherent states is given by [36]

〈γ |β〉 = exp

(∑
i

γ ∗
i βi − 1

2
(γ ∗

i γi + β∗
i βi)

)
, (10)

and using the completeness relation of the coherent states,
any arbitrary coherent state |β〉 can be expanded as |β〉 =∫

d2γ 〈γ |β〉|γ 〉, which immediately follows from the resolu-
tion of identity

∫
d2γ |γ 〉〈γ | = I. It is worth pointing out that

for fermionic fields the integrations are taken over anticommut-
ing numbers and for such pairs we confine ourselves to typical
notation,

∫
d2γ ≡ ∫ ∏

i d
2γi , where

∫
d2γi = ∫

dγ ∗
i dγi , and

we should keep in mind that dγ ∗
i dγi = −dγidγ ∗

i .
Unlike the harmonic oscillator, in addition to a lower bound,

the fermionic oscillator possesses an upper bound [19]. Thus,
for any set α = {αi} of Grassmann numbers, the normalized
coherent state |α〉′ for fermionic fields can also be defined as
an eigenstate of every creation operator,

â
†
k|α〉′ = α∗

k |α〉′, (11)

as the displaced state

|α〉′ = D̂(α)|1〉, (12)

where |1〉 denotes the state in which every mode is filled,

|1〉 =
∏
k

â
†
k|0〉. (13)

The corresponding adjoint relation and the identity operator
are given by

�〈α|âk =� 〈α|αk,

∫ ∏
i

(−d2αi)|α〉′ �〈α| = I. (14)

It is shown that the eigenstate of the creation operators
|α〉′ plays a central role in our theoretical formulation because
it stems from the characteristic upper bound displayed by a
general system of fermions. It may be noted that in Eq. (9)
the creation operator â

†
i stands to the left of the Grassmann

variable γi . For a fermionic field, since both operators and
the Grassmann numbers anticommute with each other, special
care must be taken with the ordering of all fermionic quantities.
Apart from these ordering procedures, Eqs. (9)–(14) appear to
be rather similar to their bosonic counterparts and they can
be employed in the same analytical techniques as used for
bosonic fields [30–38]. The differences are merely in their
mathematical backgrounds [18–20].

We conclude this section with one pertinent remark. A
principal use of the Glauber-Sudarshan P representation
for bosonic fields has been the evaluation of normally
ordered correlation functions, which play an important role
in the theory of coherence and the statistics of photon-
counting experiments [22]. Analogously, correlation functions
G(n)(x1, . . . ,xn,yn, . . . ,y1) for fermionic fields as a function of
a space-time variable are defined as the central dogma [16,38]
in fermionic coherence theory, which can be shown to play
a similar role in the description of fermionic atom-counting
experiments [32,36,38].

B. Characterization of the “condensate” state

In the case of BEC, the condensed phase, which is the
ground state of the many-body system, can be interpreted a
displaced vacuum state |α〉 = D̂(α)|0〉, where α is the complex
numbers. For an FD gas, due to the Pauli exclusion principle
each eigenstate can accommodate only a single particle. Hence
a condensed phase, when formed as the ground state of the
many-body system, can only occur in the form of a thick band
in the highest energy state p = b, since Born’s reciprocity
principle [11] allows an infinitely large number of eigenstates
corresponding to p → b. Taking into account the fermionic
coherent states proposed by Cahill and Glauber [16], and
in close analogy to a Bose condensate in an ideal Bose
gas [24–26], we may visualize that the condensate of an
ideal FD gas [10], as indicated by Kothari and Nath, can
best be described, in view of our Eq. (12), as a displaced
state |α〉′ = D̂(α)|1〉, where |1〉 = ∏n=N

n=N0
a
†
n|0〉, in principle,

corresponds to an infinite number of single-occupancy dense
modes approaching the p → b limit. We therefore empha-
size that our preliminary surmise is compatible with the
condensation criterion, which emerges as a manifestation of
Born’s reciprocity principle and does not rely on fermion
pairing. However, it is possible to account for a BCS-like
condensation incorporating Grassmann variables, which calls
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for a separate discussion [33,34]. The basis for characterization
of the so-called condensate is the thermodynamic limit, order
parameter, and spontaneous symmetry breaking, as detailed
below.

(1) Thermodynamic limit. Since we are interested in the
behavior of a gas of fermionic atoms, i.e., in a large particle
number and volume, it is necessary to consider the thermody-
namic limit, N −→ ∞, V −→ ∞, keeping the density ρ = N

V

constant. In this limit, the anticommutation relation between
the fermionic operators ân and â

†
n becomes

{ân,â
†
n}

V
= ânâ

†
n + â

†
nân

V
= 1

V
−→ 0. (15)

So, in this limit, V −→ ∞, we are allowed to forget the
operator character of ân and â

†
n and they can be replaced by

numbers. To make this point explicit, we define

â†
nân = N̂n. (16)

Once the ground state of a system of N fermionic atoms is
realized as the coherent state |α〉′, no ân or â

†
n can annihilate

the state. Because �〈α|N̂n|α〉′ = α∗
nαn 
= 0 and the Grassmann

variables have anticommuting properties, it follows that

�〈α|{ân,â
†
n}|α〉′

V
= 1 + {αn,α

∗
n}

V
= 1

V
−→ 0; (17)

i.e., we obtain the “classical” limit of the fermionic operators
for which ân and â

†
n are replaced with their corresponding

Grassmann variables. Here we identify
∑

n α∗
nαn as the

average number of particles in the thermodynamic limit. In
the following we interpret the Grassmann variables from a
practical point of view.

(2) Order parameter. The field operator ψ̂(r) in Eq. (7) can
be expanded in terms of its mode functions φk(r), and then its
eigenvalue in the coherent state |α〉′,

�〈α|ψ̂(r) =� 〈α|ψ(r), (18)

corresponds to the amplitude,

ψ(r) =
∑

n

αnφn(r), (19)

of the fermionic field or Grassmann field in which the
annihilation operators in ψ̂(r) are replaced with the Grassmann
variables α = {αn}. For bosonic fields, the function ψ(r) plays
the role of an order parameter which is used to characterize the
underlying phenomena of BEC. Similarly here for fermionic
fields, one can always multiply ψ(r) by a numerical phase
factor as eiθ (i.e., replacing αn with αne

iθ ), without changing
any physical property. This beautifully reflects the gauge sym-
metry exhibited by all the physical equations of the fermionic
fields. Making an explicit choice for the value of the order
parameter (hence for the phase) actually corresponds to a
formal breaking of the gauge symmetry which is guaranteed
to be the necessary and sufficient condition [39,40] for the
occurrence of BEC in bosonic fields. In due course, we reveal
its significance to the fermionic counterpart, but first we would
like to make a few remarks.

It may appear that the fermionic order parameter does not
bear any classical analogy, since it involves anticommutating
numbers which do not have any classical analog. This should

not lead to misunderstanding. For fermionic fields, only
quantities such as the charge, energy, and current density,
which are only bilinear in field operators, can be measured
classically. The field operator ψ̂(r) is linear in ân and hence
linear in the Grassmann variables, represents the amplitude of
the fermionic field, and is not an experimentally measurable
quantity, while the ψ∗(r)ψ(r) = ∑

n α∗
nαn|φn(r)|2, which is

bilinear in Grassmann amplitudes, makes it experimentally
relevant without any ambiguity. Since coherent states are
defined in terms of bilinear forms in anticommuting variables,
there is no need to adopt any ordering for the modes or extra
minus sign to compute N = ∫

ψ∗(r)ψ(r)dr .
The above remarks may be corroborated by another

observation. The number operator N̂ = ∑
k N̂k and the energy

operator Ĥ = ∑
k εkN̂k have classical limits because they are

bilinear in âk and â
†
k and, hence, commute with each other.

Anticommutation in quantum mechanics is something special
because it incorporates the Pauli exclusion principle, which
does not make sense at the classical level. Extrapolating this
idea a bit further, we may say that Grassmann fields themselves
and fermionic-field operators are, by construction, fermionic,
while c-numbers and bosonic-field operators are bosonic. The
product of an even number of Grassmann variables is bosonic,
which makes it experimentally relevant [34–36].

Although the anticommuting nature of Grassmann variables
precludes the possibility of interpreting the fermionic order
parameter in physical terms, it can be shown that, unlike
the bosonic field, fermionic fields are bound to satisfy the
fermionic analog of the classical Liouvilles equation [31,36]
and therefore most closely resemble classical phase-space dis-
tribution functions. In this sense, the fermionic-field operator,
which is linear in Grassmann variables, is always “classical”
except for the fact that it incorporates the Pauli exclusion
principle. This is not surprising, for the simple reason that
Grassmann algebra does not allow any derivative higher than
second order. This is the same reason that leads the Dirac
equation to take a simple linear form [31].

(3) Spontaneous symmetry breaking. Finally, we con-
sider the properly parametrized coherent states |α〉′ =
exp(

√
V

∑
n(a†

nαn − α∗
nan))|1〉. Accordingly, the states are not

invariant under the number operator N̂ = ∑
k â

†
kâk , while the

Hamiltonian Ĥ [Eq. (4)] commutes with N̂ ; i.e.,

eiθN̂ |α〉′ = |e−iθα〉′, eiθN̂Ĥe−iθN̂ = Ĥ. (20)

The operator eiθN̂ applied to |α〉′ produces a different state,
|e−iθα〉′, which leaves the scalar product invariant:

�〈e−iθα|e−iθα〉′ =� 〈α|α〉′. (21)

This suggests that, similarly to harmonic oscillator coherent
states, one can always multiply the fermionic coherent state by
an arbitrary phase factor e−iθ without changing any physical
property. From the symmetry point of view, the situation
is quite outstanding for fermionic fields and can be further
elaborated as follows.
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Since the overlap of coherent states can be calculated from
Eq. (10) as

�〈α′|α〉′ �〈α|α′〉′ = exp

(
−V

∑
n

(α∗′
n − α∗

n)(α′
n − αn)

)
,

(22)

it implies that any two different states |α〉′ and |α′〉′ become
orthogonal in the limit V → ∞. Thus states with different
phase factors, |α〉′ and |e−iθα〉′, are macroscopically distinct.
This striking observation in the present analysis hints at our
assertion that, similarly to BEC, the specific macroscopic
ground condensed state of a Fermi gas [10], realized as
a coherent state, forms a degenerate manifold parametrized
by a phase variable, 0 < θ < 2π . While the microscopic
Hamiltonian (Ĥ) [Eq. (4)] has global U(1) symmetry, the
so-called “condensed” state in Ref. [10], viewed as a fermionic
coherent state, does not possess such symmetry, since adding
a phase factor to state |α〉′ produces a different state
altogether.

Finally, we anticipate the difficulty of achieving the fore-
going Born-Kothari condensation (BKC) in an experiment. It
is quite natural that the above “condensate” will obviously be
significant for the astrophysical applications of the reciprocity
principle [10]. The possibility of unambiguous observation of
this phenomenon at very low temperatures primarily depends
on the extent to which an FD gas can be prepared exper-
imentally so that it becomes almost noninteracting and the
number of particles N in a given volume V is macroscopically
large compared to the number of particles N0 allowed by
Eq. (2). Second, the energy εmax of all (N − N0) particles
must correspond to the maximum value of the momentum b
given by the relation ε2

max + 2εmaxmc2 = b2c2 [15]. In view of
the tremendous experimental progress in the last two decades
with ultracold Fermi gases down to degeneracy temperature,
we expect that one may have sufficient control over the strength
of interaction between the particles and the density of atomic
gases [4–9], by tuning experimental parameters such as the
trap frequency and the applied magnetic fields, to achieve the
desired condensate.

IV. CONCLUSION

In this article, we have elucidated the appealing features
of the so-called Born-Kothari condensation (BKC) in ideal
Fermi-Dirac gases in close association with BEC. We em-
phasize that, unlike BEC, the most conspicuous feature of
BKC is that the condensation is primarily guided by the
density of states rather than only statistics itself. Our analysis
is based on the mathematical methods that have been used
to analyze the statistical properties of boson fields, and in
particular the coherence of photons in quantum optics, have
their counterparts for Fermi fields. To be specific, the coherent
states, displacement operators, and P representation all possess
surprisingly close fermionic analogs, and upon using a prac-
tical calculus of anticommuting numbers, they can be utilized
to calculate correlation functions and counting distributions
for general systems of fermions. In the same spirit, we
have explained that, despite their fundamental differences, the
so-called condensation of an FD gas can be envisaged by
fermionic coherent states just as harmonic oscillator coherent
states describe BEC in an ideal Bose gas. It has been shown
that, in contrast to BEC, which is defined as a displaced vacuum
state, the above condensate should correspond to a unitary
displaced state where the displacement operator displaces
the state of infinitely dense filled-up modes. Notwithstanding
their mathematical differences, the present formulation in
combination with thermodynamic consideration allows us to
characterize the “condensate” in terms of the fermionic order
parameter and interpret fermionic field variables in “classical”
terms. Most remarkably, we have pointed out, similarly to
bosonic fields, the coherent and the rotated coherent state
can be distinguished as macroscopically distinct ground states
of the FD gas. This enables us to capture the essence of
BKC in ideal Fermi gases as a close parallel to BEC as
condensation-like coherence within fermions.
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