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We consider the quantum harmonic oscillator in contact with a finite-temperature bath, modeled by the
Caldeira-Leggett master equation. Applying periodic kicks to the oscillator, we study the system in different
dynamical regimes between classical integrability and chaos, on the one hand, and ballistic or diffusive energy
absorption, on the other. We then investigate the influence of the heat bath on the oscillator in each case.
Phase-space techniques allow us to simulate the evolution of the system efficiently. In this way, we calculate
high-resolution Wigner functions at long times, where the system approaches a quasistationary cyclic evolution.
Thereby, we perform an accurate study of the thermodynamic properties of a nonintegrable, quantum chaotic
system in contact with a heat bath at finite temperature. In particular, we find that the heat transfer between
harmonic oscillator and heat bath is governed by Fourier’s law.
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I. INTRODUCTION

Recently, the “emergence of thermodynamic behavior
within composite quantum systems” [1] has become a very
active research field. In this contribution, we study the
thermodynamic properties of a quantum system coupled to
a finite-temperature bath and how they are affected by the
presence of “quantum chaos” [2,3] and different regimes of
energy absorption.

Open quantum chaotic systems were studied initially in the
form of the dissipative quantum kicked rotor [4–6], where
the authors proposed and discussed different models for
the coupling to environmental degrees of freedom. In these
early works, the emphasis was on accurate description of the
coupling to the environment and the observation of the de-
struction of dynamical localization due to decoherence. Later
on, quantum chaos was investigated also on the side of the
environment. There, the question was whether quantum chaos
would imply special noticeable effects on the central system.
This was studied, for instance, by comparing the effects of
a particular quantum chaotic environment to the ubiquitous
collection of harmonic oscillators [7–10]. Similarly, in the
spirit of the quantum chaos conjecture [11–14], Lutz and
Weidenmüller studied an environment modeled by random
matrix theory [15].

Eventually, random matrix environments were used to
describe decoherence [16–18] and quantum information pro-
cesses [19–22] in open quantum systems. We also mention
Ref. [23], which is actually one of the first papers on a
random matrix approach to open quantum systems, which
deals with the description of highly excited vibrational states
in molecules.

However, such studies do not explain how a quantum
chaotic environment can appear in an experimental setup.
Of course, one may simply assume that system and quantum
chaotic environment are perfectly isolated from anything else,
but this is a rather unrealistic assumption. In practice, it is
inevitable that the quantum chaotic environment will be in

contact with other degrees of freedom not considered so far, the
“far environment.” Here, we assume the far environment acts as
a finite-temperature reservoir. This allows us to study not only
the equilibrium states of the quantum chaotic environment
but also the relaxation processes towards those states. We
believe that the nonequilibrium dynamics and the freedom
to choose very strong or very weak couplings (in those cases,
the canonical ensemble picture is not expected to work) open
up new and interesting lines of research, where quantum chaos
may lead to new effects.

In this work, we focus on energy flow between the system
and environment and the adverse effects of decoherence on
the ballistic energy absorption at quantum resonances. Thus,
instead of studying a quantum chaotic system as it is coupled
to an environment, which was the point of view in the early
works, we study a system in thermodynamic equilibrium, as
its dynamics become quantum chaotic. On this basis, we study
to what extent Fourier’s law describes the energy transfer from
the chaotic system to the environment, acting as a heat bath at
finite temperature.

One of the simplest examples of an open quantum system
with well-defined canonical thermodynamic properties is the
harmonic oscillator coupled to an environment which by itself
consists of a continuous collection of oscillators [24,25],
which can be described by the Caldeira-Leggett master
equation [24,26]. Even though this equation is neither exact nor
of Lindblad form, it is an excellent approximation as long as the
temperature is not too low. In this model, the central harmonic
oscillator evolves asymptotically into the canonical mixture of
eigenstates with the corresponding Boltzmann weight factors.
We then introduce quantum chaotic dynamics into the system
by applying periodic kicks to the central harmonic oscillator.
Without the environment, this system, the quantum kicked
harmonic oscillator (KHO), has been studied in considerable
detail, classically in Ref. [27] (for an introduction see [28,29]
and references therein) and quantum mechanically [30–33].
The combination of a quite simple master equation and
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periodic kicks which do not interfere with the dissipative
dynamics allows numerical simulations to be done very
efficiently without further approximations. The quantum KHO
with dissipation was studied previously in Refs. [31,34]. It
may be realized experimentally following [35]. In [31], the
authors considered the two limiting cases of zero and infinite
temperature. Also, they concentrated on the initial stage of
the evolution, investigating the “breaking time” where the
quantum evolution starts to deviate notably from the classical
one. In Ref. [34] the author considers the same system at a
quantum resonance and derives analytical expressions for the
energy absorption with and without coupling to the heat bath.

The advantage of introducing quantum chaos with the help
of a time-dependent potential and not via an additional degree
of freedom lies in the reduced numerical requirements. The
disadvantage lies in the fact that energy is no longer conserved.
Thus, we cannot apply standard thermodynamical concepts
such as the canonical ensemble when kicking is present.
However, note that the thermodynamics of time-periodic
systems has been treated in [36,37].

For the simulations we use the Fourier transform of the
Wigner function of the system, which was called the “chord
function” in Refs. [38,39]. We solve analytically for the
chord function of the harmonic oscillator in contact with
the heat bath and then apply a kick to the oscillator. By
using interpolation techniques we are able to repeat this joint
mapping of dissipative dynamics and unitary kicks, describing
the full evolution of the system. We focus on the effects of the
coupling to the thermal bath in different parameter regimes,
such as on and off quantum resonances [32], as well as in
transition regions, where the classical counterpart changes
from integrable to chaotic [40].

The paper is organized as follows: In Sec. II we describe
the model and the method applied to obtain our numerical
simulations. Then, in Sec. III we present our simulations in
two parts, the first concentrating on the equilibrium properties
at relatively strong coupling to the heat bath and the second
showing the reappearance of the dynamical properties of the
closed system, when the coupling to the heat bath is reduced.
Finally, in Sec. IV we present our conclusions.

II. THE MODEL

In this section, we introduce the quantum master equation,
which describes the system of interest (Secs. II A and II B) and
then describe our method to perform the numerical simulations
(Secs. II C and II D).

A. Quantum master equation

Choosing a linear and separable coupling between the
system and environment and restricting oneself to high
temperatures, it is possible to derive the following quantum
master equation:

ih̄
d�

dt
= [HHO,�] + γ [X̂,{P̂ ,�}] − i

2γ mkBT

h̄
[X̂,[X̂,�]],

HHO = P̂ 2

2m
+ mω2

o

2
X̂2. (1)

This equation was originally derived by Caldeira and
Leggett [24] under the assumption that the environment
consisted of a continuous collection of harmonic oscillators.
Here, the central harmonic oscillator has mass m and angular
frequency ωo. The damping constant γ characterizes its
relaxation rate, which is related to the Ohmic spectral density
of the collection of harmonic oscillators in the environment.
Finally, T is the equilibrium temperature of these oscillators,
and kB is the Boltzmann constant.

In order to add the periodic kicks to the system, we replace
HHO by

HKHO = HHO + K cos(μX̂)
∑
n∈Z

δ(t − n TK), (2)

where μ is the wave number of the kick potential. The kick
strength and the time period between two kicks are denoted by
K and TK, respectively.

When the kick strength dominates over the coupling to the
heat bath, the system essentially behaves as the ordinary KHO
where the evolution is unitary [32,33]. This model has a wide
range of dynamical features. To study the different regimes, it
is simplest to start with the relation between the fundamental
period of the harmonic oscillator 2π/ωo and the kick period
TK. Their ratio,

q = 2π

ωo TK
, (3)

may be rational or irrational, where the former generally leads
to the formation of a unbounded “stochastic web” extending
over the whole phase space. In the special cases q = 1,2,3,4,6
the stochastic web has a crystal symmetry; otherwise, it forms
a quasicrystal structure. Apart from q, the system has two
additional independent parameters, the kick wave number μ

and the kick strength K . These two parameters define the
overall scale for the dynamics in phase space and the degree
of chaos. This will be worked out in more detail in Sec. II B.
The degree of chaos is understood to mean the relative size
of the areas occupied by the stochastic web vs the islands
of integrable motion. While the overall scale does not make
a difference for the classical dynamics, that is not so in the
quantum case. There, the size of the primitive crystal cell
may be compared to h̄, such that a different size may lead
to different dynamical behavior, such as the occurrence of
“quantum resonances”, mentioned in the introduction. Finally,
as first discovered in the kicked rotor, one may also observe
dynamical localization [41].

In the opposite case, when the coupling dominates over
the periodic kicks (K ≈ 0), the system becomes the quan-
tum harmonic oscillator coupled to a heat bath in the
high-temperature regime [25,26]. In this case, the system
tends towards a thermal equilibrium state, following closely
the dynamics of the classical damped harmonic oscillator
(see Appendix B).

B. Dimensionless model

Choosing suitable units for position [X̂ = √
h̄/(mωo) x̂]

and momentum (P̂ = √
h̄mωo p̂), the master equation (1) is
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rewritten as

i
d�

dτ
= [Hκ,�] + β

2
[x̂,{p̂,�}] − iβ D[x̂,[x̂,�]], (4)

where energy is measured in units of h̄ωo such that h̄ωo Hκ =
HKHO (h̄ωo H0 = HHO) and

Hκ = p̂2 + x̂2

2
+ κ cos(

√
2 η x̂)√

2 η2

∑
n∈Z

δ

(
τ − 2π

n

q

)
, (5)

where q is the number of kicks per oscillator period, as defined
in Eq. (3). Here, we have also introduced the dimensionless
time τ = ωot to describe the evolution of the system. The rela-
tive thermal energy is replaced by the dimensionless diffusion
constant D = kB T/(h̄ ωo) from the quantum Brownian motion
model, while β = 2γ /ωo is the dimensionless energy decay
rate. In what follows, we consider D to be a dimensionless
temperature of the heat bath, described by the above master
equation. Finally, the so-called Lamb-Dicke parameter [42]
η = μ/

√
2mωo/h̄ fixes the overall scale of the classical

or quantum dynamics in phase space, while the effective
kick strength κ = Kμ2/(

√
2 mωo) determines the degree

of chaoticity in the classical system. In Eq. (5), the parameter η

appears as an effective wave number in the cosine function of
the kick potential. Thus, the larger η is, the smaller the scale of
the classical structures in phase space is. Since we have chosen
units such that quantum states occupy an average area of size
1, the role of h̄ is here taken by η2. Hence, the semiclassical
limit corresponds to the limit η2 → 0.

In this work, we restrict ourselves to an integer number
of q = 4 or 6 kicks per oscillator period. We then observe
quantum resonances when η2 is equal to an integer multiple
of π . This resonance condition leads to a quadratic energy
absorption; otherwise, the energy absorption is linear in time.
The phenomenon, which was first discovered in the quantum
kicked rotor [43], relies on the possibility to rewrite the Floquet
operator for the evolution over q ν kicks under a kick strength κ

as an evolution over only q kicks with an effective kick strength
of κ ν. In the KHO, the reason for that can be traced back to the
commutation of certain displacement operators which describe
a two-dimensional crystal lattice in phase space (for details,
see Ref. [32]).

C. Dynamics

In general, the dynamics of the system is given in terms of
two alternating autonomous quantum maps, �β and �′. The
first describes the dissipative dynamics under the Caldeira-
Leggett master equation,

i
d�

dτ
= [H0,�] + β

2
[x̂,{p̂,�}] − iβ D [x̂,[x̂,�]], (6)

for the time 2π/q between two consecutive kicks. For β > 0,
this map turns pure states into mixed states, which makes
it necessary to describe the whole dynamics in the space of
mixed states. The second map is a unitary transformation,
which amounts to an instantaneous change in the momentum
wave function of the system. Thus,

�β : �(0) → �(2π/q), �′: � → �′ = Uκ � U †
κ , (7)

where �(τ ) is a solution of the Caldeira-Leggett master
equation and

Uκ = exp

[ −iκ√
2η2

cos(
√

2ηx̂)

]
. (8)

For definiteness, let us agree to start always with the evolution
�β . Then, we obtain for the solution of Eq. (4) with the initial
state �0:

�+
n = �(τ+

n ) = (�′ ◦ �β)n �0, (9)

where the symbol ◦ means the composition of the two maps
(the left one to be applied after the right one), while the nth
power means the composition of n times the same map. This
yields the state of the system right after the nth kick, i.e., at an
infinitesimal time lapse after the time τn = 2π n/q.

The Caldeira-Leggett master equation can be solved an-
alytically in terms of the Fourier transform of the Wigner
function [25,44,45]

w(k,s; τ ) =
∫ ∞

−∞

∫ ∞

−∞
dp dz eizk+isp W (z,p; τ )

=
∫ ∞

−∞
dz eizk 〈z + s/2| �(τ ) |z − s/2〉, (10)

which has also been dubbed the “chord function” [38,39]. This
function is normalized such that w(0,0; τ ) = 1 for all τ � 0.
In the second integral appears the mixed state �(τ ) in the
position representation 〈x| �(τ ) |x ′〉 in Dirac notation. In the
chord function representation, the Caldeira-Leggett equation
becomes a first-order partial differential equation in the three
variables k,s, and τ ,

∂τw + (βs − k) ∂sw + s ∂kw = −Dβs2w, (11)

which can be solved by the method of characteristics. The
calculation, described in Appendix A, yields the following
result:

w(�r,τ + σ ) = w(M(−σ )�r,τ )e−Dβ[ �rT A(σ ) �r ], (12)

where a state at time τ with chord representation w(�r,τ ) =
w(k,s; τ ) is mapped onto its image at time τ + σ , with chord
representation w(�r,τ + σ ). The matrices M(−σ ) = M(σ )−1

and A(σ ) are given in Appendix A. There, one may convince
oneself that M(σ ), if transformed into ordinary phase space,
describes the classical evolution of the damped harmonic
oscillator with damping rate β/2. We may thus write for the
action of �β in this representation

�β : w(�r,τ ) → w(�r,τ + 2π/q). (13)

In order to complete the evolution of the system, we also
need to describe the unitary map �′ in the chord representation.
A straightforward calculation, which first switches from the
chord function to the position representation, then applies the
kick according to Eqs. (7) and (8), and finally switches back
to the chord-function representation, yields

�′: w(�r,τ ) → w′(�r,τ ) =
∞∑

l=−∞
Al(s) w(�rl,τ ), (14)
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where �rl = (k − √
2η l,s) and

Al(s) = (−1)l Jl

[√
2 κ

η2
sin(ηs/

√
2)

]
. (15)

In this expression, Jl(z) is the Bessel function of the first
kind [46]. Thus, the effect of the kick consists of generating
a superposition of an infinite copies of the original chord
function, each with a specific amplitude and displacement
along the variable k.

D. Numerical implementation

The numerical implementation of the evolution of the
system relies on the ability to accurately represent the true
chord function of the evolving mixed quantum state and to
accurately implement the two quantum maps �β and �′. Our
numerical approach consists of storing the chord function as a
two-dimensional array of function values on an equally spaced
grid in (k,s) space. Then, the application of �β requires us
to update the function values on each grid point according
to Eq. (12). This step requires knowledge of the function
values of the original state at points (k,s) in between the grid
points. We estimate these values with the help of the bilinear
interpolation method [47]. By contrast, the application of �′
via Eq. (14) is easier. Since the s variable does not change, we
need to perform only a one-dimensional interpolation on the
displaced k variable. For simplicity (consistency) we choose a
linear interpolation scheme in this case also.

With the chord function at hand, we use separable routines
to calculate probability densities in position and momentum
space, as well as expectation values of the first and second
moments of position and momentum. Finally, we use the two-
dimensional fast Fourier transform [47] to obtain the Wigner
function representation. The simulations presented in this work
are performed on a current workstation, using grids with up to
8000 × 8000 grid points.

III. SIMULATIONS

In this section we study the effect of the coupling to a
heat bath on the quantum KHO [32]. This system has been
thoroughly studied as a closed system, as it has an extremely
rich range of interesting dynamical features [30–33]. However,
much less is known about the open system with coupling to a
heat bath; here, Refs. [31,34] are the only publications we are
aware of.

The present work focuses on the equilibrium properties
of the system and the validity of thermodynamic concepts
in this regime. In Sec. III A, we thus start with the case of
relatively strong coupling to the heat bath, where we expect
that specific dynamical properties of the KHO to play only a
minor role and where the equilibrium states are close to the
thermodynamic equilibrium states of the harmonic oscillator
without kicks. In Sec. III B, we reduce the coupling to the
heat bath and observe the reappearance of different dynamical
effects related to quantum chaos and quantum resonances.

A. Thermodynamical properties at strong coupling

In the quantum KHO any initial state normally tends to
spread over the whole phase space, leading to ever higher
energy expectation values 〈HHO〉. By contrast, when the system
is coupled to a heat bath, one expects that 〈HHO〉 eventually
saturates at a finite value. Accordingly, the evolution of the
quantum states becomes periodic at large times, such that
with each kick, the Wigner function expands in phase space
(accompanied by an increase in energy) and relaxes again
towards the equilibrium state of the Caldeira-Leggett model
[see Eq. (B5) in Appendix B]. While this behavior is expected
to happen for any finite coupling, it is difficult to observe when
the coupling is small. This is because the regime of cyclic
behavior is reached only at large times and large energies. In
this section, we choose a rather large coupling β = 0.1, such
that the cyclic regime is reached relatively quickly and hence
easier to observe.

In Fig. 1 we present Wigner functions of evolving quantum
states, starting out at τ = 0 from the coherent state in the
center of the phase space. We show the Wigner functions just
after the 35th kick (first column), right before the 36th kick
(second column) and right after the 36th kick (third column).
At these times, the system is already very close to its limit cycle
behavior in all the cases considered, as can be seen from Fig. 2.
The first row shows the resonant case, with κ = −0.8 and
η2 = π , such that the kick amplitude is κ/(

√
2 η2) ≈ 0.18. The

second row shows the nonresonant case, with κ = −0.8 and
η2 = 0.7 π , where κ/(

√
2 η2) ≈ 0.25. The third row shows the

chaotic case, with κ = −4.5 and η2 = 1, where κ/(
√

2 η2) ≈
3.18. Remember, while κ determines the degree of classical
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FIG. 1. Wigner function for the quantum KHO for q = 4, coupled
to a heat bath (with β = 0.1 and D = 5), with an initial coherent state
positioned at z = 0,p = 0. Different rows correspond to different
choices of κ and η. Resonant case (κ = −0.8,η2 = π ) (a) after the
35th kick, (b) before the 36th kick, and (c) after the 36th kick. (d)–(f)
Nonresonant case (κ = −0.8,η2 = 0.7 π ) at the same instances in
time. (g)–(i) Chaotic case (κ = −4.5,η2 = 1).
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FIG. 2. Energy of the dimensionless harmonic oscillator 〈H0〉 vs
the number of kicks for the same three cases shown in Fig. 1. The low-
est curve (red line) corresponds to the resonant case with κ = −0.8
and η2 = π ; the curve slightly above (green line) corresponds
to the nonresonant case with κ = −0.8 and η2 = 0.7π . The top
curve (blue line) corresponds to the chaotic case with κ = −4.5
and η2 = 0.7π .

chaos in the system, the size of classical structures in phase
space is proportional to η−1, while quantum states always
occupy an average area of size 1.

Comparing the Wigner functions shown in the first and
the second rows, we can hardly note any differences. This
confirms the dominant effect of the coupling to the heat bath.
Without coupling, i.e., for the closed KHO, we would expect
a much more extended Wigner function in the resonant case
(first row) than in the nonresonant case (second row). The
Wigner functions in the third row correspond to the chaotic
case. There, the Wigner functions are much more extended.
However, this is mainly due to the different kick amplitudes as
calculated in the previous paragraph (3.18 for the chaotic case
vs. 0.18 and 0.25 for the resonant and nonresonant cases). The
zigzag pattern, most clearly recognizable for the states right
after a kick, can be directly related to the kick potential, as
its periodicity in the z direction agrees with that of the kick
potential.

In Fig. 2, we show the evolution of the (dimensionless)
system energy 〈H0〉 as a function of the number of kicks for
the same three cases with q = 4 depicted in Fig. 1. As we
chose the same initial state (a coherent state at the origin), the
energy of the system starts out at 〈H0〉 = 1/2. The evolution
starts out at τ = 0 with a solution of the Caldeira-Leggett
master equation. Initially, the energy of the system is smaller
than the thermal energy D = 5 of the heat bath, and therefore,
the system absorbs energy from the heat bath. After about 30
kicks, the system energy becomes larger than D, and therefore,
the system releases energy to the heat bath. We observe that
the two curves for the resonant and nonresonant cases are very
close together, and they reach approximately the same final
average energy, close to D = 5. This means that the effect
of the kicks is weak compared to the heat bath. In the chaotic
case (topmost blue line), one can clearly observe the effect

of each individual kick and the subsequent relaxation. Here,
the effect of the kicks is strong compared to the heat bath.
Therefore, the average energy of the system increases to much
larger values, varying finally around the value 〈H0〉 ≈ 16.
Figure 2 shows that the limit-cycle behavior is almost
completely insensitive to the dynamical regimes of the isolated
KHO. The only quantity which really matters is the kick
amplitude κ/(

√
2 η2) from Eq. (5), which determines the

amount of energy transferred to the system at each kick.
Let us now turn our attention to the energy balance

in the quasistationary regime. Specifically, we consider the
energy of the harmonic oscillator, E(τ ) = 〈H0〉, as a function
of time τ . As far as time is concerned, we make use of
the notation introduced in Sec. II C, where we denoted the
time right after the nth kick by τ+

n = 2π n/q + δ with an
infinitesimal increment δ. Similarly, we denote τ−

n as the
time right before the nth kick. The quasistationary regime
may thus be characterized by the condition that the whole
energy E(τ+

n ) − E(τ−
n ) gained from one kick is subsequently

transferred to the heat bath during the time interval (τ+
n ,τ−

n+1).
In this process, the energy E(τ−

n ) = E(τ−
n+1) corresponds to

the system state closest to equilibrium; we thus consider that
energy the appropriate temperature scale.

D′ = lim
n→∞ E(τ−

n ). (16)

On the other hand, taking the corresponding expectation
values on both sides of the Caldeira-Leggett master equation,
one can easily derive the following differential equation for
expectation values:

d

dτ
〈H0〉 = −β (〈p̂2〉 − D). (17)

We approximate this formula at an instance right before the
next kick. At this point, the system had time to equilibrate
so that one may assume the equipartition theorem holds. In
addition, we replace the derivative with a finite-time-difference
quotient as follows:

d

dτ
E(τ )

∣∣∣∣
τ=τ−

n

≈ E(τ+
n−1) − E(τ−

n )

2π/q
≈ −β[E(τ−

n ) − D].

(18)

In order to be valid, the time 2π/q between two kicks must be
sufficiently short, such that the difference quotient is a reason-
ably good approximation of the derivative, and it must also be
sufficiently long in order to allow the system to approach the
equipartition condition, where 〈H0〉 ≈ 〈p̂2〉 ≈ 〈x̂2〉.

At sufficiently long times, a quasistationary situation will be
established, where the amount of energy added to the system
due to the kicks is lost during the relaxation. We interpret
the energy lost during relaxation as heat transferred to the
environment at the dimensionless temperature D. Provided
we identify D′ from Eq. (18) as an effective temperature of the
oscillator in the presence of kicks, the above equation becomes
an instance of Fourier’s law for the heat transport between
the system and its environment at the different temperatures
D′ > D:

D′ − D = β
dQ

dτ
. (19)
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FIG. 3. Difference between the temperature of the system, mea-
sured by D′ from Eq. (16), and the temperature of the heat bath vs
the heat current dQ/dτ from Eq. (19) for q = 4 and different KHO
parameters κ and η2, as well as coupling strengths β (see the legend).
For each of the four cases, η2/π varies from 0.2 to 1 in integer steps.
Larger values of η2 mean smaller kick amplitudes, and hence the
corresponding points are closer to the origin. The black dashed lines
show the theoretical expectation according to Fourier’s law, Eq. (19).

In Fig. 3, we study the amount of heat transferred to the
reservoir as a function of the temperature (energy) difference
D′ − D, which may be interpreted as a temperature difference
between the heat bath and the oscillator. This assumes that
it is possible to assign a temperature to the oscillator in this
quasiequilibrium situation. One then expects that Fourier’s
law (of thermal conduction) will hold, which predicts a linear
relation between both quantities. Indeed, Fig. 3 confirms the
validity of Fourier’s law.

B. Weak coupling and reappearance of quantum chaotic
and resonance properties

In Sec. III A, we studied the case of strong coupling to the
heat bath, where different dynamical properties of the quantum
KHO almost do not play any role. It is then natural to ask at
which scales and how the different dynamical features reappear
when the coupling to the heat bath is reduced. This is the
purpose of the present section.

For the KHO, we have essentially three different parameters
which can be changed: (i) the kick period τn+1 − τn = 2π/q,
which may or may not be commensurable with the period 2π

of the harmonic oscillator, (ii) the scale-invariant kick strength
κ , which determines the degree of chaos in the corresponding
classical system, and (iii) the scale (size) of the system in phase
space, which is proportional to η−1. As mentioned earlier,
taking η → 0 implements the semiclassical limit. However, η

also controls the quantum resonances, where the system energy
may increase quadratically in time, whereas, otherwise, the
increase is only linear. For small coupling β, the study of the
system is limited to a relatively narrow range of parameters
or to short times. This is because our numerical scheme starts
to fail if the Wigner functions become too extended in phase
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FIG. 4. Wigner functions right after the 36th kick for different
coupling strengths: β = 0.001 (first column), β = 0.01 (second
column), and β = 0.1 (third column) for the resonant case (first row)
with q = 4, κ = −0.8, and η2 = π ; the nonresonant case (second
row) with q = 4, κ = −0.8, and η2 = (1 + √

5) π/2; and the chaotic
case (third row) with κ = −4.5, η2 = 1 but a kick period with q = 6.

space. In those cases, it is increasingly difficult to reach the
quasistationary regime.

In Fig. 4 we show Wigner functions after the 36th kick.
Like in Fig. 1, we consider the resonant, nonresonant, and
chaotic cases, each case in a different row. We vary the coupling
strength from β = 0.001 (first column) to β = 0.01 (second
column) and β = 0.1 (third column). The case shown in the
first row agrees with the resonant case in Fig. 1. The case in
the second row differs in the value of η2, while the chaotic
chase in the third row corresponds to a different kick period
with q = 6. In the third column, where β is sufficiently large
(β = 0.1), the quasistationary regime is almost reached, and
we can observe a behavior qualitatively similar to that in Fig. 1.
Note, however, the larger extension of the quasistationary state
in the chaotic case. For small values of β (first column), we find
regions where the Wigner function represents relatively pure
states with alternating regions of positive and negative values
(which can be better appreciated by enlarging the plots). This
is a signature of the state being nonclassical. For β = 0.001
and 0.01, we also observe that the extension of the Wigner
function is larger for the resonant case than for the nonresonant
case, as expected according to the quadratic over linear energy
absorption. That is no longer the case for β = 0.1, where the
quantum resonance condition seems to become meaningless,
as discussed already in Fig. 2. In the chaotic case, the extension
of the Wigner function is by far largest. As explained in Fig. 1,
this is a simple consequence of the large kick amplitude. In
the chaotic case, one would expect a linear increase in energy,
just as in the nonresonant case [33]. The hexagonal symmetry
observable for β = 0.001 is due to the choice of q = 6. It
disappears as β is increased, until at β = 0.1 the characteristic
zigzag shape appears, just as in Fig. 1.
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FIG. 5. Energy evolution in time in the resonant case, q = 6,

κ = −0.8,η2 = 2π/
√

3, for different coupling strengths from β =
10−5 to β = 0.1. The increase in energy shown by the different curves
is slower the larger β is.

In Fig. 5 the expectation value of the oscillator energy
is shown as a function of the number of kicks applied to
the system. The parameters for the KHO (q = 4,κ = −0.8,

η2 = π ) are chosen to be the same as for one of the two
resonant cases shown in Fig. 3(b) of Ref. [32], where the
quantum KHO is treated without dissipation. Indeed, our
result for β = 10−5 seems to agree very well with the result
shown there. We can clearly see the quadratic increase in
energy, which becomes only slightly diminished when β is
increased to β = 10−4. By contrast, for the largest coupling,
β = 0.1, the energy increases only in an initial phase and then
quickly approaches its limit (average) value of 〈H0〉 ≈ D = 5.
For intermediate couplings, β = 0.001 and β = 0.01, the
quasistationary regime sets in only after many more kicks
than could be shown here.

In Fig. 6 we plot the number of kicks required to reach the
energy of 〈H0〉 = 50. Again, this is done for q = 4, κ = −0.8.
This time η is varied in a small region around the quantum

FIG. 6. Plots of the number of kicks required to reach a mean
energy of 〈H0〉 = 50 for the resonant case (with κ = −0.8, q = 4)
and different coupling strength values β; the resonance is in
η2/π = 0.5.

resonance condition η2 = π/2. This corresponds to the second
case of a quantum resonance considered in Ref. [32]. We plot
the number of kicks required to reach the above-mentioned
energy limit as a function of η2 for different coupling strengths
from β = 10−6 to β = 0.01. For the smallest coupling
strength, we find the expected minimum, and we again confirm
good agreement with the corresponding result in Fig. 3(a)
from Ref. [32]. For increasing β, the minimum remains at its
place, approximately until β ≈ 0.004, and then disappears. At
the largest coupling, β = 0.01, the number of kicks required
to reach the energy limit becomes a monotonous function
of η2. It is noteworthy that increasing the coupling from
β = 10−6 to β = 10−5 already leads to notable differences
but only sufficiently far away from the quantum resonance.
It is also interesting that for fixed η2 ≈ 0.575 π , the number
of kicks required does not increase monotonously with β.
This phenomenon of a larger energy gain while increasing the
coupling to the heat bath might be related to the reduction of
dynamical localization due to decoherence [33,41].

IV. CONCLUSIONS

In this paper, we considered the quantum kicked harmonic
oscillator as an open quantum system coupled to a finite-
temperature heat bath. We studied its equilibrium properties at
relatively strong coupling and found that, there, the system ful-
fills fundamental thermodynamic properties such as Fourier’s
law for heat transport. When reducing the coupling to the heat
bath, the system’s equilibrium state (i.e., its Wigner function
representation) becomes ever more extended in phase space,
and the expectation value of the oscillator energy increases.
This makes it ever more difficult to perform simulations for a
long time (many kicks), and eventually, we are no longer able
to reach the equilibrium state. Thus, for small coupling, we
restrict ourselves to studying the effect of quantum resonances
and how it becomes suppressed and eventually eliminated due
to the increasing coupling to the heat bath.

The numerical method is limited essentially by the require-
ment of an accurate representation of the chord function. At
the present stage, we use a simple uniform two-dimensional
grid together with a bilinear interpolation [47]. However, we
are confident that this scheme can be improved in order to
reach higher energies and larger times.

As shown in Ref. [35], the model is realizable experimen-
tally in a quantum optical setup. Alternatively, one might think
of ions in a harmonic trap. The coupling of the ion movement
to its internal electronic states opens a way to consider the
KHO with heat bath as a composite environment for a central
quantum system. The reduced dynamics in the internal ion
states may then serve as a probe for the thermodynamical
properties of the KHO.
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APPENDIX A: SOLUTION OF THE CALDEIRA-LEGGETT
MASTER EQUATION

Using dimensionless variables, the Caldeira-Leggett master
equation for the harmonic oscillator transformed into the
chord-function representation reads

∂τw + (βs − k)∂sw + s∂kw = −Dβs2w, (A1)

where w = w(�r,τ ) and �r = (k,s). This is a first-order partial
differential which can be solved with standard procedures. By
the method of characteristics, it is turned into a system of
ordinary differential equations

ds

dτ
= βs − k,

dk

dτ
= s,

dw

dτ
= −Dβs2w, (A2)

where the first two equations describe the characteristic curves
in the (k,s) plane, along which the value of the chord
function w changes with time according to the last. For the
characteristics, we obtain the solution

k(τ ) = eβτ/2 (a1 sin ωτ + a2 cos ωτ ),

s(τ ) = d

dτ
k(τ ), (A3)

with ω =
√

1 − β2/4 (valid for β < 2). The determination
of the constants a1 and a2 is such that k(0) = k0 and
s(0) = s0. Thereby, we construct the map M(τ ), which de-
scribes the motion of any point (k0,s0) along the characteristics.
Because the system in Eq. (A2) is autonomous, we find
�rτ+σ = M(σ ) �rτ , with

M(σ ) = eβσ/2

(
cos ωσ − β

2ω
sin ωσ 1

ω
sin ωσ

−1
ω

sin ωσ cos ωσ + β

2ω
sin ωσ

)
.

(A4)

The map is invertible, and M(σ )−1 = M(−σ ). Furthermore,
due to the prefactor eβσ/2, the characteristics connect any point
in the (k,s) plane with the origin as time goes to infinity.

Integration of the third equation in Eq. (A2) yields∫ w(τ+σ )

w(τ )

dw

w
= −Dβ

∫ τ+σ

τ

dτ ′ s2(τ ′), (A5)

where w(τ ) = w(�r(τ ),τ ). For the integrand on the right-hand
side, we find

s(τ ′) = M21(τ ′ − τ ) k(τ ) + M22(τ ′ − τ ) s(τ ),

such that∫ τ+σ

τ

dτ ′[M21(τ ′ − τ ) k(τ ) + M22(τ ′ − τ ) s(τ )]2

=
∫ σ

0
dσ ′[M21(−σ ′) k(τ + σ ) + M22(−σ ′) s(τ + σ )]2,

(A6)

where we related the evolution along the characteristic to its
end point. With this, we can write down an explicit expression
for the evolution of the chord function from some initial time

τ to an arbitrary final time τ + σ :

w(�r,τ + σ ) = w(M(−σ )�r,τ ) exp[−Dβ�rT A(σ )�r], (A7)

where the matrix elements of A(σ ) are given by

A11(σ ) =
∫ σ

0
dσ ′ M2

21(−τ ′),

A12(σ ) =
∫ σ

0
dσ ′ M21(−τ ′)M22(−τ ′) = A21(σ ),

A22(σ ) =
∫ σ

0
dσ ′ M2

22(−τ ′). (A8)

APPENDIX B: STATIONARY STATE

Without kicks, the system relaxes to the equilibrium state
of the Caldeira-Leggett model. This state is easily obtained
from the general evolution equation (A7) in the chord-function
representation. Taking the limit σ → ∞, one finds for an
arbitrary initial chord function at τ = 0

lim
σ→∞ w(M(−σ )�r,0) = w(�o,0

) = 1 (B1)

due to the normalization of the Wigner function [see text below
Eq. (10)]. At the same time, we obtain for the matrix A(σ )

lim
σ→∞ A(σ ) = 1

2β

(
1 0
0 1

)
. (B2)

This yields

wths(�r) = lim
σ→∞ w(�r,σ ) = e−D (k2+s2)/2. (B3)

Transformation of wths(�r) into the dimensionless position
representation yields the following density matrix:

�ths(x,x ′) = 1√
2πD

e− 1
8D

(x+x ′)2− D
2 (x−x ′)2

. (B4)

The Wigner function of the system at the thermal state has the
following form:

Wths(z,p) = 1

2πD
exp

(
−z2 + p2

2D

)
, (B5)

which is a two-dimensional Gaussian function centered at
the origin with variance D in position and momentum.
From this it follows for the expectation value of the energy
〈H0〉 = (〈z2〉 + 〈p2〉)/2 = D, the internal energy of the har-
monic oscillator in thermal equilibrium. It corresponds to the
temperature T = (h̄wo/kB) D, in agreement with the definition
of D below Eq. (5). Note that Eq. (B5) converges to the
canonical equilibrium state of the harmonic oscillator only
in the high-temperature regime [25,26].
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