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The Hamilton operator of an open quantum system is non-Hermitian. Its eigenvalues are generally complex
and provide not only the energies but also the lifetimes of the states of the system. The states may couple
via the common environment of scattering wave functions into which the system is embedded. This causes
an external mixing (EM) of the states. Mathematically, EM is related to the existence of singular (the so-
called exceptional) points. The eigenfunctions of a non-Hermitian operator are biorthogonal, in contrast to the
orthogonal eigenfunctions of a Hermitian operator. A quantitative measure for the ratio between biorthogonality
and orthogonality is the phase rigidity of the wave functions. At and near an exceptional point (EP), the phase
rigidity takes its minimum value. The lifetimes of two nearby eigenstates of a quantum system bifurcate under
the influence of an EP. At the parameter value of maximum width bifurcation, the phase rigidity approaches the
value one, meaning that the two eigenfunctions become orthogonal. However, the eigenfunctions are externally
mixed at this parameter value. The S matrix and therewith the cross section do contain, in the one-channel case,
almost no information on the EM of the states. The situation is completely different in the case with two (or more)
channels where the resonance structure is strongly influenced by the EM of the states and interesting features of
non-Hermitian quantum physics are revealed. We provide numerical results for two and three nearby eigenstates
of a non-Hermitian Hamilton operator that are embedded in one common continuum and are influenced by two
adjoining EPs. The results are discussed. They are of interest for an experimental test of the non-Hermitian
quantum physics as well as for applications.
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I. INTRODUCTION

In experiments [1–3] on Aharonov-Bohm rings containing
a quantum dot in one arm, both the phase and magnitude
of the transmission amplitude T = |T |eiβ of the dot could
be extracted. The results obtained did not fit into the general
understanding of the transmission process. As a function of the
plunger gate voltage Vg , a series of well-separated transmission
peaks of rather similar width and height has been observed
and, according to expectations, the transmission phases β(Vg)
increase continuously by π across every resonance. In contrast
to expectations, however, β always jumps sharply downward
by π in each valley between any two successive peaks.
These jumps, called phase lapses in multilevel systems,
were observed in a large succession of valleys for every
many-electron dot studied. They have been discussed in many
theoretical papers, including Ref. [4].

In spite of much effort, the experimental results could
not be explained in Hermitian quantum physics. Using the
non-Hermitian formalism of the quantum physics, it was how-
ever possible to explain [5] convincingly the experimentally
observed phase lapses (see also the discussion of this problem
in Sec. 4.3.2 of the recent review in [6]). This example shows
the meaning that non-Hermitian quantum physics can have
for the description of a concrete physical system that is open,
in contrast to a closed (or almost closed) system that is well
described in the framework of Hermitian quantum physics.

Another example that shows the meaning of a non-
Hermitian Hamilton operator for a concrete quantum system is
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the description of laser-induced continuum structures in atoms
[7,8]. In these papers the motion of the complex eigenvalues
of the non-Hermitian Hamiltonian is traced as a function of
the field strength for different field frequencies and atomic
parameters. Level repulsion in the complex plane is shown
to occur at a critical field intensity. With further increasing
intensity, the complex energies move differently. This effect is
called resonance trapping according to similar results obtained
earlier in nuclear physics [9].

Recently, non-Hermitian Hamilton operators have been
used for the description or prediction of different phenomena
in quantum physics also in other papers. We mention here only
a few of many examples [10–13].

A non-Hermitian Hamilton operator describing an open
quantum system may play an important role also in explaining
well-known puzzles of quantum physics. The natural environ-
ment of a localized quantum mechanical system is the extended
continuum of scattering wave functions in which the system
is embedded. This environment can be changed by means of
external forces, however it can never be deleted. It exists at all
times and is completely independent of any observer. For this
reason, radioactive dating can be used in geologic studies.

According to this statement, the properties of an open
quantum system can be described by means of two projection
operators, each of which is related to one of the two parts of
the function space. The localized part of the quantum system is
basic for spectroscopic studies. Mathematically, the localized
part of the open quantum system is a subsystem that is related to
another subsystem. The Hamiltonian of the (localized) system
is therefore non-Hermitian, while the Hamiltonian of the total
system consisting of the two subsystems is Hermitian [14].

In the standard Hermitian description of a localized
quantum system, the system is considered to be closed, the
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Hamiltonian is Hermitian, and the eigenstates are discrete. The
eigenstates’ decay is described by tunneling of particles into
the function space of scattering states into which the system
is embedded. The tunneling time can be calculated. It is small
and could be measured experimentally only recently [15]. The
experimental results have shown that the tunneling time is
extremely short, which does not correspond to the expectations
of standard Hermitian quantum physics. They agree, however,
with the conclusions obtained when the system is considered
to be an open system described by a non-Hermitian Hamilton
operator. In this case, the eigenvalues Ei of the system are
complex and the lifetime of the states is given by Im(Ei).
There is no need to consider any tunneling time.

In a similar manner, the problem of the Schrödinger cat
does not exist when the system is considered to be an open
quantum system. The consequence for this is the necessity to
describe the system by a non-Hermitian Hamilton operator
and to solve the involved mathematical problems.

Usually, the calculations with a non-Hermitian Hamiltonian
give results for observable values of the quantum system
that differ only a little from those obtained with a Hermi-
tian Hamiltonian, especially in relation to the uncertainties
involved in the comparison with experimental data. There are
however exceptions to this rule. These exceptions arise from
the mathematical existence of singular points. One example
is the so-called exceptional points (EPs), which have been
known in mathematics for many years [16]. Consider a family
of operators of the form

T (κ) = T (0) + κT ′, (1)

where κ is a scalar parameter, T (0) is an unperturbed operator,
and κT ′ is a perturbation. Kato [16] has shown that the number
of eigenvalues of T (κ) is independent of κ , as expected,
however with the exception of some special values of κ . The
corresponding points in the parameter space are called EPs.
Here, (at least) two eigenvalues coalesce. An example is

T (κ) =
(

1 κ

κ −1

)
, (2)

in which the two values κ = +i and κ = −i result in the same
eigenvalue 0.

Now the following questions arise: What is the behavior
of the eigenfunctions of the non-Hermitian Hamilton operator
under the influence of an EP? Can EPs be observed directly in
experimental results? These questions have been answered
only partly in the literature, although their influence on
the dynamics of open quantum systems is well known (for
references see the review in [17]).

The meaning of EPs has been studied in the literature over
the past 20 years, in classical as well as in quantum physics.
We will not discuss here the problems of classical physics.
Instead we refer to Ref. [18] and to the collection of articles on
spectral analysis, stability, and bifurcation in modern nonlinear
physical systems [19]. Related problems have been studied
also in molecular physics (see the recent paper in [20] where
references to previous papers can be found). Unfortunately, in
quantum physics the problems are studied in a confusing and
often contradictory manner. We will not enumerate here the
references to the different papers. They will rather be cited

in those sections of the present paper in which they can be
discussed consistently [21].

The non-Hermiticity of the Hamiltonian is introduced
mostly by adding a non-Hermitian part to the Hermitian
Hamiltonian that is known to describe the system quite well
(for references see the review in [17]). It appears therefore
more or less as a perturbation that is able to describe the
changes of the system properties under special conditions,
i.e., under the influence of an EP. Although this treatment
gives mostly reliable results, the question remains of what the
properties of a Hamiltonian are that is really non-Hermitian,
i.e., when the non-Hermiticity does not appear as some
perturbation.

The aim of the present paper is to find an answer to
this question in a mathematically exact manner, however by
keeping in mind that points in the continuum are of measure
zero and cannot be observed directly. It is important therefore
to point to observable signatures of the EPs [27] occurring
in physical values, by means of which their existence can
be proven. This is, e.g., an avoided level crossing and the
formation of different time scales in the two-level case. Similar
signatures exist in the three- and higher-level cases. Most
interesting is the so-called external mixing (EM) of the states
via the common continuum into which the system is embedded.
By definition, an EM of the states can occur only when the
system is open. It is therefore one of the characteristic values
of the non-Hermitian physics of open quantum systems [14].

Many years ago, EM was shown to play an important role in
the open quantum mechanical nuclear system (the continuum
shell model in contrast to the standard shell model) [9].
Today we know that it characterizes the main features of the
influence of EPs on the dynamics of an open quantum system
(see the recent review [6] on experimental and theoretical
results). Experimentally, an example of EM was provided a
few years ago in a mesoscopic system. It was shown in [28]
that two distinct quantum states are coupled through a common
continuum. In a further experiment, the authors were able
to show that EM survives even under conditions of strongly
nonequilibrium transport in the system [29].

The present paper is organized as follows. First we consider
the Hamiltonian that describes the properties of an open
quantum system. By definition, an open quantum system is
localized in space and embedded in the continuum of scattering
wave functions due to which the states of the system become
resonance states and generally have a finite lifetime. This
Hamiltonian is non-Hermitian. In Secs. II and III, respectively,
we consider the eigenvalues and eigenfunctions of a 2 × 2 and
of a 3 × 3 non-Hermitian Hamilton operator. The eigenstates
are coupled via one common continuum and show the typical
EM. The eigenfunctions of a non-Hermitian Hamilton operator
are biorthogonal and their phases are not rigid in approaching
an EP.

We show in Sec. IV that the EPs cause nonlinear effects
in an open quantum system. They can be traced best in the
resonance structure of the scattering cross section under the
condition that it is influenced by two adjoining EPs. The further
results given in Sec. V show that, in the one-channel case, the
resonance structure of the cross section is almost independent
of the EM. It is therefore impossible to reason, in this case,
the existence of EPs from a study of the resonance structure
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of the cross section. The situation is another one in the case
with two (or more) channels as discussed in Sec. VI. Here EPs
and EM cause interesting observable effects. (A channel is
nothing but an environment in which the system is embedded.
The different channels or environments are orthogonal to one
another.)

In Sec. VII we summarize and discuss the results obtained
in the present paper. We conclude the paper in Sec. VIII
with some general remarks on EPs and, above all, on the
eigenfunctions of a non-Hermitian Hamilton operator. By
doing this, we hope to stimulate experimental studies in order
to prove, on the one hand, the theoretical results and to use,
on the other hand, the rich possibilities they provide for
applications.

II. EIGENVALUES AND EIGENFUNCTIONS OF A 2 × 2
NON-HERMITIAN HAMILTONIAN

Let us consider the 2 × 2 non-Hermitian matrix

H(2) =
(

ε1 ≡ e1 + i
2γ1 ω

ω ε2 ≡ e2 + i
2γ2

)
. (3)

Here the εi are the complex eigenvalues of the basic non-
Hermitian operator [30]. The ω stand for the coupling matrix
elements of the two states via the common environment
[14]. Their mathematical expression is derived in Sec. 3 of
[17]. They are complex where Re(ω) is the principal value
integral and Im(ω) is the residuum [17]. The imaginary part
is responsible for coherent processes occurring in the system,
while the real part contains decoherences. The non-Hermitian
matrix

H(2)
0 =

(
ε1 ≡ e1 + i

2γ1 0
0 ε2 ≡ e2 + i

2γ2

)
(4)

describes the system without any mixing of its states via the
environment. In other words, ω = 0 corresponds to vanishing
EM of the eigenstates.

In this paper, our main interest is in the effects caused by
ω. Most visible are the changes in the widths of the states: The
original widths γi of the states turn into the widths �i of the
eigenstates of H(2) due to ω �= 0.

A. Eigenvalues of H(2)

The eigenvalues Ei ≡ Ei + 1
2�i of H(2) are generally

complex:

E1,2 ≡ E1,2 + i

2
�1,2 = ε1 + ε2

2
± Z, (5)

with

Z ≡ 1
2

√
(ε1 − ε2)2 + 4ω2 . (6)

Here Ei is the energy and �i the width of the eigenstate i.
The properties of the Ei trajectories as a function of a certain

parameter are well known. They contain level repulsion,
where two states repel each other in accordance with Re(Z);
width bifurcation, where the widths of two states bifurcate in
accordance with Im(Z); an avoided level crossing, where two
discrete (or narrow resonance) states avoid crossing [31,32]
because (ε1 − ε2)2 + 4ω2 > 0 and therefore always Z �= 0;

and the appearance of an EP, where two states cross when
Z = 0.

Altogether, the crossing scenario that is caused by an EP
in non-Hermitian quantum physics, with generally complex
eigenvalues Ei ≡ Ei + 1

2�i of the Hamiltonian, needs to be
considered in terms of a combined behavior of energy Ei

and width �i trajectories of the two states i = 1,2. A level
repulsion will generally appear in the Re(Ei) = Ei trajectories
together with a free crossing of the Im(Ei) ∝ �i trajectories,
while a bifurcation of the widths �i is accompanied generally
by a free crossing of the energy trajectories Ei . The last case is
illustrated in Figs. 1–3 of Ref. [33]. Sometimes, the crossing
phenomenon in non-Hermitian quantum physics is called an
avoided level crossing in the complex plane (see, e.g., [34]).
In the present paper we use the term avoided level crossing
or level repulsion according to the standard definition for
the Re(Ei) = Ei trajectories, while the term width bifurcation
is used for the corresponding phenomenon appearing in the
Im(Ei) ∝ �i trajectories. We underline once more that both
phenomena are combined in non-Hermitian quantum physics.

In [35], the case with equal widths γ1 = γ2 of the two states
and with imaginary coupling ω = i ω0 is solved analytically.
As a result, two EPs appear [see Eqs. (14)–(16) and Figs. 1(a)–
1(d) in [35]]. Between the two EPs, the widths bifurcate up to a
maximum value. In the present paper, we consider complex ωi

where only one EP can be seen clearly. Nevertheless, also the
second EP has some influence onto the dynamical properties
of the system (see the numerical results given in the present
paper).

When ω = 0, the energies εi vary smoothly as a function
of any parameter. According to (5) and (6), Z = ± 1

2 (ε1 − ε2)
and E1,2 → ε1,2 in this case. This means that no EP can be
related to the Hamiltonian H(2)

0 .

B. Eigenfunctions of H(2)

The following properties of the eigenfunctions 	i of a non-
Hermitian operator are less known.

Biorthogonality. The eigenfunctions and eigenvalues of
every Hamilton operator have to fulfill the two conditions

H|	i〉 = Ei |	i〉, 〈
i |H = Ei〈
i |. (7)

A Hermitian operator has real eigenvalues such that 〈
i | =
〈	i | in this case. The eigenvalues of a non-Hermitian operator
are generally complex such that the left and right eigenfunc-
tions differ from one another, 〈
i | �= 〈	i |. This is valid also
for the eigenvalues and eigenfunctions of the two symmetric
operators H(2) and H(2)

0 . In this case, the relation between the
left and right eigenfunctions is given by [33,36,37]

〈
i | = 〈	∗
i |. (8)

Normalization. In the case of a Hermitian operator, 〈	i |	j 〉
is real and the eigenfunctions are usually normalized to
〈	i |	j 〉 = 1. To smoothly describe the transition from a
closed system with discrete states to a weakly open one with
narrow resonance states (described by H(2)), it is meaningful
to use the normalization

〈	∗
i |	j 〉 = δij (9)
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for the eigenfunctions. The value 〈	∗
i |	j 〉 ≡ (	i |	j ) is how-

ever complex such that the phases of the two eigenfunctions
	1,2 relative to one another cannot be rigid. They are rather
parameter dependent since 〈	∗

i |	j 〉 has to be real, according
to (9), for every parameter value.

It follows from (9) that the values of the standard expres-
sions are changed [17],

〈	i |	i〉 = Re(〈	i |	i〉), Ai ≡ 〈	i |	i〉 � 1; (10)

〈	i |	j �=i〉 = iIm(〈	i |	j �=i〉) = −〈	j �=i |	i〉,∣∣Bj

i

∣∣ ≡ |〈	i |	j �=i | � 0.
(11)

Phase rigidity. The phase rigidity is a quantitative measure
for the biorthogonality of the eigenfunctions. It is defined
by [17]

rk ≡ 〈	∗
k |	k〉

〈	k|	k〉 = A−1
k (12)

by taking into account the normalization (9). In Hermitian
systems, the eigenfunctions are orthogonal and rk = 1. In
systems with well-separated resonance states, it follows that
rk ≈ 1; however it is never rk = 1 [17,36,37]. Hermitian
quantum physics is, in this case. a reasonable approximation
for the description of the open quantum system. In approaching
an exceptional point, it follows that rk → 0 [17].

The phase rigidity is experimentally studied on microwave
billiards [26]. The variation of rk in approaching the EP is
found indeed. The experimental result agrees with the relation
(20) discussed below [21].

Our calculations show an interesting unexpected property
for two nearby states with similar values of their widths γi

[35,38]: rk ≈ 1 at maximum width bifurcation. These results
will be discussed below in detail. An analogous result is found
for two nearby states with level repulsion that is caused by an
EP [35].

Mixing of the eigenfunctions via the environment (EM). The
Schrödinger equation for the basic wave functions 	0

i with the
Hamiltonian (4) is

(
H(2)

0 − εi

)∣∣	0
i

〉 = 0, (13)

while the Schrödinger equation with the full Hamiltonian (3)
reads

(H(2) − Ei)|	i〉 = 0. (14)

Equation (14) can be rewritten as a Schrödinger equation with
a source term,

(
H(2)

0 − Ei

)|	i〉 = −
(

0 ω

ω 0

)
|	i〉. (15)

Now we can use the standard representation of the 	i in
the {	0

n},

	i =
∑

bij	
0
j , bij = 〈

	0∗
j

∣∣	i

〉
, (16)

under the condition that the bij are normalized by
∑

j (bij )2=1,
i.e.,

∑
j

(bij )2 = Re

( ∑
j

(bij )2

)

=
∑

j

{[Re(bij )]2 − [Im(bij )]2} = 1. (17)

We are interested in the probability of EM, which is defined
by ∑

j

|bij |2 =
∑

j

{[Re(bij )]2 + [Im(bij )]2}. (18)

From (17) and (18) it follows that∑
j

|bij |2 � 1. (19)

In the neighborhood of an EP,
∑

j |bij |2 � 1; in approaching
an EP,

∑
j |bij |2 → ∞ [38].

When the maximum width bifurcation (or level repulsion)
is parametrically reached, the eigenfunctions 	i are almost
orthogonal, however the EM contained in the wave functions
of the eigenstates is strong [38].

Eigenfunctions of H(2) at an EP. According to analytical
and numerical results [8,22–24], we have

	cr
1 → ±i	cr

2 , 	cr
2 → ∓i	cr

1 , (20)

where 	cr
i are the eigenfunctions at an EP. The EP is however

a point in the continuum of scattering wave functions and is
therefore of measure zero. Hints to the existence of an EP can
be found in observable values. These are, above all, an avoided
level crossing and width bifurcation, both of which are caused
by an EP.

We mention here that the relations (20) are in agreement
with experimental results obtained on microwave billiards
[25]. These results [21] are confirmed independently from one
another by different authors (see, e.g., [8,22–24]).

The eigenfunction 	i of the non-Hermitian Hamilton
operator H is the main part of the wave function of the
resonance state i inside the localized part of the system. The
wave function of the resonance state including its tail is given
in Eq. (42) in [17].

C. Numerical results

We refer to the analytical results obtained and discussed in
[35] for the eigenvalues and eigenfunctions of N = 2 states.
In the analytical studies ω is assumed to be either real or
imaginary, which is of course seldom realized in realistic
systems. Nevertheless, the results of these studies provide
some insight into the basic features of the eigenvalues and
eigenfunctions of a non-Hermitian operator, above all near
an EP.

In Fig. 1 we show numerical results obtained for systems
under more realistic conditions in which ω is complex. The
energies ei are parameter dependent, while γi and ω are
parameter independent. The difference between the widths γi

of the two states as well as ω is chosen in such a manner that
an EP occurs. In both cases, the phase rigidity ri approaches
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FIG. 1. Plot of eigenvalues Ei ≡ Ei + 1
2 �i , phase rigidity ri and

1 − ri , and mixing |bij | of the eigenfunctions 	i of the Hamiltonian
H(2) as a function of a. The value ω is independent of a: (a)–(e) ω =
0.01(i + 1

10 ) and (f)–(j) ω = 0.5(i + 1
10 ). The parameters are (a)–

(e) e1 = 1 − a/2, e2 = a, γ1/2 = −0.495, and γ2/2 = −0.493 and
(f)–(j) e1 = 1 − a/2, e2 = a, γ1/2 = −0.495, and γ2/2 = −0.595.
The dotted lines show ei and γi/2 in (a,b,f,g).

zero at the EP and is near one at maximum width bifurcation.
The mixing |bij | of the two eigenfunctions increases without
limit in approaching the EP and is finite, |bij | < 1, in the
parameter region of the maximum width bifurcation. The sign
of a second EP can be seen in the eigenvalues as well as in the
eigenfunctions at a = 0.68 in Figs. 1(a)–1(e) and a = 0.0 in
Figs. 1(f)–1(j). Similar results are obtained when the energies

ei (as well as the ω) are chosen to be parameter independent,
while the γi are parameter dependent (see, e.g., [35]).

In our calculations, we choose the coupling strength ω

between the system and the environment to be parameter
independent in order to exclude formally its influence onto
the dynamics of the open quantum system. This allows us to
fix the role of nonlinear processes.

To summarize the results of Fig. 1, we state the following.
The phase rigidity and mixing of the eigenfunctions in
approaching an EP are, respectively,

ri → 0, |bij | → ∞, (21)

and in general

1 > ri � 0, |bij | > 1. (22)

The phase rigidity and mixing of the wave functions between
two EPs are, respectively,

ri → 1, |bij | < 1, (23)

in approaching the maximum width bifurcation. In the analyt-
ically solvable case with imaginary ω we have [38]

|bij | ≈ 0.7, (24)

meaning that the eigenfunctions 	i are almost orthogonal and
strongly mixed in the set of basic wave functions {	0

k} in
approaching the maximum width bifurcation.

Similar results are obtained when Re(ω) � Im(ω). The
difference from the results shown in Fig. 1 is that now level
repulsion is the main effect caused by the EP [38].

We remark here that the evolution from rk = 0 at the EP to
rk ≈ 1 at the maximum width bifurcation is driven exclusively
by the nonlinear source term of the Schrödinger equation (see
Sec. IV) since ω = const in our calculations. When ω = 0,
it is Ei = εi . In this case, there are no EPs, as mentioned in
Sec. II A.

III. EIGENVALUES AND EIGENFUNCTIONS OF A 3 × 3
NON-HERMITIAN HAMILTONIAN

Let us consider the Hamiltonian

H(N) =

⎛
⎜⎜⎝

ε1 ω12 · · · ω1N

ω21 ε2 · · · ω2N

...
...

. . .
...

ωN1 ωN2 · · · εN

⎞
⎟⎟⎠, (25)

where εi ≡ ei + i/2γi are the energies and widths of the N

states, ωi k �=i are the complex coupling matrix elements of the
states i and k via the common environment, and the ωi k=i

denote the self-energy of the state i, which is mostly assumed
to be included in the εi in our calculations. The values ωik

for different i and k usually differ from one another. It is
however a well-known fact from numerical calculations [17]
that a resonance state becomes trapped by another nearby state
when its width is somewhat smaller than that of the nearby
state. Finally, the widths of most relatively-short-lived states
of the system are similar to one another. These states determine
the evolution of the system.
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FIG. 2. Plot of eigenvalues Ei ≡ Ei + 1
2 �i , phase rigidity ri and

1 − ri , and mixing |bij | of the eigenfunctions 	i of the Hamiltonian
H(3) as a function of a. The value ω is independent of a: (a)–(e)
ω = 0.01(i + 1

10 ) and (f)–(j) ω = 0.5(i + 1
10 ). The parameters are

(a)–(e) e1 = 1 − a/2, e2 = a, e3 = −1/3 + 1.5a, γ1/2 = −0.495,
γ2/2 = −0.493, and γ3/2 = −0.49 and (f)–(j) e1 = 1 − a/2, e2 =
a, e3 = −1/3 + 1.5a, γ1/2 = −0.495, γ2/2 = −0.595, and γ3/2 =
−0.545. The dotted lines show ei and γi/2 in (a,b,f,g).

A. Numerical results for N = 3

In Fig. 2 we show the numerical results obtained for the
eigenvalues and eigenfunctions of N = 3 states by using
parameters similar to those for N = 2 states in Fig. 1. The
ωij ≡ ω are chosen to be equal for the different i and j .
Above all, they are parameter independent, similar to the
corresponding ω in Fig. 1.

The comparison of Figs. 1 and 2 shows that the main
features of the eigenvalues and eigenfunctions are the same
for N = 2 and N = 3. The eigenvalues repel each other in
energy and their widths bifurcate under the influence of an
EP; the phase rigidities approach zero and the mixing of the
wave functions increases without limit at and near an EP; the
phase rigidities approach the value one and the corresponding
almost orthogonal wave functions are mixed when the width
bifurcation is maximum. These effects are enhanced when
N = 3 as compared to those occurring when N = 2.

As in the two-level case, similar results are obtained when
Re(ω) � Im(ω). In this case, level repulsion is the main effect
caused by the EP [39].

B. Third-order exceptional points

Hints at third-order EPs (at which three eigenvalues
coalesce at one parameter value) cannot be found in Fig. 2.
The reason is that every EP is a point in the continuum (with
measure zero) that can be identified only by its influence
on observable values in a finite parameter range around it.
Furthermore, a third-order EP occurring in the system without
any EM of its states via the environment is shielded due to
EM in a realistic system. It therefore cannot be observed in an
open quantum system.

According to the numerical results shown in Fig. 2, we
see several second-order EPs in a critical parameter region
around the value at which the conditions for a third-order EP
are mathematically fulfilled. The observable effect caused by
a third-order EP is some clustering of second-order EPs that
occurs in a finite parameter range around the value at which
the third-order EP is mathematically expected. This fact is
discussed in detail in [35].

These results show the differences between a formal
mathematical result and effects that can really be observed
in a physical system. The point is that two states that cross
at an EP lose (due to the EM of the states) their individual
character in a finite parameter range around the EP and the
areas of influence of various second-order EPs overlap. In
this manner, they amplify collectively their impact on physical
values with the result that, e.g., a third-order EP is shielded in
a physical system.

IV. SCHRÖDINGER EQUATION WITH A NONLINEAR
SOURCE TERM

The Schrödinger equation (14) can be rewritten as the
Schrödinger equation (15) with a source term. In this equation,
the coupling ω of the states i and j �= i via the common
environment of scattering wave functions (EM) is contained
in the source term. The source term is nonlinear [17]

(
H(2)

0 − Ei

)|	i〉 =
∑
k=1,2

〈	k|W |	i〉
∑

m=1,2

〈	k|	m〉|	m〉

(26)

since 〈	k|	m〉 �= 1 for k = m and 〈	k|	m〉 �= 0 for k �= m

[see Eqs. (10) and (11)]. In (26) the definition W ≡ −(0 ω
ω 0

)
is used for convenience. The most important part of the
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nonlinear contributions is contained in(
H(2)

0 − En)
∣∣	n〉 = 〈	n|W |	n〉|	n|2|	n〉. (27)

Far from an EP, the source term is (almost) linear since
〈	k|	k〉 → 1 and 〈	k|	l �=k〉 = −〈	l �=k|	k〉 → 0. Near an
EP however, the source term is nonlinear since 〈	k|	k〉 �= 1
and 〈	k|	l �=k〉 = −〈	l �=k|	k〉 �= 0.

Due to the EM involved in the source term, the eigenfunc-
tions 	i and eigenvalues Ei of H(2) contain global features.
The environment of an open quantum system is the continuum
of scattering wave functions that has an infinite number of
degrees of freedom. It may cause therefore, among other
effects, a dynamical phase transition [17,39]. The transition
is nonadiabatic [6,17,39].

In order to illustrate the nonlinear effects involved in the
source term of the Schrödinger equation (26) let us consider,
as an example, the resonance part of the S matrix from which
the resonance structure of the cross section can be calculated,

σ (E) ∝ |1 − S(E)|2. (28)

A unitary representation of the resonance part of the S matrix
in the case of two resonance states coupled to a common
continuum of scattering wave functions reads [40]

S =
(
E − E1 − i

2�1
)(

E − E2 − i
2�2

)
(
E − E1 + i

2�1
)(

E − E2 + i
2�2

) . (29)

Here the influence of the EPs onto the cross section is
contained in the eigenvalues Ei = Ei + i/2�i . The expression
(29) allows us therefore to receive reliable results also when
the phase rigidity is reduced, rk < 1.

The expression (29) can be used to derive analytically an
expression for the resonance structure of the S matrix at an
EP [40],

S = 1 − 2i
�d

E − Ed + i
2�d

− �2
d(

E − Ed + i
2�d

)2 , (30)

where E1 = E2 ≡ Ed and �1 = �2 ≡ �d . As a result of
interferences, this expression consists of three terms, one of
which is explicitly nonlinear. The resonance structure (30)
shows two bumps approximately at the energies εi of the two
resonance states and an interference minimum between them.
This structure resembles that of two more or less isolated
resonances whose energies are ε1 and ε2.

Many years ago, the resonance structure of the cross section
with two resonance states was calculated as a function of
the coupling strength between the system and environment
[33]. These calculations were performed by using the standard
expression for the S matrix with the energies εi replaced by the
eigenvaluesEi . The results show a double-hump structure at the
EP (Fig. 9 in [33]) that corresponds exactly to the expression
(30) obtained analytically. Our conclusion from these results
is that nonlinear terms determine the resonance structure of
the cross section in the neighborhood of an EP.

V. S MATRIX: RESONANCE STRUCTURE
IN THE ONE-CHANNEL CASE

According to other works, the resonance structure of the S

matrix is well understood when all resonance states are coupled

FIG. 3. Cross section with two resonance states. The parameters
are the same as in Figs. 1(a)–1(e), but ω = 0 in (b). In (a) and (b)
a = 0 (dashed red line), a = 1 (dotted blue line), and a = 0.653 333
(solid black line). (c) A 2D contour plot with ω = 0.01(i + 1

10 ).

to one and the same decay channel (this is the so-called one-
channel case). The resonance structure is calculated by means
of the Hermitian formalism, in which no EPs are involved.
The basic results of theoretical and experimental studies agree
under the condition that the resonances do not overlap, i.e. that
they are well separated from one another in the cross section.

In order to attain a better understanding of the resonance
structure of the cross section also in this simple case, we
calculate it with and without taking into account EM of the
resonance states. In the first case (ω �= 0) EPs are involved,
while in the second case (ω = 0) EPs do not appear. The
Hamiltonian is non-Hermitian in both cases. We compare the
resonance structure of the S matrix obtained in the two cases.

We performed calculations with different values of ω and
for different sets of resonance states. In Figs. 3–5 we show
typical results. They are obtained by choosing the values of ω to
be the same as in Figs. 1(a)–1(e) (N = 2) and in Figs. 2(a)–2(e)
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FIG. 4. Cross section with two resonance states. The parameters
are the same as in Figs. 1(f)–1(j), but ω = 0 in (b). In (a) and (b),
a = 0 (dashed red line), a = 1 (dotted blue line), and a = 0.6502
(solid black line). (c) A 2D contour plot with ω = 0.5(i + 1

10 ).

(N = 3). The ω are complex and near those known from
realistic systems, so results can be obtained only numerically.
The calculations are performed with the energies εi ≡ ei + i

2γi

chosen in Figs. 1 and 2. All states are coupled to one and the
same continuum.

A. Numerical results: Resonance structure with ω �= 0

Using (28) and (29) for the S matrix, we calculated the
resonance structure of the cross section with, respectively,
two and three resonance states under different conditions by
taking into account EM. In all cases with N = 2 resonance
states we see a double-hump structure, while the cross section
shows a triple-hump structure when N = 3. For examples see
Figs. 3(a), 4(a), and 5(a).

In Fig. 3(a) the coupling of the states to the continuum is
relatively weak; see the corresponding eigenvalue pictures in

FIG. 5. Cross section with three resonance states. The parameters
are the same as in Figs. 2(a)–2(e), but ω = 0 in (b). In (a) and (b)
a = 0 (dashed red line), a = 1 (dotted blue line), and a = 0.6502
(solid black line). (c) A 2D contour plot with ω = 0.

Figs. 1(a) and 1(b). The resonance part of the S matrix shows
the typical two-hump structure.

In Fig. 4(a) the difference between the two widths γi/2
is relatively large; see the corresponding eigenvalue pictures
Figs. 1(f) and 1(g). In order to see the influence of an EP,
also the coupling strength |ω| has to be relatively large in this
case. According to Fig. 1(g), it is

∑
i=1,2 �i ≈ �2, where �2

is the width of the short-lived state 2. As can be seen from
Fig. 4(a), the cross section shows the characteristic double-
hump structure not only in the very neighborhood of the EP
but also beyond this value.

Using Eqs. (28) and (29) for the S matrix, we are able to
reproduce the double-hump structure of the cross section as a
function of the coupling strength ω, which is shown in Fig. 9 of
Ref. [33]. The calculations in [33] are performed on the basis
of the standard S-matrix theory, however with the energies εi

replaced by the eigenvalues Ei . The role of the interference of
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the different contributions to the resonance structure is also
shown in Fig. 9 in [33].

In Fig. 5(a) we show the results with N = 3 for the case
that the widths of the three states are similar to one another
and ω is relatively small; see the corresponding eigenvalue
pictures Figs. 2(a) and 2(b). The cross section shows the typical
three-hump structure at different values of the parameter a near
the region with several neighbored EPs as well as beyond it.

The two-dimensional (2D) contour plots of the resonance
structure of the cross section with two levels, calculated with
ω �= 0, are shown in Figs. 3(c) and 4(c). In both cases, the
cross section falls steeply to its minimum value between the
two EPs. Here the eigenfunctions are (almost) orthogonal and
mixed in the set of basic wave functions {	0

n} (see Fig. 1). As
can be seen from Fig. 4(c), the minimum value appears at the
value of the maximum width bifurcation [see Figs. 1(a)–1(e)].
The 2D contour plot of the resonance structure of the cross
section with three levels, calculated with ω �= 0, is the same
as that calculated with ω = 0 (see Sec. V B).

In any case, the 2D contour plots of the resonance
structure of the cross section should not be confused with
eigenvalue trajectories that avoid crossing. Furthermore, they
are not symmetric with respect to E = 0 corresponding to the
eigenvalue pictures Figs. 1 and 2 (different from Fig. 9 for the
cross section in [33], which is related to eigenvalue figures that
are symmetric with respect to E = 0).

B. Numerical results: Resonance structure with ω = 0

We compare the resonance structure of the S matrix ob-
tained in the non-Hermitian formalism with taking into account
EM (ω �= 0) to that obtained without EM (corresponding to
ω = 0). Typical results are shown in Figs. 3(b) and 4(b) for
N = 2 and in Fig. 5(b) for N = 3. These figures have to be
compared with, respectively, Figs. 3(a), 4(a), and 5(a).

As in all our calculations, the resonance structure of the S

matrix is almost the same for ω = 0 and ω �= 0. Differences
in the resonance structure of the S matrix can be seen only
when ω is large [compare Fig. 4(a) to Fig. 4(b)]. In all other
cases, the resonance structure is typically the same [compare
Fig. 3(a) to Fig. 3(b) and Fig. 5(a) to Fig. 5(b)].

In Fig. 5(c) we show the 2D contour plot of the cross section
with three resonances, calculated with ω = 0. It looks like that
obtained with ω �= 0. Also the results for N = 2 with ω = 0
are typically the same as those with ω �= 0 [which are shown
in Figs. 3(c) and 4(c)].

In the 2D contour plot of the resonance structure with three
levels [Fig. 5(c)], we see two second-order EPs instead of a
third-order EP. This result corresponds to the discussion of
third-order EPs in Sec. III B.

C. Influence of exceptional points

In Figs. 3–5 we have shown the numerical results obtained
for the resonance structure of the S matrix when the system
is considered with EM (ω �= 0) and without EM (ω = 0). We
considered the most sensitive situation where the resonance
structure is influenced by two adjoining EPs. Exceptional
points and EM appear only when ω �= 0. Nevertheless, the

resonance structure of the cross section is almost the same in
the two cases.

This result is valid not only when the number of resonances
is 2, but also when it is larger than 2. This means that the
resonance structure of the cross section is almost independent
of EM, i.e., on the coupling of the states via one common
continuum of scattering states.

This unexpected result can be explained in the following
manner. The evolution of the system between the two EPs
is driven exclusively by the nonlinear source term of the
Schrödinger equation (15) since ω is constant in our cal-
culations and therefore cannot be responsible for the width
bifurcation. Obviously, the nonlinear source term is able, in the
one-channel case, to largely conserve the resonance structure
of the cross section.

Altogether, we have here some type of self-affirmation.
Analytical results for the resonance structure of the cross
section can be obtained, in the one-channel case (with well
separated resonances), when the system is described by a
Hermitian operator whose eigenvalues and eigenfunctions are
smoothly parameter dependent. These results agree quite well
with those of experimental observations. The description of
the system as a closed system therefore seems to be justified.
In addition, more complicated cases with, e.g., more than one
open channel cannot be solved analytically in the standard
theory. Thus, the justification of the Hermitian approach for
the description of the system (with well-separated resonances)
rests solely on the analytical results obtained for the one-
channel case.

Our results for the one-channel case show that this case
cannot be used to prove or disprove the Hermitian quantum
physics. For that purpose, the study of more complicated cases
is needed (see Sec. VI).

We mention here that the resonance scattering at third-order
EPs is studied in [41] by using a method that is different from
ours. Also in these calculations, three peaks appear in the cross
section. According to [41], the sprouting out of the three levels
under parameter variation depends on the particular parameter
chosen. A similar result is obtained [35,39] in the framework of
the formalism presented in the present paper. However, a third-
order EP does not appear in our calculations [see Fig. 5(c)].
Instead we see several second-order EPs and indications of
them, which agrees with the discussion in Sec. III B.

VI. S MATRIX: RESONANCE STRUCTURE
IN THE TWO-CHANNEL CASE

We will not provide here new numerical results for the
two-channel case. Instead we refer to results obtained a few
years ago [5,34,42] for the transmission through a small
system (quantum dot). In order to describe transmission,
we have to consider at least two channels: the entrance
and the exit channel. In [5], unexpected experimental results
[1–3] on the resonance structure of the transmission could
be explained. In Refs. [34,42], different calculations were
performed for both a system with a small number of resonance
states and a system with many states. In the latter case, the
calculations were performed first in the tight-binding approach
according to the formalism presented by Datta [43]. Then
the non-Hermitian Hamilton operator was diagonalized and
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the eigenvalues and eigenfunctions were determined. This
formalism is equivalent to that used in the present paper (see
also [44]). The calculations for systems with a small number
of states are performed according to S-matrix theory and using
tight-binding approach [45].

The results for the two-channel case are more interesting
than those for the one-channel case discussed in Sec. V
since the influence of EPs and EM can be seen immediately
[5,34,42]. The resonance structure of the transmission can be
traced back to the eigenvalues of the non-Hermitian operator,
EM of the states generally cannot be neglected, and the phase
rigidity is anticorrelated with the transmission probability. The
last property is the most interesting one. It has no analog in
the standard formalism.

The phase rigidity is a theoretical value characteristic of
the non-Hermitian formalism. It can be traced experimentally
in a microwave billiard [26]. It will however be difficult
to study it directly in a realistic system. According to the
above-mentioned numerical results [34,42] it is however
anticorrelated with an observable value, namely, with the
transmission probability.

This anticorrelation of the theoretical value (phase rigidity)
with an observable one (transmission probability) allows us
to really test the non-Hermitian formalism. Moreover, when
this anticorrelation really exists, it is of high interest for
applications.

VII. DISCUSSION OF THE RESULTS AND SUMMARY

A critical consideration of the standard Hermitian formal-
ism for the description of open quantum systems is possible
by starting from a general non-Hermitian formalism [14] that
includes the Hermitian quantum physics as a limiting case.
In the non-Hermitian formalism, the normalization of the
eigenfunctions of the Hamiltonian can freely be chosen [23].
If it is chosen by means of (9), the non-Hermitian quantum
formalism fulfills the condition to approach, on the one
hand, the standard Hermitian quantum physics under certain
conditions (which can be formulated) and to be, on the other
hand, more general than it. The mathematical consequences
are the following.

(i) The phases of the eigenfunctions relative to one another
are not rigid (see Sec. II B). This fact agrees with the basic
relation (20) that is valid in approaching an EP: The two
eigenfunctions 	1 and 	2 of H(2) are (almost) orthogonal
to one another when the two eigenstates 1 and 2 are distant
from one another, while the orthogonality is completely lost
in approaching an EP.

(ii) The eigenstates contain EM and differ therefore from
the original eigenstates. A mixing of the wave functions of only
two states may appear at low level density such that it may be
difficult to choose the basic set of “pure” wave functions. At
high level density EM causes a dynamical phase transition that
is nonadiabatic due to the involved nonlinear processes [39].

(iii) Some well-known unsolved puzzles of standard Her-
mitian quantum physics do not appear in the non-Hermitian
description of open quantum systems [14]. Among others, the
problem of the Schrödinger cat and the short tunneling time
characterizing the decay of the states in the Hermitian quantum
physics are not puzzling when the system is considered to be

open. Furthermore, the nonlinear processes involved in the
non-Hermitian formalism are irreversible (see the discussion
around Fig. 9 in [6]).

In Secs. II, III, and V of the present paper, we have shown
numerical results obtained in the framework of non-Hermitian
quantum theory for a system that is coupled to one common
channel [14]. We consider systems with N = 2 and N = 3
states in the most sensitive parameter range in which the
dynamics of the system is determined by two EPs. We have
compared the results, obtained for the same situation, with
and without taking into account EM. In the first case, EPs are
caused by the EM of the states. In the second case, however,
neither EM nor EPs appear. Nevertheless, the resonance
structure of the S matrix is almost the same in the two cases.
This result does not depend on the number of states taken into
account in the calculation.

In our calculations with the non-Hermitian Hamiltonian,
the coupling strength ω between the system and environment
is chosen to be fixed. Width bifurcation of the states therefore
may be caused exclusively by the nonlinear terms contained in
the Schrödinger equation at and near an EP. These nonlinear
terms conserve, obviously, the resonance structure of the cross
section in the one-channel case. Thus, the one-channel case
does not allow us to test the non-Hermitian formalism.

The situation is completely different when the system is
coupled to two (or more) channels. A prominent example is
the transmission through, e.g., a quantum dot. Here, at least two
different channels are involved: the entrance and exit channel.
In the present paper, we do not provide new numerical results.
Instead we refer to some results obtained earlier (see Sec. VI).
Most interesting is the anticorrelation between phase rigidity
and transmission probability that can be seen clearly in the
results of different calculations.

Thus, the observation of nonanalytical effects in the
transmission through a quantum dot is not in contradiction
with the results known from the standard S-matrix description
in the one-channel case. Quite the contrary, these effects are
characteristic of the non-Hermitian theory of open quantum
systems. They exist also in the one-channel case where they
cannot be seen however due to their suppression by the
nonlinear terms of the Schrödinger equation near EPs.

VIII. CONCLUSIONS

The results of the present paper answer the questions asked
in the Introduction. Although EPs influence the dynamics of
open quantum systems, they cannot be observed directly. In the
one-channel case, the resonance structure of the cross section
can be described well without taking them into account. The
reason for this unexpected result is the nonlinear processes
caused by the EPs. They restore, in the one-channel case,
the original resonance structure of the cross section and hide
the influence of the EPs on observable values. A cursory
consideration allows therefore the conclusion that EPs do not
play any role in open quantum systems.

This conclusion can be justified however only in the one-
channel case. The two-channel case is much richer and more
interesting. In the Introduction, we pointed to the so-called
phase lapses observed experimentally in the transmission
through a quantum dot. These unexpected results are explained
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by means of the existence of EPs. We mentioned moreover in
Sec. VI the results obtained theoretically for the transmission
through a localized quantum system by using the tight-binding
approach. We underline however that, in any case, the results of
non-Hermitian quantum physics differ from those of Hermitian
quantum physics only a little in a parameter range that is not
influenced by EPs. In this parameter range, Fermi’s golden
rule holds.

The results for the two-channel case show, under different
conditions, an anticorrelation between phase rigidity and
transmission probability, i.e., between an internal property
of the eigenfunctions of the non-Hermitian Hamilton operator

and an observable value. Based on the non-Hermitian quantum
theory formulated in the present paper, an experimental test of
this relation will contribute to an understanding of the short
tunneling time [15] that is observed experimentally.

The transmission through a small system needs to be
studied in the future in more detail, theoretically as well as
experimentally. On the one hand, it allows us to test the
non-Hermitian quantum theory for open quantum systems
[14], since it relates the theoretical value phase rigidity to
the observable value of the transmission probability. On the
other hand, the anticorrelation between these two values will
offer the possibility of important applications.

[1] A. Yacoby, M. Heiblum, D. Mahalu, and H. Shtrikman,
Phys. Rev. Lett. 74, 4047 (1995).

[2] R. Schuster, E. Buks, M. Heiblum, D. Mahalu, V. Umansky, and
H. Shtrikman, Nature (London) 385, 417 (1997).

[3] M. Avinun-Kalish, M. Heiblum, O. Zarchin, D. Mahalu, and V.
Umansky, Nature (London) 436, 529 (2005).

[4] Focus on Interference in Mesoscopic Systems, edited by A.
Aharony and S. Katsumoto, New J. Phys. 9 (2007).

[5] M. Müller and I. Rotter, Phys. Rev. A 80, 042705 (2009).
[6] I. Rotter and J. P. Bird, Rep. Prog. Phys. 78, 114001 (2015).
[7] A. I. Magunov, I. Rotter, and S. I. Strakhova, J. Phys. B 32, 1489

(1999); 32, 1669 (1999).
[8] A. I. Magunov, I. Rotter, and S. I. Strakhova, J. Phys. B 34, 29

(2001).
[9] I. Rotter, Rep. Prog. Phys. 54, 635 (1991).

[10] N. Moiseyev, Non-Hermitian Quantum Mechanics (Cambridge
University Press, Cambridge, 2011).

[11] O. Atabek, R. Lefebvre, M. Lepers, A. Jaouadi, O. Dulieu, and
V. Kokoouline, Phys. Rev. Lett. 106, 173002 (2011).

[12] I. Gilary and N. Moiseyev, J. Phys. B 45, 051002 (2012).
[13] A. Jaouadi, M. Desouter-Lecomte, R. Lefebvre, and O. Atabek,

J. Phys. B 46, 145402 (2013).
[14] We underline that we consider open quantum systems described

by a non-Hermitian Hamilton operator. This should not be
confused with the theory of PT -symmetric systems, which
are neither open nor closed, but nonisolated according to the
definition in, e.g., C. M. Bender, J. Phys.: Conf. Ser. 631, 012002
(2015).

[15] P. Eckle, A. N. Pfeiffer, C. Cirelli, A. Staudte, R. Dörner, H. G.
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