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Nonlocality is one of the main characteristic features of quantum systems involving more than one spatially
separated subsystem. It is manifested theoretically as well as experimentally through violation of some local
realistic inequality. On the other hand, classical behavior of all physical phenomena in the macroscopic limit
gives a general intuition that any physical theory for describing microscopic phenomena should resemble classical
physics in the macroscopic regime, the so-called macrorealism. In the 2-2-2 scenario (two parties, with each
performing two measurements and each measurement having two outcomes), contemplating all the no-signaling
correlations, we characterize which of them would exhibit classical (local realistic) behavior in the macroscopic
limit. Interestingly, we find correlations which at the single-copy level violate the Bell-Clauser-Horne-Shimony-
Holt inequality by an amount less than the optimal quantum violation (i.e., Cirel’son bound 2

√
2), but in the

macroscopic limit gives rise to a value which is higher than 2
√

2. Such correlations are therefore not considered
physical. Our study thus provides a sufficient criterion to identify some of unphysical correlations.
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I. INTRODUCTION

In our everyday experience almost all physical phenomena
satisfy the laws of classical physics. However, at the micro-
scopic scale the physical world follows the rules of quantum
physics. The description of quantum physics is different from
its classical counterpart both conceptually and mathematically
[1]. This raises the question of quantum to classical transition,
i.e., when and how do the systems stop behaving quantum
mechanically and begin to behave classically? Several novel
ideas, like collapse models [2], the concept of decoherence
[3], etc., were introduced long ago to address these questions.
More recently, in a conceptually different approach, it has
been shown that under coarse-grained measurements, the
classical world arises out of quantum physics [4]. All these
studies result in a general dictum that at the macroscopic
level, the nonclassical behaviors of quantum theory or any
physical theory (possibly postquantum) should subside, and
consequently, classicality should emerge. The aim of this paper
is to study the emergence of such classical behavior in terms
of the strength of correlations for generalized no-signaling
theories and identify some of the generalized no-signaling
correlations as unphysical.

One of the most fundamental contradictions of quantum
mechanics (QM) with classical physics is its nonlocal behavior
as established by Bell in his 1964 seminal work [5] (see also
[6]). Whereas all correlations in the classical world are local
realistic, correlations obtained from multipartite entangled
quantum systems may violate the empirically testable local
realistic inequality (called Bell-type inequalities in general)
which establishes that such quantum correlations do not allow
a local realistic explanation. Quantum nonlocality does not
contradict the relativistic causality principle or, more generally,
the no-signaling principle. Moreover, QM is not the only pos-
sible theory that exhibits nonlocality along with satisfying the
no-signaling principle; there can be nonquantum no-signaling
correlations exhibiting nonlocality. One extreme example of
such a correlation (more nonlocal than QM) was constructed
by Popescu and Rohrlich (PR) [7]. Whereas the PR correlation

violates the Bell-Clauser-Horne-Shimony-Holt (Bell-CHSH)
[8] inequality by algebraic maximum, the optimal Bell-CHSH
violation in quantum theory is restricted by Tsirelson’s bound
[9]. This raises another important question: Which nonlocal
correlations are physical? This question is also important from
a practical perspective since nonlocality has been proved to
be an important resource in numerous applications [10–19].
An endeavor to answer this question was initiated by van
Dam, who showed that the existence of superstrong nonlocal
correlations (e.g., PR correlation) would trivialize the problem
of communication complexity [20]. It may be noted that
principles like information causality (IC) [21] and macroscopic
locality (ML) [22] do help us towards understanding the
physicality of some of the postquantum correlations. Apart
from these, other conceptually different proposals have been
introduced to single out Tsirelson’s bound [23–27]. But, to
date, identifying the boundary between quantum correlations
and postquantum ones has not been done completely, and it
remains an active area of research (see [28]). Here we aim
to approach this problem using a macroscopic measurement
scheme different from the one used in ML.

In order to study macroscopic properties of a correlation,
one must create a measurement scheme using many copies
of the correlation where the identities of individual particles
involved in the correlation have not been revealed [29]. A
practically relevant scheme for studying such macroscopicity
of correlations is to consider a case when the identities of
the individual particles in the correlations get lost during
the distribution of the correlated state. One can, of course,
interact microscopically with particles in the correlation, but
in general, it is difficult to address them individually [30].
So whatever microscopic interaction one intends to use will
affect, in general, all the particles of the beam at the same
time. In this context, Bancal et al. studied the violation of
Bell inequalities of entangled states considering a general
multipair scenario [31]. They showed that the nonlocality
of the quantum entangled state decreases in this multipair
scenario with the increase in the number of independent
entangled pairs; that is, in the macroscopic limit of having
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infinitely many copies of entangled pairs, one cannot get
nonlocal correlation. This observation is compatible with the
general dictum that classicality emerges at the macroscopic
level.

Here, in the simplest scenario, i.e., two parties, with each
performing one of the two possible measurements and each
measurement having two possible outcomes (i.e., the 2-2-2
scenario), we consider the same approach as that of Bancal
et al. [31]. But instead of considering only correlations in
entangled quantum states, we contemplate general correla-
tions that may be stronger than quantum ones in exhibiting
nonlocal behavior yet weak enough to prohibit instantaneous
signaling. We characterize all such correlations which, in
the macroscopic limit, display classicality that is considered,
in our context, to be the local realistic behavior of the
correlations. It is worth mentioning that such classical behavior
of any correlation at the macroscopic level is not sufficient
to certify the correlation to be perceived in some physical
theory; it is rather a necessary criterion. We find examples
of such correlations that in the macroscopic level behave
classically but do not fulfill other necessary criteria, like
nonlocality distillation [32–35] or IC [21], and hence cease to
be considered physical correlations. Interestingly, on the other
hand, we find examples of correlations that indeed satisfy the
necessary criteria of IC but at the macroscopic scale exhibit
strong nonlocal behavior, going against our general dictum,
and hence fail to be considered physical correlations.

At this point it is important to note that the ML principle
[22] can also identify unphysical correlations. However, our
approach is different from that of ML. In ML, one also
considers beams of correlated particles (M in number, with
a value much greater than 1, i.e., in the thermodynamic
limit), and to make a relationship with classical physics these
beams are assumed to be continuous fields. In other words,
Alice’s and Bob’s detectors can perform only coarse-graining
measurements; that is, these detectors cannot resolve the beams
to their constituent particles (also, this implies that they cannot
perform different measurements on different particles; they
are able to perform the same interactions on the whole beam).
Hence, the resolution of their detectors should not be perfect,
and such a poor resolution can provide information about only
the mean value. The detectors work with such precision that
one could observe the deviations of the intensity fluctuations
from the mean value of the order

√
M because in that case the

resultant distributions will be described by classical physics.
On the other hand, very recently, Rohrlich showed that, at

the macroscopic scale, PR box correlations violate relativistic
causality and hence has no realization in the classical world
[36]. Moreover, this result has been generalized to all stronger-
than-quantum bipartite correlations, constituting a derivation
of Tsirelson’s bound without assuming quantum mechanics
[36,37]. In Refs. [36,37] the authors showed unphysicality
of stronger-than-quantum correlation by showing signaling of
those correlations in the macroscopic limit; we do the same
but via distillation of nonlocality in the macroscopic limit,
and therefore our approach is completely different from that
adopted in [36,37]. Furthermore, in our approach some of
the correlations having weaker nonlocality than the optimal
quantum nonlocality (in the sense that Bell-CHSH violation is
strictly less than Tsirelson’s bound) turn out to be unphysical.

FIG. 1. Single-pair setup: X,Y ∈ {0,1} are Alice’s and Bob’s
measurements, respectively. After the measurement interaction, going
through the paths a = 0 and a = 1, particles are collected at Alice’s
detectors D0(A) and D1(A), respectively, and similarly on Bob’s end
at the detectors D0(B) and D1(B).

The organization of this paper is as follows: in Sec. II we
discuss the setup to study a general bipartite correlation in
single-pair and multipair scenarios; in Sec. III we present our
results. Section IV contains a comparative discussion of our
procedure and other methods. Last, we present our conclusion
in Sec. V.

II. SETTING UP THE SCENARIO

A. Single-pair setting

Consider the following bipartite scenario: a particle pair
is produced by some source, and two spatially separated
experimentalists (say, Alice and Bob) receive one particle
each. Alice (Bob) can have one of two interactions, denoted by
X = 0,1 (Y = 0,1), with her (his) particle. Each interaction
results in Alice’s (Bob’s) particle following one of two possible
paths, called outcomes; let us denote these paths by a (b), with
a ∈ {0,1} (b ∈ {0,1}). Eventually, the particle will impinge on
one of Alice’s (Bob’s) two detectors Da(A) [Db(B); see Fig. 1].
Repeating this experiment many times, they can estimate the
relative frequencies P (ab|XY ), i.e., the probability that Alice’s
and Bob’s outcomes are a and b, respectively, when they apply
the interactions X,Y . The joint probabilities {P (ab|XY )} form
an entire correlation vector. The positivity, normalization,
and nonsignaling constraints lead to this correlation vector
being a point of an eight-dimensional polytope [38], called the
no-signaling polytope PNS. Local correlations are of the form
P (ab|XY ) = ∫

dλρ(λ)P (a|X,λ)P (b|Y,λ), where P (a|X,λ)
is the probability of getting the outcome a when Alice
performs the measurement X given the knowledge of (local
hidden) variable λ, P (b|Y,λ) is similar for Bob, and ρ(λ) is a
probability distribution over the variable λ. The collection of
all such local correlations forms another polytope L strictly
residing in PNS with trivial facets determined by positivity
constraints and nontrivial facets determined by Bell-CHSH
inequalities, which up to relabeling of inputs and outputs read

ICHSH := |〈00〉 + 〈01〉 + 〈10〉 − 〈11〉| � 2, (1)

where 〈XY 〉 := ∑
a,b(−1)a⊕bP (ab|XY ) and ⊕ denotes

modulo-2 sum. Correlations with the form P (ab|XY ) =
Tr[ρAB(�a

X ⊗ �b
Y )] are called quantum, where ρAB is some

density operator on some composite Hilbert space and {�a
X}

({�a
X}) is some positive operator-valued measure on Alice’s
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(Bob’s) side. The set of quantum correlationsQ forms a convex
set (with a continuous boundary) lying strictly between PNS

and L, i.e., L ⊂ Q ⊂ PNS. There are 24 vertices of the poly-
tope PNS, 16 of which are the extreme points of the polytope
L, called local or deterministic vertices, and the remaining 8
are called nonlocal vertices. Since

∑
a,b P (ab|XY ) = 1 (due

to normalization), ICHSH can be written as

ICHSH = |2 + 2(A11 − A00 − A01 − A10)|, (2)

with AXY := P (01|XY ) + P (10|XY ). The deterministic ver-
tices (i.e., the correlations giving deterministic outcomes for
all measurements) that saturate inequality (1) are readily seen
to be the following ones [39]:

Dr
1 = {P (ab|XY ) : a(X) = r,b(Y ) = r}, (3a)

Dr
2 = {P (ab|XY ) : a(X) = X ⊕ r,b(Y ) = r}, (3b)

Dr
3 = {P (ab|XY ) : a(X) = r,b(Y ) = Y ⊕ r}, (3c)

Dr
4 = {P (ab|XY ) : a(X) = X ⊕ r,b(Y ) =Y ⊕ r ⊕ 1}, (3d)

with r,X,Y ∈ {0,1}. Any no-signaling correlation can be
expressed as a convex mixture of local correlations and a single
extremal nonlocal point on top of each CHSH facet, with the
representative defined as

CPR ≡ P (ab|XY ) :=
{

1
2 if a ⊕ b = XY,

0 otherwise.
(4)

This is called PR correlation (PR box), as introduced by
Popescu and Rohrlich [7]. Any no-signaling correlation PNS ≡
{P (ab|XY )} can be written as [39]

PNS = C1D0
1 + C2D1

1 + C3D0
2 + C4D1

2 + C5D0
3

+C6D1
3 + C7D0

4 + C8D1
4 + C9CPR, (5)

with 0 � Ci � 1 ∀ i and
∑9

i=1 Ci = 1. Such a correlation PNS

is nonlocal iff PNS ∈ PNS but PNS /∈ L.
In the following section we will consider different special

forms of no-signaling (NS) correlations (5) and discuss the
violation of the Bell-CHSH inequality (1) in the multipair
setting of these correlations.

B. Multipair setting

Consider that a source produces M independent identical
pairs, or, equivalently, M independent sources, each producing
one and the same pair. Alice and Bob each receive a beam of
M particles (we are assuming that there is no particle loss).
Although the pairs are created independently, in experiment,
it is very hard to address them individually (as already
discussed earlier). Alice and Bob perform a measurement on
the beam of particles they received; that is, they interact with
all the particles in same manner as earlier (Alice performs
measurement X ∈ {0,1} on all the particles she receives,
and similarly, Bob performs Y ∈ {0,1}). However, during the
interaction the classical information about the identity of the
individual pair is lost; that is, it is not possible to identify a
correlated pair from the beam of particles (see Fig. 2). Let
the correlation of each pair be PNS = {P (ab|XY )}, and let us
denote the global correlation for M pairs as PM ≡ P M

NS. The
number of particles collected in two detectors (one each on

FIG. 2. Multipair setup: Source produces M independent pairs
of particles. Since information about ordering between Alice’s and
Bob’s particles is lost during their transmission, they address the
beams of particles as a whole. A particle gets in the detector Ds(κ)
if s = a ∈ {0,1} (s = b ∈ {0,1}) is the outcome in the measurement
X ∈ {0,1} (Y ∈ {0,1}) on κ = A, i.e., Alice’s particle (κ = B, i.e.,
Bob’s particle). A few particles (n0 in number) are collected at the
detector D0(κ), and the rest are collected at the detector D1(κ), where
κ = A,B.

Alice’s side and Bob’s side) are counted, and n0 and n1 are the
number of particles counted in the two detectors. For perfectly
efficient detectors (η = 1), one has M = n0 + n1. Our aim
is to study the nonlocal strength (particularly, the amount of
Bell-CHSH inequality violation) of the global correlation PM .
For this purpose, Alice and Bob must transform their data
into a binary input-output correlation which we denote in bold
letters, i.e., {P (ab|XY)}, where a,b,X,Y ∈ {0,1}. Here Alice’s
and Bob’s interactions are denoted by bold letters, X and Y,
respectively, which imply that they apply the same interaction
X or Y on each particle of the incoming beam of particles. One
can get binary outputs by invoking any of the following voting
procedures: (a) majority voting, (b) unanimous voting, or (c)
any intermediate possibility. According to majority voting, if
the number of particles collected in detector D0(κ), i.e., n0,
is greater than or equal to the number of particles collected
in detector D1(κ), then the outcome will be denoted as 0;
otherwise, the outcome will be denoted as 1:

Majority voting ⇒
{

n0 � n1 → 0,

otherwise → 1.
(6)

Thus from M independent identical pairs of correlations
majority voting gives a binary input-output probability dis-
tribution {P (ab|XY)}. Instead of majority voting one can also
follow voting procedure (b) or (c). However, here our aim
is to follow a voting procedure which may exhibit nonlocal
behavior of the given binary input-output correlation even
in the macroscopic limit. It may happen that a correlation
becomes local in the macroscopic limit under a particular vot-
ing protocol, whereas the same correlation exhibits nonlocal
behavior under another voting protocol. It has been shown
in [31] (see [40,41] for experiments that consider majority
voting) that majority voting yields the largest violation, and
we also checked that the PR correlation retains its nonlocal
behavior in the macroscopic limit under majority voting, while
it becomes local under other voting protocols. For this reason,
we consider here the majority voting for our study. In fact, if
a NS correlation turns out to be nonlocal in the macroscopic
limit under any one of the above-mentioned voting procedures
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(or even by using some other counting method in the
macroscopic scenario), it will be enough, according to the
notion of macrorealism, to discard such a correlation as a
physical one.

III. CORRELATION IN THE MULTIPAIR SETTING

First, we will consider the PR correlation and then arbitrary
no-signaling correlations.

A. PR correlation

Before considering the general case of M independent
pairs, let us first assume that a source emits two independent
pairs of particles, each being correlated according to the
PR correlation of Eq. (4). Alice (Bob) performs the same
measurement, either X = 0 or X = 1 (Y = 0 or Y = 1), on
both particles she (he) receives. After the measurement they
count the number of particles detected on their detectors D0(κ)
and D1(κ), κ = A,B. Then, according to the majority-voting
condition, they declare their output to be either 0 or 1 and thus
prepare the new binary input-output probability distribution
P (ab|XY). For example, let us consider that both Alice and
Bob perform measurement X = Y = 0 on each particle of
their respective beams. The particles can be collected in the
detectors in one of the following three ways (see Fig. 2 for
reference):

(i) On Alice’s side both particles are detected in the D0(A)
detector. Due to strict correlation of the PR box [see Eq. (4)]
both particles on Bob’s side will also be detected in the detector
D0(B). According to the majority vote, both Alice and Bob
declare their output to be 0, i.e., a = b = 0. The probability
of occurrence of this case is P (a = 0,b = 0|X = 0,Y = 0) =
2!P 2(00|00)/2!. For PR correlation, P (00|00) = 1/2.

(ii) On Alice’s side both particles are detected in detector
D1(A). Due to a similar argument both Alice and Bob
declare their output to be 1, i.e., a = b = 1, and the proba-
bility P (a = 1,b = 1|X = 0,Y = 0) of this case occurring is
2!P 2(11|00)/2!, where P (11|00) = 1/2 for the PR correlation.

(iii) On Alice’s side one particle is detected in detector
D0(A), and the other is detected in detector D1(A). Due to
strict correlation [see Eq. (4)], the same is true on Bob’s
side. The majority-voting condition allows them to declare
their output to be 0. The probability of this case occurring is
P (a = 0,b = 0|X = 0,Y = 0) = 2!P (00|00)P (11|00)/(1!)2.

Thus the new probability distribution for the measurement
setting XY = 00 (i.e., X = 0 for both Alice’s particles and
Y = 0 for both Bob’s particles) reads

P (00|00) = 2!

[
P 2(00|00)

2!
+ P (00|00)P (11|00)

(1!)2

]
,

P (01|00) = P (10|00) = 0, P (11|00) = 2!

[
P 2(11|00)

2!

]
.

For the measurement settings XY = 01, the corresponding
new probability distribution has the form

P (00|01) = 2!

[
P 2(00|01)

2!
+ P (00|01)P (11|01)

(1!)2

]
,

P (01|01) = P (10|01) = 0, P (11|01) = 2!

[
P 2(11|01)

2!

]
,

and the case is similar for XY = 10. But for XY = 11 we have

P (00|11) = 2!

[
P (01|11)P (10|11)

(1!)2

]
, P (11|11) = 0,

P (01|11) = 2!

[
P 2(01|11)

2!

]
, P (10|11) = 2!

[
P 2(10|11)

2!

]
.

To obtain the CHSH value of this new probability distribution
we calculate A

(2)
XY = P (01|XY) + P (10|XY), which in this

case become

A
(2)
00 = A

(2)
01 = A

(2)
10 = 0,

A
(2)
11 = 2!

[
P 2(01|11)

2!
+ P 2(10|11)

2!

]
.

Here the superscript denotes the number of independent pairs
used in the experiment. Hence, according to Eq. (2), we have

I(2)
CHSH = 2 + 2

(
A

(2)
11 − A

(2)
00 − A

(2)
01 − A

(2)
10

)
(7a)

= 2 + 2A
(2)
11 . (7b)

For a source emitting M (let M be even) independent pairs
of particles, with each paired in the PR correlation, a similar
analysis gives

A
(M)
11 = M!

( M
2 −1)∑
j=0

1

(M − j )!j !
[β(M−j )δj + βjδ(M−j )]

= (β + δ)M − M!

(M/2)!
(βδ)M/2,

A
(M)
00 = A

(M)
01 = A

(M)
10 = 0, (8)

where β := P (01|11) = 1/2 = P (10|11) =: δ. Figure 3 (with
β = 0.5) shows that at large M the value of A

(M)
11 gets close to

unity [42], which further implies that I(M)
CHSH = 2 + 2A

(M)
11

∼= 4
for large M; that is, it reaches the maximum algebraic value
of the CHSH inequality. Therefore in the macroscopic limit,
under majority voting, the PR correlation does not exhibit
classical (more precisely, local) behavior and hence fails to be
considered a physical correlation.
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�

FIG. 3. A
(M)
XY for the probability distribution P := {P (00|XY ),

P (01|XY ),P (10|XY ),P (11|XY )} = (0,β,δ,0). Solid red curve: β =
0.5; dotted black curve: β = 0.4; dashed blue curve: β = 0.8.
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B. Noisy correlation

Before going into explicit examples of NS correlations of
Eq. (5), we first consider different representative cases and
study how A

(M)
XY get modified in the macroscopic limit. Here,

in all the special cases discussed below, the joint probabilities
P (ab|XY ) are prescribed for all XY ∈ {00,01,10,11}.

Case 1. For some particular measurement setting XY ∈
{00,01,10,11}, let the probability distribution be

P (00|XY ) = α, P (01|XY ) = 0,

P (10|XY ) = 0, P (11|XY ) = γ, (9)

with 0 � α,γ � 1,α + γ = 1. From the above discussion (this
case is analogous to the case XY = 00 of the PR box) it is
evident that with majority voting, A

(M)
XY = 0 for an arbitrary

number of pairs M .
Case 2. For the measurement setting XY the probability

distribution reads

P (00|XY ) = 0, P (01|XY ) = β,

P (10|XY ) = δ, P (11|XY ) = 0, (10)

with 0 � β,δ � 1,β + δ = 1. An analysis similar to the PR
scenario indicates that A

(M)
XY look identical to Eq. (8). For

different values of β, the variation of A
(M)
XY with increasing

M under majority voting is shown in Fig. 3 (with β = 0.8 and
β = 0.4), where it is evident that A

(M)
XY approaches unity at the

large-M limit.
Case 3. Let the probability distribution read

P (00|XY ) = α, P (01|XY ) = β,

P (10|XY ) = δ, P (11|XY ) = 0, (11)

with 0 � α,β,δ � 1,α + β + δ = 1. In this case we have

A
(M)
XY = M!

( M
2 −1)∑
k=0

( M
2 −k−1)∑
j=0

αk

k!j !(M − k − j )!

× [β(M−k−j )δj + βjδ(M−k−j )]. (12)

For different choices of β,δ, variations of A
(M)
XY with M are

plotted in Fig. 4, where it is evident that A
(M)
XY approaches zero

for large M .
Case 4. Here we have

P (00|XY ) = 0, P (01|XY ) = β,

P (10|XY ) = δ, P (11|XY ) = γ, (13)

with 0 � β,δ,γ � 1,β + δ + γ = 1. In this case we get

A
(M)
XY = M!

M
2∑

k=0

( M
2 −k−1)∑
j=0

γ k

k!j !(M − k − j )!

× [β(M−k−j )δj + βjδ(M−k−j )], (14)

which is plotted in Fig. 5 and also resembles the behavior in
case 3.

0 20 40 60 80

0.00

0.05

0.10

0.15

0.20

M

A
X

Y
�
M
�

FIG. 4. A
(M)
XY for the probability distribution P = (α,β,δ,0).

β = δ and α = 0.4 (dotted black curve), α = 0.5 (solid red curve),
and α = 0.6 (dashed blue curve).

Case 5. The probability distribution is given by

P (00|XY ) = α, P (01|XY ) = 0,

P (10|XY ) = δ, P (11|XY ) = γ, (15)

with 0 � α,δ,γ � 1,α + δ + γ = 1. Here we have

A
(M)
XY = M!

( M
2 −1)∑
k=0

( M
2 −k)∑
j=0

⎡
⎣ αkδ(M−k−j )γ j

k!j !(M − k − j )!

+ $

M
2∑

n=j+1

αkδ(M−k−n)γ n

k!n!(M − k − n)!

⎤
⎦, (16)

where $ = 1 when k + j = M
2 and otherwise $ = 0. A

(M)
XY is

plotted in Fig. 6, where A
(M)
XY approaches 1 for large M .

Case 6. The probability distribution reads

P (00|XY ) = α, P (01|XY ) = β,

P (10|XY ) = 0, P (11|XY ) = γ, (17)
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FIG. 5. A
(M)
XY for the probability distribution P = (0,β,δ,γ ).

β = δ and γ = 0.6 (dotted black curve), γ = 0.5 (solid red curve),
and γ = 0.4 (dashed blue curve).

022116-5



SAMIR KUNKRI, MANIK BANIK, AND SIBASISH GHOSH PHYSICAL REVIEW A 95, 022116 (2017)

0 20 40 60 80
0.4

0.5

0.6

0.7

0.8

0.9

1.0

M

A
X

Y
�
M
�

FIG. 6. A
(M)
XY for the probability distribution P = (α,0,δ,γ ).

α = γ and α = 0.2 (dotted black curve), α = 0.25 (solid red curve),
and α = 0.3 (dashed blue curve).

with 0 � α,β,γ � 1,α + β + γ = 1. In this case we get

A
(M)
XY = M!
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⎤
⎦, (18)

where $ = 1 when k + j = M
2 and otherwise $ = 0. In this

case A
(M)
XY looks similar to case 5, but δ is replaced by β.

Case 7. The probability distribution is given by

P (00|XY ) = α, P (01|XY ) = β,

P (10|XY ) = δ, P (11|XY ) = γ, (19)

with 0 � α,β,δ,γ � 1,α + β + δ + γ = 1. In this case we
have

A
(M)
XY =

( M
2 −1)∑
k1=0

M
2∑

k2=0

( M
2 −k1−k2−1)∑

j=0

M!αk1γ k2

k1!k1!j !(M − k1 − k2 − j )!

× [β(M−k1−k2−j )δj + βjδ(M−k1−k2−j )], (20)

which is plotted in Fig. 7, from which it is evident that
A

(M)
XY approaches zero for large M and, consequently, I(M)

CHSH
becomes 2.

We are now in a position to consider some particular
nonlocal correlations and thereby test their CHSH values in
the macroscopic measurement scenario.

C. Different classes of no-signaling correlations

In this section we will study the nonlocal strengths of
different representative classes of no-signaling correlations in
the macroscopic measurement setting.

Class I. Let the no-signaling probability distribution
[see Eq. (5)] be given by

PNS = C9CPR + C1D0
1 := pCPR + (1 − p)D0

1, (21)
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FIG. 7. A
(M)
XY for the probability distribution P = (α,β,δ,γ ).

α = γ,β = δ and α = 0.2 (dashed blue curve), α = 0.25 (solid red
curve), and α = 0.3 (dotted black curve).

with 0 < C9(:=p) < 1. The CHSH value of this correlation
is ICHSH = 2 + 2p. Let the source emit M independent pairs
of this nonlocal correlation. The joint outcome distributions
for the measurement settings XY = 00,01,10 are of the
form P (00|XY ) = 1 − p/2,P (01|XY ) = P (10|XY ) = 0 and
P (11|XY ) = p/2, which is similar to case 1 discussed in
Sec. III B. So, according to majority voting, in the macroscopic
measurement scenario A

(M)
XY = 0 for the large-M limit, with

XY ∈ {00,01,10}. For the measurement setting XY = 11, the
probability distribution will be of the form P (00|11) = 1 − p,

P (01|11) = P (10|11) = p/2,P (11|11) = 0, similar to case 3
in Sec. III B, and hence A

(M)
11 = 0 for large M . The CHSH value

of the microscopic correlation thus becomes I(M)
CHSH = 2. Hence

the original microscopic nonlocal correlation becomes local
in the macroscopic limit. The same is true for the correlation
PNS = pCPR + (1 − p)D1

1.
Class II. Let the no-signaling probability distribution be of

the form

PNS = pCPR + (1 − p)D0
2. (22)

Here also the CHSH value is ICHSH = 2 + 2p. The out-
come probability distribution for the measurement settings
XY = 00,01 will be of the form P (00|XY ) = 1 − p/2,

P (01|XY ) = P (10|XY ) = 0,P (11|XY ) = p/2, similar to
case 1 in Sec. III B, which implies A

(M)
00 = A

(M)
01 = 0 for

large M . For the measurement setting 10, the probabil-
ity distribution is P (00|01) = P (11|01) = p/2,P (01|10) = 0,

P (10|01) = (1 − p), which is identical to case 5 and hence im-
plies A

(M)
10 = 1. For the measurement setting 11, the probabil-

ity distribution P (00|11) = 0,P (01|11) = p/2,P (10|XY ) =
1 − p/2,P (11|11) = 0 is similar to case 2, and hence A

(M)
11 =

1. Thus for large M , the CHSH value turns out to be

I(M)
CHSH = 2 + 2

(
A

(M)
11 − A

(M)
10 − A

(M)
01 − A

(M)
00

) = 2. (23)

A similar conclusion holds well for the correlations of the
forms PNS = pCPR + (1 − p)D1

2 and PNS = pCPR + (1 − p)Dr
s

for s = 3,4 and r = 0,1.
Class III. Let the probability distribution be given by

PNS = p1CPR + p2D0
1 + p3D1

1, (24)
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with 0 < pi < 1,
∑

pi = 1, and the CHSH value is ICHSH =
2 + 2p1. The outcome probability distribution for the measure-
ment settings XY = 00,01,10 is of the form of case 1, and for
XY = 11, it is of the form of case 7 in Sec. III B, implying
A

(M)
XY = 0 for all XY. This further implies that I(M)

CHSH = 2 for
large M .

Class IV. Let the probability distribution be of the form

PNS = p1CPR + p2D0
2 + p3D1

2, (25)

with 0 < pi < 1,
∑

pi = 1, and the CHSH value is therefore
ICHSH = 2 + 2p1. For the measurement settings XY = 00,01
the outcome distribution will have a form similar to case I,
while for XY = 10 it will resemble case 7 in Sec. III B,
and thus this implies A

(M)
XY = 0 for measurement settings

XY ∈ {00,01,10} for large M . On the other hand, for the
measurement setting XY = 11, the outcome distribution will
be of the form of case 2 in Sec. III B, implying A

(M)
11 = 1.

This further indicates that at large M we have I(M)
CHSH = 4. A

similar conclusion holds well for the correlations belonging
to the classes PNS = p1CPR + p2D0

s + p3D1
s with s = 3,4.

Therefore, for these classes of correlations, the original weak
microscopic nonlocality becomes maximally nonlocal in the
macroscopic limit under the majority-voting condition.

Class V. Let the probability distribution be given by

PNS = p1CPR + p2D0
1 + p3D0

2 + p4D0
3 + p5D0

4, (26)

with 0 < pi < 1,
∑

pi = 1, and ICHSH = 2 + 2p1.The out-
come probability distribution for the measurement settings
XY = 00,01 is similar to case 6, while for the measurement
settings XY = 10 and XY = 11, they are similar to case 5 and
case 3 in Sec. III B, respectively. So for large M we have

I(M)
CHSH = 2 + 2

(
A

(M)
XY − A

(M)
XY − A

(M)
XY − A

(M)
XY

) = −4. (27)

Thus, in this case also the original weak microscopic nonlocal
correlations become maximally nonlocal (i.e., CHSH value of
4) in the macroscopic limit according to the majority-voting
condition. A similar result holds for the other correlations
of the forms PNS = p1CPR + p2Dr

1 + p3Dt
2 + p4Du

3 + p5Dv
4 ,

with r,t,u,v ∈ {0.1}.
Along the lines of the aforementioned analysis one can

consider any 2-2-2 NS correlation of Eq. (5) and can find its
nonlocal strength in the macroscopic limit.

IV. UNPHYSICAL CORRELATIONS: NONLOCALITY
DISTILLATION AND INFORMATION CAUSALITY

If one believes that nature does not allow one to perform
all distributed computations with a trivial amount of com-
munication or one believes in the principle that the amount
of information that an observer (say, Bob) can gain about
a data set belonging to another observer (say, Alice) using
all of his local resources (which may be correlated with
her resources) and using classical communication obtained
from Alice is bounded by the information volume of the

communication, then, under the these beliefs, not all no-
signaling correlations can be considered physical. In this
context, the nonlocality-distillation and information-causality
principles are two well-known tests to determine whether a
given no-signaling correlation is unphysical.

Nonlocality distillation. This idea was proposed by Forster
et al. [32]. Starting with several copies of a nonlocal box with
a given CHSH value (greater than 2), it is possible via wiring
(classical circuitry to produce a new binary-input–binary-
output box, or, in other words, postprocessing of the data
without any communication) to obtain a final box which has a
larger CHSH value. Using this idea, in Ref. [34], the authors
identified a specific class of postquantum nonlocal boxes
that make communication complexity trivial, and therefore
such correlations are very unlikely to exist in nature. In our
analysis, we find that correlations belonging to classes I and
II in Sec. III C are local in the macroscopic measurement
scenario under majority voting. However, as shown in [33],
these correlations can be distilled arbitrarily close to the
maximally nonlocal correlation, implying trivial communica-
tion complexity; hence such correlations are considered to be
unphysical (according to the aforesaid belief).

Information Causality. Pawlowski et al. proposed the
principle of information causality (IC) as a generalization of
the no-signaling principle. It can be formulated quantitatively
through an information-processing game played between two
parties [21]. If Alice communicates m bits to Bob, the total
information obtainable by Bob, using all his local resources
(which may be correlated with Alice’s resources) and the
classical communications from her, cannot be greater than m.
For m = 0, IC reduces to the standard no-signaling principle.
Both classical and quantum correlations have been proved to
satisfy the IC principle. Furthermore, it has been shown that
if Alice and Bob share arbitrary two-input and two-output
no-signaling correlations, then by applying the protocol of van
Dam [20] and Wolf et al [43], one can derive a necessary
condition for respecting the IC principle, which can be
expressed as

E2
1 + E2

2 � 1, (28)

where Ei = 2Qi − 1 for i = 1,2 and Q1 = 1
2 [P (a = b|00) +

P (a = b|10)],Q2 = 1
2 [P (a = b|01) + P (a �= b|11)].

For the probability distributions belonging to class V
in Sec. III C, we have E1 = 1 − (p3 + p5) and E2 = 1 −
(p2 + p4). The necessary condition of IC thus implies

p2
1 − 2(p3 + p5)(p2 + p4) � 0; (29)

that is, the probability distributions belonging to class V in
Sec. III C will satisfy the necessary condition of IC as long as
the function F := p2

1 − 2(p3 + p5)(p2 + p4) is not positive.
Since the Bell-CHSH expression for the probability distribu-
tions belonging to class V is 2 + 2p1, they violate Tsirelson’s
bound if p1 >

√
2 − 1 and hence are not quantum. So we

are interested in the range 0 � p1 �
√

2 − 1. Now letting
y = p3 + p5 (clearly, 0 � y � 1) and using the probability
normalization condition, i.e., p1 + p2 + p3 + p4 + p5 = 1,
we get

F = p2
1 − 2y + 2p1y + 2y2. (30)
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FIG. 8. The red surface represents the function F (p1,y) in
Eq. (30). The green surface represents an F = 0 surface. The points
(p1,y) on the right side of the green surface satisfy the necessary
condition of IC.

We plot the function F (p1,y) in Fig. 8, which shows that,
in the ranges of parameter p1 (i.e., 0 � p1 �

√
2 − 1) that

interest us, there exist correlations which satisfy the necessary
condition of IC. Therefore the necessary condition of IC fails
to identify those correlations as unphysical. However, our
earlier analysis points them out as unphysical ones since these
correlations show extreme nonlocal behavior (i.e., Bell-CHSH
value of 4) and hence fail to exhibit the expected classical
feature (i.e., the local behavior of the correlation) in the
macroscopic limit even though at the single-copy level they
do not violate Tsirelson’s bound.

V. CONCLUDING REMARKS

Identifying the set of all quantum correlations is a very
important problem in the research area of quantum foundation.
This also has practical relevance since nonlocal correlations are
resources for various device-independent tasks. In the last few
years, different approaches, based on information-theoretic
or physical principles, have been proposed to identify the
quantum correlations [21,22]. Whereas in [21] the authors
introduced an information-theoretic principle, namely, IC, in
[22] the authors introduced a physical principle, namely, ML.
In this paper we took a different approach which is closer
to the second one. Whereas, according to ML, the coarse-
grained extensive observations of macroscopic sources of M

independent particle pairs should admit a local hidden-variable
model in the limit M → ∞, we considered the majority-voting
approach (like [31]) to get a new probability distribution from
M independent particle pairs and demanded that in the limit
M → ∞ this new correlation should behave locally. For the
simplest scenario (the 2-2-2 case) we showed how one can
characterize which correlations become local and which do
not. Correlations exhibiting nonlocal behavior in the large-M
limit are sure to be unphysical. We also found that for some
sets of correlations, our method is better than the necessary
criterion of the IC principle in identifying them as unphysical
ones. Moreover, our approach identifies some no-signaling
correlations that do satisfy Tsirelson’s bound nonmaximally
but give rise to maximum nonlocality in the macroscopic
measurement setup. For future work it will be interesting to
extend this study to more general input-output correlations
rather than just the 2-2-2 scenario.
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