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In this paper, we introduce an alternative quantum fidelity for quantum states which perfectly satisfies all of
Jozsa’s axioms and is zero for orthogonal states. By employing this fidelity, we derive an improved bound for
quantum-speed-limit time in open quantum systems in which the initial states can be chosen as either pure or
mixed. This bound leads to the well-known Mandelstamm-Tamm–type bound for nonunitary dynamics in the
case of initial pure states. However, in the case of initial mixed states, the bound provided by the introduced
fidelity is tighter and sharper than the obtained bounds in the previous works.
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I. INTRODUCTION

Quantum speed limits (QSLs) are the ultimate bounds
imposed by quantum mechanics on the minimal evolution
time for a quantum state to become orthogonal to itself. QSLs
have been widely investigated since the appearance of the first
major result by Mandelstamm and Tamm [1]. They derived
a QSL limit time bound for a quantum system that evolves
between two pure orthogonal initial and final states under
the time-independent Hamiltonian H . The bound is given
by τ � πh̄/(2�E), where �E is the variance of the energy.
Later Margolus and Levitin [2] provided a different QSL
time bound for a closed system read, τ � πh̄/(2E), where
E is the mean energy with respect to the ground state. Both
the Mandelstamm-Tamm and Margolus-Levitin bounds are
attainable in closed quantum systems for initial pure states,
while for general mixed states they can be rather loose.
Since any system is coupled to an environment, an analogous
bound for an open quantum system is highly desirable. Taddei
et al. [3] extended the Mandelstamm-Tamm–type bound to
both unitary and nonunitary processes described by positive
nonunitary maps by using quantum Fisher information for time
estimation. However, for the case of the initial mixed states, it is
hard to evaluate the bound due to minimization of the quantum
Fisher information in the enlarged system-environment space.
Later Deffner and Lutz [4] extended both Mandelstamm-
Tamm and Margolus-Levitin bounds to an open quantum
system by exploiting Caushy-schwarz and von Neumann trace
inequality, respectively. They showed that the non-Markovian
effect leads to the faster quantum evolution. However, their
bound is derived from pure initial states and cannot be applied
to the mixed initial states. Also del Campo et al. [5] derived
an analytical and computable QSL bound for open quantum
systems by exploiting the relative purity. Relative purity can
make a distinction between two initial pure states; however, it
may fail as a distance measure between two initial mixed states.
Recently Sun et al. [6] derived another quantum speed limit
bound for open quantum systems by employing an alternative
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fidelity introduced in Ref. [7] where the initial states can be
chosen as either pure or mixed. However, their bound is not
tight, and the alternative fidelity which they used as a distance
measure is not monotone under quantum operations and fails
to satisfy one of Jozsa’s four natural axioms [8].

In this paper, we first propose an alternative definition
of quantum fidelity between quantum states which perfectly
satisfies all of Jozsa’s four axioms. In addition, our preliminary
numerical calculations show that the proposed fidelity is
monotone under quantum operations. Also this fidelity is
zero when two density matrices are orthogonal, the criterion
which cannot be satisfied by some previously introduced
fidelities [12–14]. By employing this fidelity and applying
Caushy-schwarz inequality, we derive a QSL time bound
for open quantum systems where the initial state can be
chosen as either pure or mixed. This bound leads to the
Mandelstamm-Tamm–type bound for nonunitary dynamics in
the case of initial pure states. However, in the case of initial
mixed states, the obtained bound is tighter and sharper than
the bounds provided by previous work.

The work is organized as follows. In Sec. II we introduce an
alternative fidelity and discuss its basic properties. In Sec. III
we derive the QSL time bound by exploiting the new fidelity.
Section IV is devoted to demonstrating the performance
of QSL time bound obtained by the introduced fidelity by
considering a two-level atomic system coupled resonantly to
a leaky vacuum reservoir. Finally, the paper is ended with a
brief conclusion.

II. PROPERTIES OF THE ALTERNATIVE FIDELITY

In order to derive a QSL time bound for open quantum
systems, we should use a distance measure between two
quantum states. Among the distance measures, the Bures
fidelity is the most important one for quantum computation
and quantum information processing [9–11]. This fidelity for
two general mixed states ρ and σ is given by

F (ρ,σ ) = [Tr(
√

ρ1/2σρ1/2)]2. (1)

It is well known from Ref. [8] that any generic notion of
fidelity defined for mixed states, such as the Bures fidelity,
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should satisfy Jozsa’s four natural axioms:
(A1) 0 � F (ρ,σ ) � 1 and F (ρ,σ ) = 1 if and only if ρ = σ .
(A2) F is symmetry under swapping of two states, i.e.,

F (ρ,σ ) = F (σ,ρ).
(A3) F (ρ,σ ) is invariant under unitary transformations on

the state space.
(A4) If one of the states is pure (σ = |ψ〉〈ψ |), the fidelity

reduces to F (ρ,|ψ〉〈ψ |) = 〈ψ |ρ|ψ〉.
Also, the Bures fidelity has additional properties such

as multiplicativity under tensor product, monotonicity under
quantum operations, and concavity. It should be noted that
monotonicity under quantum operations is the most important
property from a quantum information point of view and
QSLs [15]. Therefore, the Bures fidelity in Eq. (1) is,
fundamentally, the most suitable fidelity where the properties
of other constructed fidelities are compared with the properties
of this one. However, due to the difficulty in calculating the
Bures fidelity, attempts have been made to find an alternative
fidelity to avoid this difficulty. Wang et al. [7] proposed an
alternative fidelity in terms of their Hilbert-Schmidt inner
product and their purities, which reads as

F1(ρ,σ ) = Tr(ρσ )√
Tr(ρ2)Tr(σ 2)

. (2)

Recently Sun et al. [6] derived an analytical and computable
quantum speed limit bound for open quantum systems by
exploiting F1 in Eq. (2). However, one can easily find that F1

fails to satisfy the fourth axiom, and thus it may introduce some
defects into derivation of a quantum speed limit (as will be seen
in Sec. III). By comparing with the additional properties of the
Bures fidelity, F1 is multiplicative; however, it is not concave
and it is not monotone under quantum operations [11]. Thus
F1 is not a suitable distance measure. Another fidelity was
defined by Miszczak et al. [12] and Mendonça et al. [13],
which reads as

F2(ρ,σ ) = Tr(ρσ ) +
√

1 − Tr(ρ2)
√

1 − Tr(σ 2). (3)

Also Chen et al. [14] defined the following fidelity, which is
essentially the same as F2:

F3(ρ,σ ) = 1 − r

2
+ 1 + r

2
F2(ρ,σ ), (4)

where r = 1/(d − 1) and d is the dimension of the Hilbert
space. F2 and F3 satisfy all of Jozsa’s four axioms. Although F2

and F3 are identical in d = 2 and they reduce to an equivalent
Bures fidelity (1), for two orthogonal density matrices such as

ρ = 1
2 (|0〉〈0| + |1〉〈1|),

σ = 1
2 (|2〉〈2| + |3〉〈3|), (5)

defined on a four-dimensional Hilbert space spanned by
{|n〉,n = 0,1,2,3}, F2(ρ,σ ) and F3(ρ,σ ) fail to be zero for
d > 2 (in this case d = 4) [7]. Also, F2 is concave; however,
F2 and F3 are not multiplicative and not monotone under
quantum operations [13]. So F2 and F3 are not suitable distance
measures.

In this paper, we propose a new alternative definition of
quantum fidelity between quantum states, which reads as

F(ρ,σ ) =
[

1 +
√

1 − Tr(ρ2)

Tr(ρ2)

√
1 − Tr(σ 2)

Tr(σ 2)

]
Tr(ρσ ). (6)

F satisfies all of Jozsa’s axioms, and it is zero when two
density matrices are orthogonal. It is not difficult to see that F
satisfies Jozsa’s axioms (A2), (A3), and (A4). In the following,
we prove that F satisfies the axiom (A1).

Proof of axiom (A1). We rewrite the Eq. (6) as follows:

F(ρ,σ ) = Tr(ρσ ) +
√

1 − Tr(ρ2)

Tr(ρ2)

√
1 − Tr(σ 2)

Tr(σ 2)
Tr(ρσ ).

(7)

By using the Cauchy-Schwarz inequality, i.e, |Tr(ρσ )| �√
Tr(ρ2)Tr(σ 2) in the second term of Eq. (7), we get

F(ρ,σ ) � Tr(ρσ ) +
√

1 − Tr(ρ2)
√

1 − Tr(σ 2). (8)

Now by considering the inequality Tr(ρσ ) +
√

1 − Tr(ρ2)√
1 − Tr(σ 2) � 1 [13], we reach F(ρ,σ ) � 1. �
Unlike the Bures fidelity, F is not multiplicative under

tensor product because it is super-multiplicative:

F(ρ1 ⊗ ρ2,σ1 ⊗ σ2) � F(ρ1,σ1)F(ρ2,σ2). (9)

This property may introduce, though not certainly, some
defects into the monotonicity property [13]; however, our
numerical search shows that F is monotone under quantum
operations. To prove the inequality (9) we can write

F(ρ1 ⊗ ρ2,σ1 ⊗ σ2) =
[

1 +
√

1 − Tr
(
ρ2

1

)
Tr

(
ρ2

2

)
Tr

(
ρ2

1

)
Tr

(
ρ2

2

)
√

1 − Tr
(
σ 2

1

)
Tr

(
σ 2

2

)
Tr

(
σ 2

1

)
Tr

(
σ 2

2

) ]
Tr(ρ1σ1)Tr(ρ2σ2) (10)

and

F(ρ1,σ1)F(ρ2σ2) =
{

1 +
√[

1 − Tr
(
ρ2

1

)][
1 − Tr

(
σ 2

1

)]
Tr

(
ρ2

1

)
Tr

(
σ 2

1

) }{
1 +

√[
1 − Tr

(
ρ2

2

)][
1 − Tr

(
σ 2

2

)]
Tr

(
ρ2

2

)
Tr

(
σ 2

2

) }
Tr(ρ1σ1)Tr(ρ2σ2). (11)

By defining ri := Tr(ρ2
i ) and si := Tr(σ 2

i ), we have to show that

√
(1 − r1r2)(1 − s1s2) �

√
(1 − r1)(1 − s1)

√
r2s2 +

√
(1 − r2)(1 − s2)

√
r1s1 +

√
(1 − r1)(1 − s1)(1 − r2)(1 − s2). (12)

022115-2



IMPROVED BOUND FOR QUANTUM-SPEED-LIMIT TIME . . . PHYSICAL REVIEW A 95, 022115 (2017)

To this aim, we define two vectors

X =

⎛
⎜⎝

√
r1

√
1 − r2√

r2
√

1 − r1√
1 − r1

√
1 − r2

⎞
⎟⎠ and Y =

⎛
⎜⎝

√
s1

√
1 − s2√

s2
√

1 − s1√
1 − s1

√
1 − s2

⎞
⎟⎠, (13)

with

〈X|Y 〉 =
√

(1 − r1)(1 − s1)
√

r2s2

+
√

(1 − r2)(1 − s2)
√

r1s1

+
√

(1 − r1)(1 − s1)(1 − r2)(1 − s2) (14)

and

〈X|X〉 = (1 − r1r2) and 〈Y |Y 〉 = (1 − s1s2). (15)

Now, by using the Cauchy-Schwarz inequality√
〈X|X〉〈Y |Y 〉 � 〈X|Y 〉, (16)

the inequality (12) is satisfied. �
The fact thatF is supermultiplicative and not multiplicative

may be a sign that it may not have the monotonicity
property of a fidelity. However, the preliminary numerical
search favors the validity of monotonicity property of F and
shows that it is monotonically increasing under completely
positive trace-preserving (CPTP) maps. For example, the
counterexample used to show that F2 in Eq. (3) does not
behave monotonically under CPTP maps in Ref. [13] satisfies
the desired monotonicity property of F . By denoting � and ς

as the two two-qubit density matrices

� = 1

2

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠ and ς = 1

2

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠,

(17)

and by considering the quantum operations of tracing over the
first or second qubit, we have

F(Tr1(�),Tr1(ς )) = 1 > 0 = F(�,ς ) (18)

and

F(Tr2(�),Tr2(ς )) = 0 = F(�,ς ). (19)

Therefore, Eqs. (18) and (19) show that F is monotonically in-
creasing and satisfies the desired monotonicity property under
this map. On the other hand, Ozawa in Ref. [16] showed by the
following counterexample that the Hilbert-Schmit distance,
i.e., DHS(ρ,σ ) = ||ρ − σ ||2HS = Tr[(ρ − σ )2] where ρ and σ

are density matrices, is not monotone. Let us consider

A =

⎛
⎜⎝

0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

⎞
⎟⎠ and B =

⎛
⎜⎝

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

⎞
⎟⎠,

(20)

with

A†A + B†B = I4. (21)

The map E with Kraus operators A and B is completely
positive and trace preserving such that DHS(�,ς ) = 1 while
DHS(E(�),E(ς )) = 2, i.e., DHS(E(�),E(ς )) > DHS(�,ς ). So
by this counterexample, the Hilbert-Schmit distance is not
monotone. In addition, F2(�,ς ) = 1

2 and F2(E(�),E(ς )) = 0,
i.e. F2(E(�),E(ς )) < F2(�,ς ) indicating another argument that
F2 is not monotone (and also is not F3). However, for the
fidelity F , we have F(E(�),E(ς )) = F(�,ς ) = 0, i.e., this
example does not violate the monotonicity of F . Also in this
direction, we examined the monotonicity of F under CPTP
maps with different Kraus operators instead of A and B which
satisfy Eq. (21), and quantum operations of tracing over the
first and second qubit for various pairs of density matrices.
Consequently, we did not find a counterexample for violation
of the monotonicity property of F .

Also our preliminary numerical calculations show that F
satisfies the property of concavity, so the inequality

F(ρ,pσ1 + (1− p)σ2) � pF(ρ,σ1) + (1− p)F(ρ,σ2) (22)

is satisfied for density matrices ρ, σ1, and σ2 numerically.
In conclusion, it is worthwhile to note the point whether
a distance measure (fidelity) can be monotone while it is
not multiplicative or concave. The supermultiplicativity (or
loss of multiplicativity) may destroy the monotonicity of
distance measures [13]. However, it is unknown whether loss
of concavity has the potential to induce a defect into the
monotonicity of distance measures.

III. QUANTUM-SPEED-LIMIT TIME

Now we are in a position to derive a new bound for QSL
time (τQSL) by using the fidelity (6) as a distance measure
introduced in the previous section. The absolute value for the
time derivative of the fidelity F(ρ0,ρt ) is

∣∣∣∣dFdt

∣∣∣∣ =
∣∣∣∣−Tr(ρ̇tρt )[

Tr
(
ρ2

t

)]2

√
1 − Tr

(
ρ2

0

)
Tr

(
ρ2

0

)
√

Tr
(
ρ2

t

)
1 − Tr

(
ρ2

t

)Tr(ρ0ρt ) +
[

1 +
√

1 − Tr
(
ρ2

0

)
Tr

(
ρ2

0

)
√

1 − Tr
(
ρ2

t

)
Tr

(
ρ2

t

) ]
Tr(ρ0ρ̇t )

∣∣∣∣, (23)
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where by using triangle inequality it becomes∣∣∣∣dFdt

∣∣∣∣ �
√

1 − Tr
(
ρ2

0

)
Tr

(
ρ2

0

)
√

Tr
(
ρ2

t

)
1 − Tr

(
ρ2

t

) ∣∣∣∣Tr(ρ̇tρt )Tr(ρ0ρt )(
Tr

(
ρ2

t

))
2

∣∣∣∣ +
[

1 +
√

1 − Tr
(
ρ2

0

)
Tr

(
ρ2

0

)
√

1 − Tr
(
ρ2

t

)
Tr

(
ρ2

t

) ]
|Tr(ρ0ρ̇t )|. (24)

By considering the Cauchy-Schwarz inequality in the second term of Eq. (24), we get∣∣∣∣dFdt

∣∣∣∣ �
√

1 − Tr
(
ρ2

0

)
Tr

(
ρ2

0

)
√

Tr
(
ρ2

t

)
1 − Tr

(
ρ2

t

) ∣∣∣∣Tr(ρ̇tρt )Tr(ρ0ρt )[
Tr

(
ρ2

t

)]2

∣∣∣∣ +
√

Tr
(
ρ2

0

)
Tr

(
ρ̇2

t

) +
√

1 − Tr
(
ρ2

t

)
Tr

(
ρ2

t

) √
1 − Tr

(
ρ2

0

)√
Tr

(
ρ̇2

t

)
. (25)

Integration of Eq. (25) over deriving time τ gives the following inequality for the QSL time bound:

τ � τQSL = |1 − Fτ |
Xτ

, (26)

where Fτ := F(ρ0,ρτ ) is the target value of the fidelity at time τ , and Xτ is defined as

Xτ := 1

τ

∫ τ

0

{√
1 − Tr

(
ρ2

0

)
Tr

(
ρ2

0

)
√

Tr
(
ρ2

t

)
1 − Tr

(
ρ2

t

) ∣∣∣∣Tr(ρ̇tρt )Tr(ρ0ρt )

[Tr(ρt )2]2

∣∣∣∣ +
√

Tr
(
ρ2

0

)
Tr

(
ρ̇2

t

) +
√

1 − Tr
(
ρ2

t

)
Tr

(
ρ2

t

) √
1 − Tr

(
ρ2

0

)√
Tr

(
ρ̇2

t

)}
dt.

(27)

Equation (26) provides an expression for lower bound of QSL
time and can be used to consider for either Markovian or
non-Markovian dynamics. It is interesting to note that in the
case of initial pure states, we have Tr(ρ2

0 ) = 1, and therefore
Eq. (27) turns into

Xτ = 1

τ

∫ τ

0

√
Tr

(
ρ̇2

t

)
dt, (28)

and the target fidelity becomes

Fτ = Tr(ρ0ρτ ). (29)

Substituting Eqs. (28) and (29) into Eq. (26) yields

τ � τQSL = τ |1 − Tr(ρ0ρτ )|∫ τ

0

√
Tr

(
ρ̇2

t

)
dt

, (30)

which is the well-known Mandelstamm-Tamm–type bound for
nonunitary dynamics in the case of initial pure states, the case
which was obtained initially in Ref. [4] by using the Bures
angle as a metric. Note that for a fidelity which does not
satisfy Jozsa’s fourth axiom, the obtained QSL time bound,
by the help of Caushy-Schwarz inequality, fails to reduce to
the Mandelstamm-Tamm–type bound in the case of initial
pure states. Also, it is expected that this deficiency causes
occurrence of difficulties in derivation of a tighter bound in
the case of initial mixed states. For example, F1 reflects both
of these undesirable issues in its respective QSL time bound.
In the next section, we examine our bound (26) by a concrete
open quantum system as a physical model in which the initial
state of the system is generally mixed.

IV. PHYSICAL MODEL

To investigate the performance of the bound (26) for
QSL time, we consider a two-level quantum system which
is resonantly coupled to a leaky vacuum reservoir. The whole

Hamiltonian of the system and the reservoir can be written as

H = 1

2
h̄ω0σz+

∑
k

h̄ωka
†
kak+

∑
k

h̄(gkakσ++g∗
k a

†
kσ−), (31)

where σz is the Pauli matrix and σ+ (σ−) is the Pauli raising
(lowering) operator for the atom with transition frequency
ω0. ak (a†

k) is the annihilation (creation) operator for the kth
field mode with frequency ωk , and gk is the coupling constant
between the kth field mode and the system. The dynamics of
the system can be described by

Lt (ρt ) = γt

(
σ−ρtσ+ − 1

2 {σ+σ−,ρt }
)
. (32)

The spectral density of the reservoir is assumed to have the
Lorentzian form

J (ω) = 1

2π

γ0λ
2

(ω0 − ω)2 + λ2
, (33)

where γ0 is the coupling strength and λ is the width of the
Lorentzian function. The density matrix of the system at time
t can be obtained analytically [17] as

ρ(t) =
(

ρ11(0)|G(t)|2 ρ10(0)G(t)
ρ01(0)G(t)∗ 1 − ρ11(0)|G(t)|2

)
, (34)

where the function G(t) is defined as the solution of the the
integro-differential equation

d

dt
G(t) = −

∫ t

0
dt1f (t − t1)G(t1), (35)

with the initial condition G(0) = 1, and the correlation kernel
f (t − t1) related to the spectral density of the reservoir as

f (t − t1) =
∫

dωJ (ω)ei(ω0−ωk)(t−t1). (36)

Using the Laplace transformation and its inverse, G(t) can be
given by

G(t) = e−λt/2

[
cosh

(
dt

2

)
+ λ

d
sinh

(
dt

2

)]
, (37)
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FIG. 1. QSL time, τQSL, as a function of the coupling strength γ0 (in units of ω0) for initial states (38) with different mixed coefficients
r = 0.1,0.5,0.9,1. (a) The bounds derived from (26) and (b) the bounds obtained from Ref. [6]. λ = 1 (in units of ω0) and τ = 1.

with d =
√

λ2 − 2γ0λ. Also, the time-dependent decay rate

in Eq. (32) is given by γt = −Im(
˙G(t)

G(t) ). The dynamics
is Markovian in the weak-coupling regime γ0 < λ/2 and
becomes non-Markovian for strong coupling γ0 > λ/2. In this
work, we consider a mixed initial state of Werner type

ρ0 = 1 − r

2
I + r|ψ〉〈ψ |, (38)

where I is a 2 × 2 identity matrix, 0 � r � 1, and |ψ〉 =
(|1〉 + |0〉)/√2.

In Figs. 1 and 2, we present the QSL time bounds as
a function of the coupling strength γ0 for the initial states
of Eq. (38) with different mixed coefficients r . Figure 1(a)
represents the QSL time bounds in (26) with parameter λ = 1
and the deriving time τ = 1. We can see that the larger value of
r which corresponds to the higher purity introduces a higher
QSL time bound. As the non-Markovianity behavior grows
in term of γ0, the lower bound decreases with respect to the
mixedness of the initial state, i.e., the speed of evolution for the
initial mixed states grows. Figure 1(b) sketches the obtained

bound from the previous work [6] with the same condition as
Fig. 1(a), which is derived from exploiting F1, i.e., Eq. (2), as a
distance measure. Obviously, the QSL bound obtained in this
paper is tighter than the derived bound in the previous work [6]
for both pure and mixed initial states.

Also, we reexamine our bound with λ = 20 and τ = 1 and
compare it with bound of Ref. [6], as depicted in Figs. 2(a)
and 2(b). Interestingly, for a given r , it is observed that the
new bound not only is again tighter than the bound of Ref. [6]
but also becomes sharper than the case shown in Fig. 2(b).
On the other hand, the sharp decrement of bound (26), when
the environment enters the non-Markovian regime, is more
apparent. Therefore, it can be treated as a better witness of
non-Markovinity in this way.

Moreover, qualitative changes of the QSL time bound
when the dynamics becomes non-Markovian at the critical
point (γ0 = λ

2 ) are more evident for larger values of λ [for
comparison, see Figs. 1(a) and 2(a)]. We also note that if we
take the initial state ρ0 = |1〉〈1|, the bound (26) for λ = 50
is the same as the corresponding bound of the Hilbert-Schmit
norm (Mandelstamm-Tamm–type bound) obtained in Ref. [4].

FIG. 2. QSL time, τQSL, as a function of the coupling strength γ0 (in units of ω0) for initial states (38) with different mixed coefficients
r = 0.1,0.5,0.9,1. (a) The bounds derived from (26) and (b) the bounds obtained from Ref. [6]. λ = 20 (in units of ω0) and τ = 1.
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It should be noted that the interaction term of the Hamilto-
nian (31) corresponds to the amplitude damping channel for
a qubit [18]. Therefore, if the system’s initial state is taken as
ρ0 = |0〉〈0| (the ground state of the two-level system without
excitation), then according to Eq. (34), ρτ = ρ0. Therefore,
the system with this initial state does not evolve in time, so its
speed of evolution is zero (or τQSL = ∞).

V. CONCLUSIONS

We have introduced an alternative fidelity which satisfies
Jozsa’s four axioms. Although the fidelity is not multiplicative,
preliminary numerical calculations show that it is monotone
and concave. Also, we have shown that the introduced fidelity

is zero for any two orthogonal density matrices. Then by
applying this fidelity as a distance measure between initial
and time evolved final states of a quantum system, we have
derived an improved bound for QSL time in open quantum
systems. We have demonstrated that the improved bound
leads to the well-known Mandelstamm-Tamm type bound for
nonunitary dynamics in the case of initial pure states. One the
other hand, we remember from Ref. [15] that a monotonic
distance measure gives a tighter QSL time bound relative to
the other nonmonotonic one, so in this regard it has been
observed that the bound (26) derived from monotonic F (6)
is tighter than the bound derived from nonmonotonic F1 (2)
in Ref. [6]. Finally, we have demonstrated that the improved
bound decreases sharply in the non-Markovian regime.
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