
PHYSICAL REVIEW A 95, 022113 (2017)

Quantum evolution in the stroboscopic limit of repeated measurements
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We consider a quantum system dynamics caused by successive selective and nonselective measurements of the
probe coupled to the system. For the finite measurement rate τ−1 and the system-probe interaction strength γ we
derive analytical evolution equations in the stroboscopic limit τ → 0 and γ 2τ = const, which can be considered
as a deviation from the Zeno subspace dynamics on a longer time scale T ∼ (γ 2τ )−1 � γ −1. Nonlinear quantum
dynamics is analyzed for selective stroboscopic projective measurements of an arbitrary rank. Nonselective
measurements are shown to induce the semigroup dynamics of the system-probe aggregate. Both nonlinear
and decoherent effects become significant at the time scale T ∼ (γ 2τ )−1, which is illustrated by a number of
examples.
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I. INTRODUCTION

Measurements naturally provide some information about
the system involved. In quantum physics, no information can
be gained without disturbance of the system [1,2]. The ultimate
form of such a disturbance takes place in projective measure-
ments, when the observation of a particular outcome i leads
the system into the state |ψi〉 (conditional state preparation).
The mathematical form of the noise and disturbance relation
has been recently found for general fuzzy observables [3].
The effect of system disturbance becomes more visible in
sequential and repeated measurements.

By repeated measurements we mean successive measure-
ments of the same quantum observable. For instance, a high
repetition rate of the same projective measurement results
in the quantum Zeno effect [4], in which the system state
dynamics is frozen. Nonprojective repeated measurements
at finite frequency may also lead to a perfect freezing [5].
However, the accelerated decay is more ubiquitous in the case
of a slow repetition rate of measurements (anti-Zeno effect)
[6–8]. Since the conditional output state is nonlinearly related
with the input density operator, other nontrivial dynamics
is possible including the emerging chaotic behavior [9,10].
Repetitive measurements enable maintenance of quantum
coherence in the presence of noise [11] or acceleration of
decoherence [12]. Repeated selective measurements are appli-
cable in ground-state cooling [13]. Repetition of nonselective
measurements at particular time moments allows controlling
the probability of transitions between qubit levels [14].

By sequential measurements we mean successive mea-
surements of different noncommuting quantum observables.
Statistics of general sequential measurements may exhibit the
properties of undecidability [15], universality with respect to
the construction of a joint observable [16], and informational
completeness for state tomography [17,18]. Moreover, sequen-
tial measurements find applications in estimation of quantum
system parameters [19], process tomography [20], one-way
quantum computing [21], channel decoding [22], and detection
[23] and generation [24] of nonclassical correlations.

Periodic interventions in the quantum system evolution
via unsharp measurements are analyzed in a series of papers
[25–29]. In Ref. [25], restricted path integrals are used in
the phenomenological treatment, which is equivalent to the

introduction of non-Hermitian Hamiltonians. A particular
physical realization of continuous measurements is considered
in Ref. [26]. In Refs. [27,28], two-outcome measurements of a
qubit system are considered and the difference equations on the
density operator are obtained by approximating the binomial
distribution of outcomes by the Gaussian form. In Ref. [29],
indirect measurements of a decaying system are realized
via auxiliary states, with such coupling-based measurements
increasing the decay rate.

In the present paper, we develop the ideas of indirect
measurements by introducing a probe which interacts with the
system and is periodically measured in equal time intervals τ .
The primary goal is to analyze the system dynamics caused
by repeated measurements. The system-probe interaction
Hamiltonian is arbitrary, with γ being the characteristic
coupling strength. Our aim is to study the measurement-
induced system dynamics at a time scale T ∼ (γ 2τ )−1 in
contrast to the interaction time scale Tint ∼ γ −1. We show that
in the stroboscopic limit τ → 0, γ 2τ = const, the resulting
evolution allows an analytical solution for both selective and
nonselective measurements. The stroboscopic limit implies
γ τ � 1, so the derived analytical solutions are valid at time
T � Tint and can be interpreted as deviations from the Zeno
dynamics at longer times. Note that we consider strobo-
scopic dynamics, which differs from so-called stroboscopic
nondemolishing measurements of periodic quantities [30–33].
Conceptually, our approach is similar to that in Ref. [34], where
the coupling dynamics is intervened by resets of the probe
state or by renewal of the environment (cf. the collision model
[35,36]). However, the nonselective measurements cannot be
reduced to resets, which differs in our model from those studied
previously. Interestingly, the stroboscopic condition γ 2τ =
const resembles the analogous condition in the stochastic limit
for calculating dominating contributions of the open system
dynamics at long times [37].

The paper is organized as follows. In Sec. II, we formulate
the problem of quantum evolution due to indirect stroboscopic
measurements. In Sec. II A, we show that frequent observa-
tions of the probe via selective rank-1 projective measurements
(γ τ � 1) effectively freeze the probe evolution (Zeno sub-
space effect [38]) but the system evolution is nonlinear and
can be described by the analytical effective Hamiltonian at
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a time scale T ∼ (γ 2τ )−1. The introduced stroboscopic limit
differs from the conventional limit in Zeno subspace effects
[38,39] and describes longer times when nonunitary effects
become significant. In Sec. II B, projective measurements of an
arbitrary rank r are considered. Such measurements enable the
probe to evolve nontrivially within the measurement-invariant
subspace, which affects the system evolution too. In Sec. III,
general nonselective measurements of the probe are considered
and a semigroup property of the system-probe dynamics is
derived. In Sec. IV, brief conclusions are outlined.

II. DYNAMICS UNDER STROBOSCOPIC SELECTIVE
MEASUREMENTS

Let Hsys and Hpr be the system and probe Hilbert spaces,
respectively. For the sake of simplicity we assume that both
Hsys and Hpr are finite dimensional. By B(Hsys) and B(Hpr)
we denote the linear spaces of operators acting on Hsys and
Hpr, respectively. Any system-probe Hamiltonian H admits
the resolution

H = γ
∑

j

Aj ⊗ Bj , (1)

where the dimensionless operators Aj ∈ B(Hsys) and Bj ∈
B(Hprobe) have operator norms ‖Aj‖∞ and ‖Bj‖∞ ≤ 1, with
‖A‖∞ = maxψ : 〈ψ |ψ〉=1

√
〈ψ |A†A|ψ〉. The parameter γ de-

fines a characteristic strength of the system-probe interaction.
Hereafter we assume the Planck constant h̄ = 1, so energy has
the dimension of frequency.

Let � be the aggregate density operator on Hsys ⊗ Hpr,
which describes the system and probe altogether (�† = � ≥ 0,
tr[�] = 1). Then the unitary evolution of duration t reads

Ut [�] = e−iH t � eiHt . (2)

The probe is being measured repeatedly after equal time
intervals τ , see Figs. 1 and 2. We will refer to such an
interrupted dynamics as a stroboscopic evolution. Note that
this concept differs from stroboscopic measurements discussed
in [30–33]. By time t = T the number of performed measure-
ments equals N = �T/τ�. If all those measurements resulted
in the outcomes i1, . . . ,iN sequentially, then the system-probe
transformation is described by the following trace-decreasing
map:

�T = UT −Nτ ◦ IiN ◦ · · · ◦ Uτ ◦ Ii2 ◦ Uτ ◦ Ii1 , (3)

where ◦ denotes concatenation of maps and IiN is the
instrument describing the system-probe transformation if the
outcome iN is observed. Namely, the instrument is a com-
pletely positive trace-decreasing map such that the conditional

i

system

probe

i i1 2 N

FIG. 1. Stroboscopic selective measurements of the probe result
in a nonlinear dynamics of the system.

Hint

probesystem

i

kerPir

FIG. 2. Schematic of stroboscopic evolution. Probe is being
measured at successive moments with equal time intervals τ between
them. Characteristic strength of the system-probe interaction is γ .
Rank-r measurements of the probe restrict the system-probe evolution
to the subspace Hsys ⊗ Hr , where Hpr = Hr ⊕ kerPi .

output state is

�i = Ii[�]

tr[Ii[�]]
. (4)

The probability of realization of the map (3) for a given initial
density operator � equals p� = tr[�T [�]], where tr[�] = 1.
Tracing out the probe, we get the system density operator
evolution

�sys(T ) = trpr

{
�T [�(0)]

tr[�T [�(0)]]

}
. (5)

We consider in detail the situation when the outcomes
i1, . . . ,iN = i are all coincident. Physically, the probability of
such a sequence of outcomes is quite high if γ τ � 1 because
this case corresponds to the quantum Zeno effect for the probe.
This scheme resembles the repetition of pre- and post-selected
measurements with identical pre- and post-selected states of
the probe (state |i〉; see, e.g., the review [40]); however, no
actual measurement of the system state is performed. Instead,
the induced system dynamics is the primary goal of the study.

Observation of coincident outcomes ik = i, k = 1, . . . ,N

results in the following transformation:

�T = UT −�T/τ�τ ◦ (Uτ ◦ Ii)
�T/τ�. (6)

For projective measurements the instrument Ii takes the form
of a trace-decreasing map with a single Kraus operator:

Ii[�] = Ci�Ci, Ci = Isys ⊗ Pi, (7)

where Pi is a projector Pi = P 2
i ∈ B(Hpr). We will refer to

r = rankPi as the rank of the measurement. If r = 1, then
Pi = |ϕ〉〈ϕ| and the observation of outcome i means that
the probe state reduces to |ϕ〉〈ϕ|. If r = dimHpr, then such
a measurement is completely uninformative as Pi = Ipr, the
identity operator on the probe Hilbert space (no measurement
in fact). The intermediate case 1 < r < dimHpr leaves some
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freedom for the probe evolution in the subspace Hr = suppPi ,
where suppPi denotes the support of operator Pi (see Fig. 2).

It is natural to suppose that the initial state of the
system and probe is factorized, i.e., �(0) = �sys(0) ⊗ �pr(0),
with supp�pr(0) ⊆ suppPi , which is guaranteed by the first
measurement. The system evolution

�sys(t) = trpr

{
�t [�sys(0) ⊗ �pr(0)]

tr[�t [�sys(0) ⊗ �pr(0)]]

}
(8)

is nonlinear if H and Ci do not commute. Even though Eq. (8)
is rather complicated, the approximate analytical solution can
be found if the coupling strength γ and the stroboscopic
period τ are appropriately related. In what follows, analytical
solutions are derived and compared with the exact ones for
various ranks r of the projector Pi .

A. Analytical solution for rank-1 projectors

If r = 1, then Ci = Isys ⊗ |ϕ〉〈ϕ| and �pr(0) = |ϕ〉〈ϕ| for
some fixed vector |ϕ〉 ∈ Hpr. We suppose the projective
measurements are ideal and can be realized with a proper
energy of the measuring device [41]. Rank-1 projectors are
usually considered in the analysis of Zeno and anti-Zeno
effects; however, our case crucially differs from those because
the measurements are performed on the probe and not on
the system itself. Though the probe dynamics is effectively
frozen if γ τ → 0, the system continues evolving. If γ (T −
�T/τ�τ ) � 1, then the action of map �T can be approximated
as follows:

�T [�] ≈ (Uτ ◦ Ii)
T/τ [�] = K�K†, (9)

where

K = [G(γ τ )]T/τ , (10)

G(γ τ ) =
∞∑

k=0

∑
j1,...,jk

(−iγ τ )k

k!
Aj1 · · · Ajk

〈
Bj1 · · ·Bjk

〉
,

〈
Bj1 · · · Bjk

〉 = 〈ϕ|Bj1 · · · Bjk
|ϕ〉. (11)

If T/τ is an integer, then Eq. (9) becomes exact. The
approximate form of the Kraus operator K can be rewritten in
the following form:

K = exp

{
−iT

[
i

τ
ln G(τγ )

]}
, (12)

which can be simplified under the circumstances

τ → 0, γ 2τ = � = const, (13)

referred to as a stroboscopic limit.
The physical meaning of the stroboscopic limit (13) is

that γ τ → 0, i.e., the probe dynamics is effectively frozen
(the quantum Zeno effect) but the system dynamics is not
frozen. The mathematical machinery is as follows. Changing
the variables γ and τ by � = γ 2τ and 	 = √

τ , one can expand

the logarithm in Eq. (12) in the vicinity of 	 = 0:

ln G(
√

�	) = −i
√

�	
∑

j

Aj 〈Bj 〉

−�	2

2

∑
jk

AjAk(〈BjBk〉 − 〈Bj 〉〈Bk〉)

+O(	3). (14)

Substituting Eq. (14) in Eq. (12) yields

K = e−iHeffT , (15)

where the effective Hamiltonian Heff reads

Heff = H1 − iH2 + O(
√

τ ), (16)

H1 = γ
∑

j

Aj 〈Bj 〉, (17)

H2 = �

2

∑
jk

AjAk(〈BjBk〉 − 〈Bj 〉〈Bk〉). (18)

Both H1 and H2 are Hermitian and, besides, H2 ≥ 0. In
fact, it is not hard to see that H2 = τ

2 D
†
i Di , where Di =

(I − Ci)HIsys ⊗ |ϕ〉. The fact H2 ≥ 0 implies the trace-
decreasing property of the map (9). Note that H2 �= 0 if
and only if (I − Ci)HCi �= 0, i.e., the original Hamiltonian
causes transitions between the sectors suppPi and kerPi . The
covariance matrix Mjk = 〈BjBk〉 − 〈Bj 〉〈Bk〉 quantifies the
intensity of such transitions.

The normalized system state �sys(T ) satisfies the nonlinear
equation

∂�sys

∂T
= −i[H1,�sys] − {H2,�sys} + 2tr(H2�sys)�sys, (19)

where {·,·} denotes the anticommutator. The purity parameter
tr[�2

sys] evolves nonmonotonically in general because the sign
of the derivative

∂

∂T
tr
[
�2

sys

] = 4
(
tr
[
�2

sys

]
tr[H2�sys] − tr

[
H2�

2
sys

])
(20)

depends on H2 and �sys. Suppose the initial state �sys(0) is
pure. Then the approximate dynamics (19) preserves purity of
the initial state and the evolution of system state vector |ψ〉
satisfies

i
∂|ψ〉
∂T

= (H1 − iH2)|ψ〉 + i〈ψ |H2|ψ〉 |ψ〉. (21)

Analogous equations are used in stochastic interpretation
of open quantum system dynamics [42]. If we recall the exact
dynamics according to Eq. (8), then at each time t = nτ , n ∈
N, the exact density operator �sys(nτ ) is also pure as a result
of the measurement performed. In between, the exact density
operator �sys(t) can become mixed, but the less the product
γ τ , the greater the purity tr[�2

sys(t)]. In the stroboscopic limit
(13), the exact dynamics (8) reduces to Eqs. (19)–(21).

Let us illustrate the developed theory for a physical system
of two coupled qubits (dimHsys = dimHpr = 2), one of which
is being frequently measured with a finite rate τ−1.

Example 1. Let two qubits interact with Hamiltonian
H = γ

2

∑3
j=0 σj ⊗ σj , where σ0 = I and (σ1,σ2,σ3) is the

conventional set of Pauli operators (Heisenberg Hamiltonian
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for spins). By Uτ = e−iHτ denote the evolution operator for a
period τ . Suppose Pi = �pr(0) = |↑〉〈↑|, where σ3|↑〉 = |↑〉
and σ3|↓〉 = −|↓〉, i.e., one stroboscopically measures the
particular spin projection of the probe qubit. Then

Uτ |ψ〉 ⊗ |↑〉 = cos γ τ |ψ〉 ⊗ |↑〉 − i sin γ τ |↑〉 ⊗ |ψ〉, (22)

and the Kraus operator for a period τ reads Kτ = (Isys ⊗
Pi)Uτ = e−iγ τ |↑〉〈↑| + cos γ τ |↓〉〈↓|. Since (cos γ τ )T/τ →
exp (− 1

2�T ) in the stroboscopic limit (13), K = K
T/τ
τ =

exp(−iHeffT ), where the effective system Hamiltonian reads

Heff = γ |↑〉〈↑| − i
�

2
|↓〉〈↓|. (23)

Formula (16) gives the same result. Suppose the initial system
state is |ψ(0)〉 = α|↑〉 + β|↓〉, |α|2 + |β|2 = 1, then at time
T = Nτ the probability to find the system in the state |↑〉
equals

p↑ = |α|2
|α|2 + (cos γ τ )2N |β|2 ≈ |α|2

|α|2 + e−�T |β|2 , (24)

where the left-hand side of Eq. (24) is the exact expression and
the right-hand side is obtained via the effective Hamiltonian.
Comparison of exact numerical and approximate analytical
results is presented in Fig. 3.

The nonlinear effects become relevant at time ∼ �−1 with
the increase in the probability of error perr = 1 − p�, which
happens when the measurement outcome ik �= i. In Example 1,
perr = |β|2(1 − e−�T ). Therefore, there is a tradeoff between
nonlinearity and the probability of its physical observation.

B. Analytical solution for rank-r projectors

Let us now consider the case when Pi in Eq. (7) is a rank-r
projector. Physically it corresponds to a measurement of a
incomplete set of variables. For instance, measurement of the

1 2 3 4 5 6 7 8 9 10
T

0.2

0.4

0.6

0.8

1

FIG. 3. Comparison of exact (dots) and analytical (solid line)
expressions (24) for probability of finding the qubit system in the
excited state at time T as a result of the stroboscopic evolution
(8) and its description via the effective Hamiltonian (16) with
γ = 5, τ = 0.04, � = 1, and the initial state of the system is
|ψ(0)〉 = α|↑〉 + β|↓〉, where |α|2 = 0.01, |β|2 = 0.99 (bottom line),
|α|2 = 0.2, |β|2 = 0.8 (middle line), and |α|2 = 0.6, |β|2 = 0.4 (top
line). Dashed line corresponds to the evolution with initial state
|ψ(0)〉 = |↑〉.

square of the spin angular momentum, s2, and observation
of the outcome s(s + 1) does not specify the spin projection
m = s,s − 1, . . . , − s, i.e., r = 2s + 1. Due to degeneracy of
Pi , the probe is not frozen (in contrast to r = 1), which is
known as a Zeno subspace effect [38,39]. The probe dynamics
is restricted to the subspace suppPi , and the subspace kerPi

is forbidden (see Fig. 2). Thus, the system-probe dynamics
takes place in the space Hsys ⊗ Hr and can be additionally
simplified if condition (13) is fulfilled.

Introduce the operators

Gj = PiBjPi, Gjk = PiBjBkPi, (25)

which generalize Eq. (11). Restricting ourselves to the sub-
space suppCi , we see that the operator Ci acts as the identity
operator on all vectors |ξ 〉 ∈ suppCi . In the domain suppCi we
have

ln

⎡
⎣Ci − iγ τ

∑
j

Gj − γ 2τ 2

2

∑
jk

Gjk + O((γ τ )3)

⎤
⎦

= −iγ τ
∑

j

Gj − γ 2τ 2

2

∑
jk

(Gjk − GjGk) + O((γ τ )3).

Continuing the same line of reasoning as in Sec. II A, we
obtain in the stroboscopic limit (13) that the system-probe
density operator � evolves in the subspace suppCi according
to the following equation:

�(T ) = �T [�sys(0) ⊗ �pr(0)]

≈ e−iHeffT �sys(0) ⊗ �pr(0)eiH
†
effT , (26)

where the effective Hamiltonian Heff reads

Heff = H1 − iH2 + O(
√

τ ), (27)

H1 = γ
∑

j

Aj ⊗ Gj, (28)

H2 = �

2

∑
jk

AjAk ⊗ (Gjk − GjGk). (29)

By the same arguments, the term H2 = τ
2 trpr[CiH (I −

Ci)HCi] ≥ 0 is responsible for the trace decreasing.
Despite the fact that the system-probe dynamics is governed

by the effective Hamiltonian (27), the dynamics of system state
�sys is not described by the effective Hamiltonian in general
and must be obtained via tracing out the probe. Comparison of
the exact system evolution [given by Eqs. (3) and (8)] and the
approximate analytical system evolution [given by Eqs. (26)
and (8)] is presented in the following examples.

Example 2. Consider three qubits (labeled a, b, c),
where qubit a is a system and two qubits b and c repre-
sent a probe. Let Pi = |S = 0,M = 0〉〈S = 0,M = 0| + |S =
1,M = 0〉〈S = 1,M = 0| be a projector onto the subspace
with zero total spin projection of the probe. In conventional
notation Pi = |↑b↓c〉〈↑b↓c| + |↓b↑c〉〈↓b↑c|, rankPi = 2.
Suppose the Heisenberg interaction Hamiltonian of three
qubits in local external fields, H = γ (−→σ a−→σ b + −→σ b−→σ c +−→σ c−→σ a + σa

x + σb
y + σ c

z ). Then stroboscopic measurements
with τ = 0.04 and γ = 5 satisfy γ τ � 1, and the strobo-
scopic theory can be applied. Comparison of the exact and
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FIG. 4. Qubit evolution �sys(t) = 1
2 [I + ∑3

i=1 ri(t)σi] as a result
of system-probe nonlinear stroboscopic dynamics. Discontinuous line
depicts the exact evolution and emphasizes the stroboscopic character
of measurements [Eqs. (6) and (8)]. Continuous black line is the
analytical approximate solution. (a) Limit cycle in Example 2; (b)
dynamics inside the Bloch ball in Example 3.

approximate dynamics of qubit a is depicted in Fig. 4(a).
Dynamics represents a limit cycle, which manifests the
nonlinear character of evolution.

Example 3. In the above example of three qubits
(labeled a, b, c), change the projector Pi = |S = 1,M =
1〉〈S = 1,M = 1| + |S = 1,M = −1〉〈S = 1,M = −1| =
|↑b↑c〉〈↑b↑c| + |↓b↓c〉〈↓b↓c| and consider the Heisenberg
interaction Hamiltonian of three qubits in a global external
field, H = γ (−→σ a−→σ b + −→σ b−→σ c + −→σ c−→σ a + σa

z + σb
z + σ c

z ).
Stroboscopic measurements with τ = 0.02 and γ = 2

√
2

satisfy γ τ � 1, and one can use the approximate formula
of the stroboscopic limit. Comparison of the exact and
approximate dynamics of qubit a inside the Bloch ball is
depicted in Fig. 4(b). The decrease of the system state purity
can be attributed to the entanglement between the system
and the probe. In fact, map (26) is bipartite with respect
to the system and the probe; entanglement-preserving and
entanglement-annihilating properties of bipartite maps are
characterized [43].

These examples show that the analytical approximate
results are in perfect agreement with the exact numerical ones.

III. STROBOSCOPIC LIMIT FOR NONSELECTIVE
MEASUREMENTS

For the sake of generality we do not single out the system
and the probe in the beginning of this section, so we deal with
a general Hilbert space Hsys+pr. Let us consider a nonselective
projective measurement described by the trace-preserving
completely positive map (measurement channel)

�[�] =
m∑

i=1

Ci�Ci, (30)

where each operator Ci = C2
i is a projector and m is a number

of Kraus operators,
∑m

i=1 Ci = I . There is no restriction on
the dimension of projectors, i.e., dim suppCi is arbitrary, with∑m

i=1 dim suppCi = dimHsys+pr. Note that

� ◦ � = �, (31)

since CiCj = δijCj .

system

probe

FIG. 5. Stroboscopic nonselective measurements. Though the
unitary evolution is interrupted by measurements (30), the dynamics
is not frozen in supp�.

Suppose nonselective measurements (30) are performed
successively after equal time intervals of duration τ , with the
intermediate unitary evolution being described by Eq. (2),
see Fig. 5. Such stroboscopic dynamics with nonselective
measurements defines the dynamical map

�T = UT −Nτ ◦ � ◦ · · · ◦ � ◦ Uτ ◦ � ◦ Uτ , (32)

which describes the exact evolution. It is natural to assume that
the initial state �(0) is an eigenstate of �, i.e., �[�(0)] = �(0).
If this is not the case, one can set t = 0 at the moment of the
first measurement.

At times T = nτ , n ∈ N, the transformation �T maps any
operator into supp�. For instance, the density matrix at such
time moments has the form

�(T ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ(1)(T )

ρ(2)(T )
0

. . .

0
ρ(m)(T )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(33)

in the basis of eigenvectors of Ci , where ρ(i)(T ) is a restriction
of the operator

�(i)(T ) = Ci�(T )Ci (34)

to the subspace suppCi . Equation (34) would represent a
conditional density operator if the outcome i was observed.
In other words, ρ(i)(T ) is a nonzero minor of the matrix
representation of �(i)(T ) in the basis of eigenvectors of Ci .

In what follows we derive analytical equations for the
approximate dynamics of �(T ) in supp� in the stroboscopic
limit. For the sake of generality we do not impose any
restrictions on the Hamiltonian H except extracting its
characteristic strength explicitly, i.e., H = γ h, where h is
dimensionless and its operator norm ‖h‖∞ ≤ 1. Then the
unitary map Ut = exp(γLt), where the generator L reads

L[�] = −i[h,�]. (35)

An approximate formula for the dynamical map is

�T = � ◦ exp[γ τL] ◦ � ◦ · · · ◦ � ◦ exp[γ τL] ◦ �, (36)
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where we have taken into account that �[�(0)] = �(0). Using
the property (31), we get

�T = [� ◦ exp(γ τL) ◦ �]T/τ =
[ ∞∑

k=0

(τγ )k

k!
� ◦ Lk ◦ �

]T/τ

= exp

{
T

[
1

τ
ln

( ∞∑
k=0

(τγ )k

k!
� ◦ Lk ◦ �

)]}
. (37)

Some algebra in the stroboscopic limit γ 2τ = �, τ → 0 yields

�T = exp (LeffT ), (38)

where the effective dynamical semigroup generator [44,45]
reads

Leff = γ� ◦ L ◦ � + �

2
(� ◦ L2 ◦ � − � ◦ L ◦ � ◦ L ◦ �).

(39)
The fact that the measurement-induced dynamics reduces to a
dynamical semigroup in the stroboscopic limit is in agreement
with the earlier studies, where master equations were derived
for calculation of the modified decay rates [6,46]. To get the
particular form of the generator (39) for the system-probe
Hamiltonian H = γ h, we introduce auxiliary operators

hij = CihCj , (40)

whose physical meaning is the transition between
measurement-invariant subspaces suppCj and suppCi . Note
that hij denotes an operator not a matrix element. We substitute
Eq. (35) into each term of Eq. (39) and expand

� ◦ L ◦ �[�] = −i
∑

i

[hii,�], (41)

� ◦ L ◦ � ◦ L ◦ �[�] = −
∑

i

{
h2

ii ,�
} − 2hii�hii , (42)

� ◦ L2 ◦ �[�] = −
∑
ij

{h†
jihji ,�} − 2hji�h

†
ji , (43)

to get the final expression for the effective dynamical semi-
group generator in the Lindblad form:

Leff[�] = −iγ
∑

i

[hii,�] − �

2

∑
i �=j

({h†
jihji,�} − 2hji�h

†
ji).

(44)
One can see that the nontransition operators hii are responsible
for the unitary evolution, whereas the transition operators hij ,
i �= j are exactly the Lindblad operators responsible for the
dissipation and decoherence. Because h

†
ji = hij , the global

density operator � evolution

∂�

∂T
= Leff� (45)

preserves the block-diagonal structure [Eq. (33)] of the density
operator, i.e., �(T ) = ∑

i �
(i)(T ). Therefore, Eq. (45) reduces

to

∂

∂T

∑
i

�(i) = −iγ
∑

i

[hii,�
(i)]

−�

2

∑
i �=j

({hijhji,�
(i)} − 2hij�

(j )hji). (46)

Taking into account that
∑

i �=j Cj = I − Ci , we simplify

∑
i �=j

{hijhji,�
(i)} = {Cih(I − Ci)hCi,�

(i)}

= {(h2)ii − (hii)
2,�(i)} (47)

and obtain the Hamiltonian dispersion in each block. The
operator (h2)ii − (hii)2 does not vanish only if transition
terms hij are nonzero. Physically, transition terms cause
short-period correlations between suppCj and suppCi , which
are then destroyed by a measurement. Cancellation of those
correlations leads to the decoherence in diagonal blocks �(i),
and the term (h2)ii − (hii)2 quantitatively describes such a
decoherence.

Substituting Eq. (47) into Eq. (46), we obtain

∂

∂T

∑
i

�(i) = −i
∑

i

[
H eff

i �(i) − �(i)
(
H eff

i

)†]

+�
∑
i �=j

hij�
(j )hji, (48)

where the effective non-Hermitian Hamiltonian reads

H eff
i = γ hii − i�

2
[(h2)ii − (hii)

2]. (49)

The first term on the right-hand side of Eq. (48) can be
interpreted as the sum of individual selective evolutions of
individual blocks �(i) in accordance with the results of Sec. II.
The second term on the right-hand side of Eq. (48) describes
the mutual influence of the blocks. Note that the maximally
mixed state � = I/dimHsys+pr is a fixed point of the dynamical
map (38).

Suppose that all projectors Ci are one dimensional, i.e.,
Ci = |i〉〈i|, then the density operator (33) is diagonal, with
diagonal elements being the probabilities pi(T ) to observe
the outcome i. According to Eq. (48), the evolution of these
probabilities has the form of the classical Pauli equation

∂pi(T )

∂T
=

∑
j �=i

[Wj→i pj (T ) − Wi→j pi(T )], (50)

Wj→i = �|〈i|h|j 〉|2, (51)∑
j �=i

Wi→j = �(〈i|h2|i〉 − 〈i|h|i〉2). (52)

Conceptually, Eq. (50) shows that the classical dynamics can
be reproduced from the quantum dynamics in the stroboscopic
limit of nonselective rank-1 projective measurements of the
global system.
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Dynamics of the system and the probe

We now take into account the tensor product structure
of the Hilbert space Hsys+pr = Hsys ⊗ Hpr. Nonselective
projective measurements of the probe correspond to opera-
tors Ci = Isys ⊗ Pi , where Pi = P

†
i = P 2

i ,
∑

i Pi = Ipr, and∑
i rankPi = dimHpr, see Fig. 5.
Evolution of the system density matrix reads

�sys(T ) =
∑

i

trpr�
(i)(T ) (53)

and cannot be reduced to the closed formula ∂
∂T

�sys = Lsys�sys

involving �sys only, since the partial trace of the semigroup
dynamics is not a semigroup dynamics in general. The probe
density matrix evolution exhibits the same property. If Pi =
|i〉pr〈i| for all i, then the probe density operator is diagonal
�pr(T ) = ∑

i pi(T )|i〉pr〈i| and pi(T ) = tr�(i)(T ).
Example 4. Consider a two-qubit system, where the first

qubit plays the role of a system, and the second qubit is a probe.
Let the total Hamiltonian be H = γ h = γ

2

∑3
j=0 σj ⊗ σj , then

h2 = I ⊗ I . Suppose nonselective projective measurement of
the probe qubit in the conventional basis |↑〉,|↓〉, then C1 =
I ⊗ |↑〉〈↑| and C2 = I ⊗ |↓〉〈↓|. A direct calculation yields

h11 = |↑〉〈↑| ⊗ |↑〉〈↑|, (54)

h12 = h
†
21 = |↓〉〈↑| ⊗ |↑〉〈↓|, (55)

h22 = |↓〉〈↓| ⊗ |↓〉〈↓|. (56)

Substituting Eqs. (54)–(56) into Eq. (48), we get the ap-
proximate dynamics of the blocks �(1)(T ) = ρ(1)(T ) ⊗ |↑〉〈↑|
and �(2)(T ) = ρ(2)(T ) ⊗ |↓〉〈↓| constituting the global sys-
tem+probe density operator �(T ):

∂

∂T

(
ρ

(1)
↑↑ ρ

(1)
↑↓

ρ
(1)
↓↑ ρ

(1)
↓↓

)
=

(
0 (−iγ − �/2)ρ(1)

↑↓
(iγ − �/2)ρ(1)

↓↑ −�(ρ(1)
↓↓ − ρ

(2)
↑↑)

)
,

(57)

∂

∂T

(
ρ

(2)
↑↑ ρ

(2)
↑↓

ρ
(2)
↓↑ ρ

(2)
↓↓

)
=

(
−�(ρ(2)

↑↑ − ρ
(1)
↓↓) (iγ − �/2)ρ(1)

↑↓
(−iγ − �/2)ρ(1)

↓↑ 0

)
.

(58)

Suppose the initial state of the probe is |↑〉〈↑| and the initial
state of the system is an arbitrary 2 × 2 density matrix �sys(0),
then ρ(1)(0) = �sys(0) and ρ(2)(0) = 0. Solving the system of
linear equations (57)–(58) and summing �sys(T ) = ρ(1)(T ) +
ρ(2)(T ), we get the system density matrix evolution

�sys(T )

=
(

�
↑↑
sys(0) + 1

2 (1 − e−2�T )�↓↓
sys(0) e(−iγ−�/2)T �

↑↓
sys(0)

e(iγ−�/2)T �
↓↑
sys(0) 1

2 (1 + e−2�T )�↓↓
sys(0)

)
.

(59)

The transformation of the Bloch ball via Eq. (59) is depicted
in Fig. 6. One can readily see that the evolution (59) does
not have a semigroup property, although the global system-
probe dynamics ρ(1)(T ) ⊗ |↑〉〈↑| + ρ(2)(T ) ⊗ |↓〉〈↓| has the
semigroup property.

x

z

FIG. 6. Evolution of the Bloch ball according to Eq. (59),
Example 4, which describes the qubit system evolution when the
coupled probe is stroboscopically measured. Parameter � = 0.1,
snapshot interval �T = 5.

The exact solution of the interrupted evolution (32) is
rather involved for the considered example and no concise
closed formula can be obtained. The larger the number
of measurements N = �T/τ�, the more complicated is the
calculation. We compare the approximate analytical solution
(59) with the exact numerical solutions in Fig. 7, which shows
the agreement between them.

IV. CONCLUSIONS

We have considered the quantum system dynamics under
frequent successive measurements with a finite repetition rate
τ−1 and derived approximate analytical evolution equations
for the time scale T ∼ (γ 2τ )−1, where γ is the characteristic
strength of the Hamiltonian.

1 2 3 4 5 6 7 8 9 10
T

0.2

0.4

0.6

0.8

1

FIG. 7. Comparison of exact (dots) and analytical (solid line)
probabilities of finding the qubit system in the excited state at time T

as a result of the stroboscopic evolution (32) and its approximate form
(59) with γ = 5, τ = 0.04, � = 1, and the initial state of the system
is |ψ(0)〉 = α|↑〉 + β|↓〉, where |α|2 = 0.01, |β|2 = 0.99 (bottom
line), |α|2 = 0.3, |β|2 = 0.7 (middle line), and |α|2 = 0.6, |β|2 = 0.4
(top line). Dashed line corresponds to the evolution with initial state
|ψ(0)〉 = |↑〉.
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In the case of selective rank-1 projective measurements
of the probe, we have obtained the nonlinear system evolu-
tion equation for the most probable sequence of coincident
outcomes. The pure quantum states remain pure in such an
evolution. For selective rank-r projective measurements of the
probe, the system evolution becomes more involved and may
lead to the change of purity, though the dynamics equation
remains nonlinear.

In the case of nonselective measurements, the strobo-
scopic limit γ 2τ = �, τ → 0 results in a general Gorini-
Kossakowski-Sudarshan-Lindblad equation for the system-
probe aggregate, though the reduced evolution of the system
may not exhibit the semigroup property. Finally, a classical
stochastic Pauli equation is obtained for nonselective projec-
tive rank-1 measurements of the system-probe aggregate.

The obtained results can be treated as deviations from
the Zeno subspace dynamics, when the interval between
measurements τ tends to zero and the number of measurements
N = T/τ ∼ (γ τ )−2 tends to infinity. The stroboscopic limit

provides analytical equations, which can be used in the
analysis of experiments with a high but finite repetition
rate of repeated measurements at time scale T ∼ (γ 2τ )−1.
The examples provided show the agreement between the
exact numerical dynamics and the approximate analytical one
whenever γ τ � 1.
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