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Random search for a dark resonance
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A pair of resonant laser fields can drive a three-level system into a dark state where it ceases to absorb and
emit radiation due to destructive interference. We propose a scheme to search for this resonance by randomly
changing the frequency of one of the fields each time a fluorescence photon is detected. The longer the system
is probed, the more likely the frequency is close to resonance and the system populates the dark state. Due to
the correspondingly long waiting times between detection events, the evolution is nonergodic and the precision
of the frequency estimate does not follow from the conventional Cramér-Rao bound of parameter estimation.
Instead, a Lévy statistical analysis yields the scaling of the estimation error with time for precision probing of
this kind.
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I. INTRODUCTION

Quantum systems can act as sensitive probes and field
sensors [1], and since measurements yield random outcomes,
the precision by which the value of a physical parameter can be
determined follows from a statistical analysis. For N repeated,
independent measurements, the estimation error is governed
by the Cramér-Rao bound [2] and the Fisher information [3],
and it scales as 1/

√
N .

Recent works have addressed the complementary situation
of continuous measurements on a single quantum system, and
it was recognized that, e.g., photon counting in a fluorescence
experiment of duration T is equivalent to N ∝ T independent
measurements of the waiting time between consecutive de-
tector clicks [4,5]. The backaction of continuously performed
measurements on a quantum system triggers transient evolu-
tion witnessed in the signal correlation functions [6], and if
they have finite relaxation time, the estimation error based on
the signal mean values and two-time correlations scales as
1/

√
T [6,7].

In this paper, we consider the special case in which
the fluorescence rate of an atomic system vanishes when it
is excited by a laser field on exact resonance. Such dark
resonances occur in connection with the phenomenon of elec-
tromagnetically induced transparency [8,9], and due to their
narrow linewidths, they are sensitive probes of perturbations on
the system; see, e.g., [10–12]. As an alternative to a systematic
scanning and accumulation of signal at different, discrete laser
frequencies, we investigate a random search protocol in which
the probe laser frequency may come arbitrarily close to the dark
resonance. That event is witnessed by the complete absence
of signal and suggests application of the following adaptive
protocol for the duration T of the experiment: The system is
excited at a frequency picked uniformly within a fixed interval,
including the resonance. Whenever a photon is detected, a new
random laser frequency is chosen and the system is excited
until the next photodetection, where the frequency is again
shifted. The protocol is illustrated for a driven �-type system
in Fig. 1(a).
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When driven far from the dark resonance, the high scatter-
ing rate implies a high probability for an early photon detection
and a shift to a different frequency, while for frequencies
close to resonance, the photon emission rate is very small,
and these frequencies are hence maintained for a long time
before the next emission event. We thus expect that the longer
we probe the atom, the more likely are occurrences of long
intervals with laser frequencies close to the dark resonance.
The instantaneous, stochastically tuned laser frequency thus
constitutes a good estimate of the atomic transition frequency.
Due to the distribution of short, long, and very long time
intervals, however, the dynamics is not ergodic, and the
Cramér-Rao bound, which relies on asymptotic normality, can
neither be used to assess the quantitative achievements of the
protocol nor to estimate how the error scales with the duration
of the experiment.

We show here that the problem is tractable by methods
of generalized statistics [13,14] that have been developed
to analyze nonergodic dynamics in, e.g., animal foraging
behavior [15,16], human travel patterns [17], earthquake
occurrences [18], and financial systems [19,20]. In quantum
physics, they have found applications in analysis of anomalous
transport properties of quantum arrays [21], and our approach
is inspired by and closely follows Bardou et al. [22], who
apply Lévy statistics to subrecoil laser cooling mediated
by a dark state mechanism. While we provide quantitative
results and simulations for a specific model, the analysis
is general, and we shall return to wider consequences and
applications of our results in the final sections of the
paper.

In Sec. II, we introduce the atomic model and illustrate our
random search protocol by performing a quantum trajectory
analysis of the photon counting and random frequency shifts.
In Sec. III, we present a Lévy statistical analysis of the search
protocol. We give criteria for the success of our protocol
as an estimation strategy and analyze the scaling of the
estimation precision with time. In Sec. IV, we compare the
random search protocol to a systematic scan across a dark
resonance. Finally, in Sec. V, we provide an outlook on the
generality of our derivations and the applicability of our results
to similar schemes and other systems with dark resonances.
The Appendixes include background material and derivations
of the central results from the main text.
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(a)

(b)

FIG. 1. (a) �-type system driven by laser fields with Rabi
frequency �. The |1〉 ↔ |2〉 coupling laser is kept on resonance while
the |0〉 ↔ |1〉 coupling laser is detuned by an amount δ = ω − ω20,
where ω20 is the atomic resonance frequency. Both emission channels
are monitored by photodetectors, and upon detection in either channel
δ is shifted randomly on a uniform interval with δ ∈ [−δmax,δmax]. (b)
Quantum Monte Carlo simulated trajectory for the detuning δ as a
function of time t . The simulation is made with � = 0.1 �/

√
2 and

δmax = 0.1 �, where �−1 is the excited-state lifetime.

II. ATOMIC MODEL AND TRAJECTORY ANALYSIS

Figure 1(a) depicts the situation of a �-type three-level
quantum system interacting with two laser fields with equal
coupling strengths. Assume that one field is fixed on resonance
while the other is scanned with a detuning δ = ω − ω20 from
the exact resonance in the system. The upper level is unstable
and decays with equal probabilities into the two low-lying
states, which can both be expanded on the dark state |ψ−〉 =
(|0〉 − |1〉)/√2 and the bright state |ψ+〉 = (|0〉 + |1〉)/√2.
The bright state is coupled to the excited state, and after a
short time the system starting in state |0〉 or |1〉 has either
undergone excitation and emitted a photon or been effectively
projected into the dark state [23]. The dark state has a vanishing
excitation rate, but for a finite detuning, the phase difference
between the laser and the dark state atomic components
evolves and leads to an effective photon emission rate R(δ).
This rate is derived in Appendix A and shown as a function of
the detuning δ in Fig. 2. If the coupling laser is tuned slightly
away from resonance, the effective photoemission rate depends
quadratically on the detuning δ, and for a range |δ| < δPDS the
system will be trapped for a long time in a pseudo-dark-state
(PDS). At higher detunings, the excitation rate levels off and
decreases when the detuning exceeds δL � �, the excited state
linewidth.

A characteristic waiting time between subsequent emis-
sions is τ (δ) = 1/R(δ). Ergodicity relies on the ability to
average single trajectories over long times compared to any
intrinsic time scale, but since R(δ) → 0 we have τ (δ) → ∞

Exact
Model

FIG. 2. Effective frequency-dependent photoemission rate from
the dark state |ψ−〉 shown for �/� = 0.1 �/

√
2. The full line shows

the exact rate and the dashed the line shows our simplified model
Eq. (1). Characteristic detunings (see the main text) are annotated.
The rate is an even function of δ. The light shaded area is the trapping
region and the dark shaded area marks the frequency range not
included in the stochastic scan.

for δ → 0, so even a very long time T may be dominated by a
single waiting time with |δ| < δT , where R(δT )T = 1.

We shall restrict the choice of frequencies to an interval
|δ| < δmax, containing the resonance but avoiding the wings
of the absorption profile, δmax < δL. To verify the intuition
behind the scheme, we show in Fig. 1(b) the evolution of the
detuning as a function of time as obtained from a Monte Carlo
wave-function simulation of the continuous measurements
and random frequency jumps [23]. The total duration T is
indeed dominated by a few long intervals with small detuning,
interrupted by brief periods with larger, fluctuating values of
δ. The value of the laser frequency at any random time is likely
to be very close to the atomic resonance frequency.

To obtain analytic predictions for the generic behavior
of our estimation protocol, we shall focus in the following
section on the most significant features and abandon less
important details. The variation of the fluorescence rate R(δ)
by an atom occupying the pseudo-dark-state |ψ−〉 will thus be
approximated by the function

R(δ) =

⎧⎪⎨
⎪⎩

τ−1
0 (δ/δQ)2, |δ| < δQ,

τ−1
0 , δQ < |δ| < δL,

τ−1
0 (δL/δ)2, δL < |δ|.

(1)

This simple form of R(δ), illustrated by the dashed curve in
Fig. 2, is adequate to represent the very long and very short
waiting times attained for δ � 0 and for larger δ, respectively.
The parameters, yielding the best agreement with the actual
rate for the � system illustrated by the solid curve in Fig. 2,
are derived in Appendix A.

III. LÉVY STATISTICAL ANALYSIS

While the simulation illustrates the apparent success of
such an estimation strategy, a quantitative analysis of its
precision and its scaling with T is hampered by the fact that
the probability distribution P (τ ) of dwell times τ between
detection events has a very long tail, and its mean and
variance formally diverge in the interesting regime where
δ → 0. For such problems, e.g., the sum of N waiting times
TN = ∑N

i=1 τ (i) does not obey the central limit theorem (CLT)
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and will not converge to a Gaussian distributed variable
with a mean value proportional to N . Instead, the increasing
probability that a single term attains a very large value and
dominates the sum may cause it to scale as a higher power
of N . This is the characteristic property of Lévy flights, and
P (TN ) is a Lévy distribution [14].

In Fig. 1(b), we see how the evolution is comprised of two
different time scales: In a narrow interval |δ| � δPDS � δQ,
the system occupies the PDS for which the waiting times
are of the order τ ∝ δ−2. A single detector click here will
with overwhelming probability cause a jump to a detuning
|δ| � δPDS, where the waiting times are short and many jumps
occur before the system returns to the narrow PDS detuning
interval. A trajectory thus consists of a number of trapping
intervals τ

(1)
t ,τ

(2)
t , . . . interspersed by recycling periods of

duration τ (1)
r ,τ (2)

r , . . . each containing many detection events.
The competition between trapping and recycling periods is
at the core of our statistical analysis, and the probability
distributions Pt (τt ) of trapping times τt and Pr (τr ) of recycling
intervals τr will suffice to analyze the asymptotic behavior of
our estimation scheme as T → ∞.

For Pt (τt ) we note that since each detuning in the PDS
interval is reached with equal probability, the density of tra-
jectories just returned to the PDS is ρ(δ) = 1

2δ−1
PDS. Upon return

with a given δ, the probability of a trapping time τt is ascribed
by the delay function w(τt |δ), which can be calculated by a
master equation analysis [4,24]. In the limit of predominantly
long waiting times, w(τt |δ) is well approximated by a single
exponential function, w(τt |δ) = R(δ)−1 exp[−τtR(δ)], where
the frequency-dependent emission rate R(δ) vanishes at δ = 0;
cf. Eq. (1).

The distribution Pt (τt ) of trapping intervals is given by
integrating w(τt |δ) over the PDS region with weight ρ(δ), and
for long τt we find

Pt (τt ) �
large τt

μτ
μ

b

τ
1+μ
t

, (2)

where μ = 1/2, and τb = τ0π (δQ/δPDS)2/16. As anticipated
by the arguments above, Pt (τt ) decreases very slowly (as
1/τ

3/2
t ) for large values of τ , and we are in the regime

where standard Gaussian statistics must be replaced by Lévy
statistics.

For a distribution with power-law tails such as Eq. (2),
all moments 〈τn〉 for which n � μ diverge. A well-known
example is a Cauchy distribution, which has μ = 1. The
central limit theorem of Gaussian statistics states that for
μ > 1 the total time spent in the trapping region T

(PDS)
N =∑N

i=1 τ
(i)
t is proportional to N , while for μ < 1 any sequence

is dominated by rare events and the generalized CLT dictates
that asymptotically T

(PDS)
N ∝ N1/μ. See Appendix B for a brief

introduction to broad distributions and the generalized CLT.
The behavior of R(δ) for large δ determines Pr (τr ). When

setting up the protocol, we have a choice in the maximum and
minimum values allowed in the random selection of δ after
each detection event. We assume that a rough prior estimate
restricts the search interval δ ∈ [−δmax,δmax] around ω = ω20.
The symmetry is not of importance since we assume δmax �
δPDS. The properties of Pr (τr ) depend on the value of δmax

compared to the characteristic detunings δQ and δL. If δQ �

δmax < δL, the high δ rate is given by the plateau in Fig. 2,
and as derived in Appendix C we obtain a finite mean value
〈τr〉 = τ0(δmax/δPDS), implying that T

(REC)
N = ∑N

i=1 τ (i)
r grows

linearly with N . For simplicity, we restrict our attention to this
case and defer discussion of the case with δmax > δL to Sec. V.

A. Trapped proportion

The results for the trapping times and recycling intervals
already provide qualitative insight regarding the asymptotic
achievements of our estimation scheme at large times T (large
N ). For δmax < δL, T

(PDS)
N ∝ N2 dominates over T

(REC)
N ∝ N ,

and we expect trajectories to spend most of the time occupying
the PDS. In fact, the time-averaged proportion of time in the
PDS is given by fT (T ) = T

(PDS)
N /(T (PDS)

N + T
(REC)
N ), which by

applying the generalized CLT (see Appendix B) for long times
T can be written fT (T ) = 1 − ξ (〈τr〉 /τb)T (μ−1). This reveals
a time-averaged non-PDS proportion decreasing as 1/

√
T ,

but contrary to ergodic processes with Gaussian statistics it
continues to fluctuate, via the Lévy increment ξ , even in the
high-T limit.

The ensemble averaged proportion of trajectories that will
asymptotically be trapped in the PDS is derived in Appendix D,

fE(T ) � 1 − sin(πμ)

π

〈τr〉
τ

μ

b T 1−μ
, (3)

where we see the same scaling with time T but without
fluctuations. Equation (3) expresses the probability as a
function of time that the laser frequency is within δPDS of the
true resonance frequency, while with a probability 1 − fE(T )
the frequency resides, at the time T , in the recycling region,
and it will not be a good estimator of the resonance frequency.
The convergence of fE(T ) to unity for large T hence signifies
that the random search is a successful estimation scheme. In
Fig. 3 we show how fE(T ) matches the ensemble average
of trajectories such as the one in Fig. 1(b) for large times,
T � 106 �−1.

B. Asymptotic frequency distribution and estimation sensitivity

To address the sensitivity of the random search, we consider
the distribution P(δ,T ) of trajectories with |δ| < δPDS. The
Lévy statistical analysis in Appendix E reveals that P(δ,T )
can be factorized as P(δ,T ) = h(T )G(q), where h(T ) is the
time-dependent height of the distribution, and G(q), where
q = δ/δT , is a form factor. It is a signature of the broken
ergodicity that P(δ,T ) depends explicitly on T and does
not approach a stationary form even for very long times.
We find h(T ) = (τPDS/τb)μ sin(πμ)/(πμδT ), where τPDS =
1/R(δPDS). A general expression for the form factor is given in
Appendix E. It depends only on the value of μ, and for μ = 1/2
it may be expressed as G(q) = D(q)/q, where D(q) is the
Dawson function. The tails of G(q) are Lorentzian ∼1/2q2

and much wider than those of a Gaussian, while its maximum
is flat compared to a Lorentzian.

The important detuning scale is, as anticipated, given
by δT = δQ(τ0/T )μ. This implies that h(T ) ∝ T μ, and the
full width at half-maximum (FWHM) of G(q) is qwδT ∝
T −μ, where for μ = 1/2 we find numerically qw � 2.13.
Since the distribution has long tails, we define the fraction
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FIG. 3. Top: Proportion of trapped trajectories Eq. (3) (with
δPDS = 0.01 �) as a function of time. The dashed line depicts a
quantum jump simulation of 20 000 trajectories with the same
parameters as in Fig. 1(b). It matches the statistical model (full
line) for (very) large times. Bottom: Distribution of the detuning
δ after a long time T = 6 × 106 �−1. The dots show simulated data,
the full line the theoretical result of our statistical analysis, and the
shaded area marks the fraction with |δ| � δT . The inset shows how
the characteristic width δT of the distribution scales as T −1/2 and
matches the model for times larger than ∼105 �−1.

fpeak = ∫ δT

−δT
dδP(δ,T ) of occurrences of final detunings in the

characteristic range |δ| < δT as a measure for the parameter
estimation sensitivity, and we find fpeak � 0.59 independently
of T . This shows that asymptotically a constant part of
the trajectories is within δT ∝ T −μ of the true resonance
frequency. Note that the sensitivity does not depend on the
values of δmax and δPDS as long as δPDS � δmax < δL. For
the � system with μ = 1/2, we hence find a 1/

√
T scaling

of the sensitivity in our estimation protocol. We note that
59% of the distribution within δT corresponds to an � 0.82σ

confidence level if P(δ,T ) was a normal distribution.
In Fig. 3 we show how the ensemble obtained from

simulations until T = 6 × 106 �−1 is well represented by
P(δ,T ). The inset shows the consistency of the theoretical
result for δT with numerical results obtained directly from the
sampled P(δ,T ) as a function of time.

IV. COMPARISON TO A SYSTEMATIC SCAN

We have shown that under certain restrictions our estimation
scheme is successful, but it remains to be seen if it outperforms
standard spectroscopy methods in the same settings. A typical
way to determine a resonance frequency is by observing
florescence as the laser frequency is systematically scanned
over the relevant frequencies with equal time at each point.
The spectrum is reconstructed from the integrated fluorescence
signal at each frequency. Such a scheme lends itself to a
standard analysis relying on the Cramér-Rao bound in a

manner similar to [5,25]. In this section, we perform such
an analysis and compare the performance of a systematic scan
to our stochastic protocol.

Assume first that a scan of total duration T consists in
observing the fluorescence for a time t = T/N at each of a set
of N discrete, equally spaced frequencies {δk}Nk=1 on the search
interval [−δmax,δmax]. A data record D = [n1,n2, . . . ,nN ]T

obtained in a time T then contains the total photocount nk

at each discrete frequency. These are independently sampled,
and we assume that for large T they are normally distributed
with means nk and variances vk . The full data record D then
samples a multivariate normal distribution P (D|θ ) = N (μ,�)
with mean value vector μ = [n1,n2, . . . ,nN ]T and a diagonal
covariance matrix with elements �kk = vk .

The Fisher information for estimating a parameter θ from
such a distribution is well-known,

I(θ ) = ∂μT

∂θ
�−1 ∂μ

∂θ
+ 1

2
Tr

(
�−1 ∂�

∂θ
�−1 ∂�

∂θ

)
, (4)

yielding in this case

I(θ ) =
∑

k

1

vk

(
∂nk

∂θ

)2

+ 1

2

∑
k

(
1

vk

∂vk

∂θ

)2

. (5)

The mean and variance of the photocount at each discrete
frequency follow from the master equation (A2). The mean
fluorescence is nk = T

N
R̃(δ). The photocount variance stems

from temporal signal fluctuations, and it can be expressed as

vk = nk + 2T
∑

i

∫ ∞

0
dτ G̃

(2)
i (τ ), (6)

where the sum runs over the distinct emission channels, and

G̃
(2)
i (τ ) = G

(2)
i (τ ) − Tr(ĉ†i ĉiρss)

2
. The last term in Eq. (6)

determines the deviation from Poissonian counting statistics.
From Eq. (6), we notice that the second term in Eq. (5) does

not scale with T and is hence negligible at large times. Taking
the limit of a continuum of frequencies, N → ∞, we transform
the sum in Eq. (5) to an integral and obtain our final expression
for the Fisher information of estimating a parameter θ by
systematically scanning a laser frequency across a resonance,

I(θ ) = T

2δmax

∫ δmax

−δmax

dδ
1

V (δ)

[
∂R̃(δ)

∂θ

]2

, (7)

where

V (δ) = R̃(δ) + 2
∑

i

∫ ∞

0
dτ G̃

(2)
i (τ ) (8)

is the frequency-dependent photocount variance per time. The
Fisher information Eq. (7) reveals via the Crámer-Rao bound
an uncertainty σ (θ ) = [I(θ )]−1/2, scaling as 1/

√
T with time.

In Fig. 4(a) we show V (δ)/R̃(δ) as a function of the detuning
δ for the �-system considered in the main text. Notice how the
photocurrent exhibits photon bunching and super-Poissonian
counting statistics close to the dark resonance, while it is sub-
Poissonian for intermediate values and again super-Poissonian
away from the resonance.

To compare with the autonomous search protocol presented
in the main text, we show in Fig. 4(b) the Fisher information
Eq. (7) for estimating ω20 by a systematic scan along with
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(a)

(b)

FIG. 4. (a) Dependence on the detuning δ of the photocount
variance per time V (δ) divided by the rate R̃(δ). The dashed line
marks the Poissonian case in which V (δ) = R̃(δ). (b) Information
measures for estimating ω20 in the � system by a systematic scan and
the random search protocol, respectively. In both cases, the search is
restricted to an interval [−δmax,δmax] around the dark resonance. The
shaded area is the region where δmax < δQ and our statistical model of
the recycling process requires modifications. Results are shown for
� = 0.1 �/

√
2.

the equivalent information measure Iaut(ω20) = (δT /0.82)2

of our random search for different widths of the search
interval as determined by δmax. The comparison shows that
for the parameters used in Fig. 1(b), our random search
proves superior to the frequency scan if we search an interval
[−δmax,δmax] with δmax > 0.09�, i.e., as long as the resonance
is not a priori known to very high precision.

V. OUTLOOK

While we presented the scheme for a driven � system
and restricted our attention to a rate R(δ) with a quadratic
dip around δ = 0 and a flat plateau for large δ � δmax, the
arguments are general, and the statistical methods apply
equally well to other systems. For example, different forms
of R(δ) ∝ δα for δ � 0 will lead to different values of
μ = 1/α, which, in turn, imply different scaling with time
of the sensitivity as quantified by δT ∝ T −μ. For instance,
a variant of the presented scheme may apply Raman pulses
rather than continuous illumination. It can be shown that,
e.g., a sequence of Blackman pulses [26] yields an excitation
probability characterized by μ = 1/4, while square pulses lead
to μ = 1/2 [27]. Although these examples do not yield a faster
convergence of the random walk in frequency space toward the
atomic resonance frequency than the example studied here,

they illustrate the usefulness of the general formalism. This
formalism will allow better than 1/

√
T scaling of the error in

estimating a general unknown parameter θ if a process is found
for which the rate depends on θ as R(θ ) ∝ θα with 0 < α < 2.

If ω20 is only known to a precision of � �, δmax must
be chosen bigger than δL. In this case, the rate decreases as
1/δ2 in the recycling region, leading to recycling times of
order ∼δ2, and there is a risk that trajectories will be trapped
far away from the resonance. The return times are then also
described by anomalous statistics, and Pr (τr ) is of the form
Eq. (2) with μr < 1. The actual value of μr depends on the
detailed frequency-shifting protocol. If δ is restricted to jump
to a vicinity of the current value, one finds μr = 1/4 [28]
and T

(REC)
N ∝ N4. Our scheme then fails asymptotically as

fE(T ) → 0 for large T . If, instead, the laser frequency is
shifted uniformly on the search interval, the exact zero of R(δ)
at δ = 0 dominates the asymptotic zero as |δ| → ∞, and the
trajectories will converge (albeit more slowly) to the PDS.

In this work, we have proposed to locate the absorption zero
of a dark resonance by a random frequency search protocol.
Due to the nonergodic behavior of the system, methods
from Lévy statistics were employed to assess the asymptotic
spectroscopic sensitivity of the scheme. For the example of a
driven �-type system, our method compares favorably with
the Cramér-Rao bound of a conventional frequency scan.
Metrology protocols have been proposed that feature similar
feedback and adaptive elements, and which show convergence
faster than 1/

√
T or 1/

√
N , where N quantifies the amount

of physical resources; see, e.g., [1,29–31]. Since adaptive
schemes may generally induce nonergodic dynamics, we
believe that elements of our theoretical analysis will be relevant
in the characterization of a number of such protocols where
standard statistical analyses are inadequate.
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APPENDIX A: EFFECTIVE EMISSION RATE FOR
A LASER-DRIVEN � SYSTEM

The laser-driven � system in Fig. 1(a) of the main text is
described by the Hamiltonian

Ĥ = δ |0〉 〈0| + �

2
(|2〉 〈0| + |0〉 〈2|) + �

2
(|2〉 〈1| + |1〉 〈2|),

(A1)

with laser atom detuning δ and Rabi frequency �.
The evolution of the density matrix ρ of the unobserved

system is given by the master equation dρ/dt = L[ρ], where
the Liouvillian superoperator is defined by (h̄ = 1)

L[ρ] = −i[Ĥ ,ρ] +
∑

i

(
ĉiρĉ

†
i − 1

2
{ĉ†i ĉi ,ρ}

)
. (A2)

Here the excited-state spontaneous decay with rate � is
represented by the relaxation operators ĉ0 = √

�/2 |0〉 〈2| and
ĉ1 = √

�/2 |1〉 〈2|. The unobserved system relaxes to a steady
state ρss with L[ρss] = 0 from which follow the average
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properties of the emitted radiation. In particular, the average
fluorescence rate is given by R̃(δ) = ∑

i Tr(ĉ†i ĉiρss), where
i = 0,1, and the quantum regression theorem yields Glauber’s
correlation function [32] for two photoemissions in channel i

separated by a time τ ,

G
(2)
i (τ ) = Tr(ĉ†i ĉie

Lτ [ĉiρssĉ
†
i ]). (A3)

The master equation can be unraveled into stochastic evolu-
tion corresponding to the random measurement backaction on
the system due to detection of the emitted radiation by photon
detectors. Whenever a photon is detected, the system jumps to
the corresponding ground state, |ψ〉 → ĉi |ψ〉/

√
〈ψ |ĉ†i ĉi |ψ〉,

while between photodetections the evolution of the (unnor-
malized) state |ψ̃〉 is governed by an effective Hamiltonian,

Ĥeff = Ĥ − i

2

∑
i

ĉ
†
i ĉi , (A4)

where the imaginary term represents the decay of the excited
state. The eigenstates of Ĥeff, |ψj 〉 with eigenvalues λj

represent decaying modes with decay rates �j = −2 Im(λj ).
For weak driving, the largest of these rates is almost equal
to � and the corresponding eigenstate is close to the bare
atomic excited state, i.e., it has negligible statistical weight
w

(n)
j = |〈n |ψj 〉 |2 on the atomic ground states (n = 0,1). The

two smallest rates �− and �+, on the other hand, are associated
with the ground states, and hence they constitute the effective
fluorescence rate right after a detector click. Their dependence
on the detuning δ is shown in Fig. 5. Close to resonance,
�−(δ) tends quadratically to zero while �+(δ) increases equiv-
alently. This is because �−(δ � 0) � 0 corresponds to the
dark state superposition |ψ−〉 = (|0〉 − |1〉)/√2 while �+(δ �
0) � 2�2/� is the rate of excitation and emission from the
bright state linear combination |ψ+〉 = (|0〉 + |1〉)/√2.

Upon photodetection, the atom may, with probability
w

(0,1)
+ � 1/2, continue to fluoresce at a rate �+(δ), and hence

quickly remit, but it may also, with a probability w
(0,1)
− � 1/2,

continue to fluoresce at a rate �−(δ) corresponding to the
pseudo-dark-state. The frequency-dependent emission rate
leading to nonergodic dynamics close to resonance is thus
given by R(δ) = �−(δ).

FIG. 5. Frequency-dependent effective emission rates from the
bright |ψ+〉 and dark |ψ−〉 state superpositions of the two ground
states of a �-type system. The rates are even functions of δ, and
results are shown for � = 0.1�/

√
2.

Our Lévy statistical analysis relies on the overall rather
than the detailed shape of the emission rate from the ground
states. In this spirit, we note that the fluorescence rate �−(δ)
as a function of the detuning is characterized by a dip with
quadratic variation around δ = 0 due to the dark state, a plateau
where the rate is constant, and a tail where the decay follows a
Lorentzian line shape due to off-resonant scattering. We hence
approximate the rate by

R(δ) =

⎧⎪⎨
⎪⎩

τ−1
0 (δ/δQ)2, |δ| < δQ,

τ−1
0 , δQ < |δ| < δL,

τ−1
0 (δL/δ)2, δL < |δ|,

(A5)

where the characteristic parameters are identified by matching
the plateau to the maximum of �(−)(δ), and requiring that
R(δ) represents the exact form in the limits δ � 0 and δ �
0. Though not a necessity for our analysis, we assume for
simplicity that the coupling is weak (� � �). We then find by
applying second-order perturbation theory that

τ0 = �

�2
,

δQ =
√

2
�2

�
, (A6)

δL = �

2
.

The approximation Eq. (A5) is compared to the exact rate in
Fig. 2 of the main text.

APPENDIX B: BROAD DISTRIBUTIONS AND LÉVY
STATISTICS

In this Appendix, we give a brief introduction to “broad
distributions” decaying slowly at large deviations. We will
focus on the typical cases of power-law decays. Let τ be a
positive random variable distributed for large values according
to

P (τ ) �
large τ

μτ
μ

b

τ 1+μ
, (B1)

where the exponent μ determines the decay of the tail toward
zero. Normalizability requires μ > 0 and all moments 〈τn〉 for
which n � μ diverge.

The central limit theorem (CLT) concerns the asymptotic
behavior of the sum TN of N independent realizations of the
probability distribution P (τ ),

TN =
N∑

i=1

τi, (B2)

independent of the detailed shape of P (τ ).
For μ > 2 both the mean 〈τ 〉 and variance σ 2 of τ are finite,

and defining a random variable ε such that

TN = 〈τ 〉 N + εσ
√

N, (B3)

the normal CLT ensures that for large N , ε is a Gaussian
random variable with zero mean and unit variance. That is, TN

is normally distributed and TN → 〈τ 〉 N for large N .
For μ < 2, the variance of τ is formally infinite, and the

normal CLT does not apply. Instead, a generalized CLT has
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been proven by Lévy and Gnedenko [13,14]. If 1 < μ < 2, the
mean value of τ is finite, and by defining the Lévy increment
ξ such that

TN = 〈τ 〉 N + ξτbN
1/μ, (B4)

the generalized CLT states that ξ is a random variable of order
1 distributed according to the completely asymmetric Lévy
distribution Lμ(ξ ), which only depends on the value of μ.
Notice, however, that we still have TN → 〈τ 〉 N for large N .

The most interesting case in the present work is μ < 1,
where even the mean of τ is undefined. Then Eq. (B4) becomes

TN = ξτbN
1/μ, (B5)

where ξ is distributed as above, and we note that the sum
Eq. (B2) no longer scales proportionally with the number of
terms, but rather is dominated by a few single terms.

APPENDIX C: RECYCLING TIME DISTRIBUTION

Here we address the temporal dynamics and derive the
probability distribution Pr (τr ) of the recycling time intervals
τr . We introduce first the probability P1(k) that the detuning
returns to the PDS (defined in the main text) for the first time
at exactly k photon detection events after leaving the PDS.
Notice that P1(k) relates to the number of jumps and not to the
duration τr of the time spent outside the PDS. The probability
Ptrap(n) that the system occupies the PDS after the nth detection
event can be written as a sum over probabilities of already
being trapped after n′ events with probability Ptrap(n′), leaving
the PDS at n′ + 1 (which occurs with unit probability since
δPDS � δmax) and returning after an additional n − n′ steps
with a probability P1(n − n′),

Ptrap(n) = P1(n) +
n∑

n′=0

Ptrap(n′)P1(n − n′), (C1)

where the first term accounts for a first return at n without any
prior returns. We assume an initial detuning in the recycling
region, and we have extended the summation limits to n′ = 0
and n′ = n, which is justified since Ptrap(0) = 0 and P1(0) = 0.

The sum constitutes a convolution product, and we in-
troduce the discrete Laplace transform (moment-generating
function),

LdP (s) =
∞∑

n=0

e−snP (n), (C2)

realizing the relation between P1(n) and Ptrap(n),

LdP1(s) = LdPtrap(s)

1 + LdPtrap(s)
. (C3)

This result is independent of any specific frequency-shifting
protocol.

The main text investigates the case in which after
each detection event the detuning explores the interval δ ∈
[−δmax,δmax] in a uniform manner. In such settings, Ptrap(n)
has a constant value

Ptrap(n) = δPDS

δmax
, (C4)

and Eq. (C3) yields

LdP1(s) = 1 − δmax

δPDS
s. (C5)

Since LdP1(s) is a moment-generating function, this implies
that the average number of steps before the first return is finite
and given by

〈n〉 = δmax

δPDS
. (C6)

The temporal duration of each step depends on the emission
rate in the recycling region. In the main text, we focus
on the case δQ � δmax < δL, where the recycling region is
characterized by a frequency-independent rate, R(δ) = 1/τ0,
and the average time τ0 between two jumps is finite. The
average first return time is then simply

〈τr〉 = 〈n〉 τ0. (C7)

The finite mean value implies that the recycling times τr follow
normal statistics. In fact, it can be shown that the tail of Pr (τr )
follows an exponential law [33].

If the frequency shifting is performed as an unconfined
standard random walk, Eq. (C3) still applies and leads to a
first return distribution with a power-law tail,

P1(n) �
large n

1

2
√

2π

�δ

δPDS

1

n3/2
, (C8)

with �δ the average step size [28]. In this case, 〈n〉 diverges.
The corresponding statistical behavior of the recycling times
τr is dominated by trapping in effective dark states at high
δ, where, by Eq. (A5), R(δ) ∝ 1/δ2. One finds [28] that
Pr (τr ) then follows Eq. (B1) with μr = 1/4 and τr,b =
τ0(�δ)6/(δ4

PDSδ
2
L), and that the recycling process is dominated

by very long time intervals.

APPENDIX D: PROPORTION OF TRAPPED
TRAJECTORIES

Here we derive the proportion of trajectories that will
asymptotically for long times be trapped in the PDS with |δ| <

δPDS. Due to the nonergodic dynamics, the time average, unlike
the ensemble average results, retains a stochastic contribution
even in the long time limit.

The alternation between trapping and recycling periods
defines a renewal process [34], and we introduce first the
probability density functions SR(t) of returning to the PDS
region at time t independent of the number of previous return
points and SD(t) for departing at time t independent of previous
departure points. That is, SR(t)dt[SD(t)dt] is the probability of
entering (departing) the PDS region in [t,t + dt]. The densities
can be expressed in terms of each each other and the trapping
and recycling time distributions. For an initially un-trapped
trajectory, we have

SR(t) = Pr (t) +
∫ t

0
dt ′ SD(t ′)Pr (t − t ′), (D1)

where the first term accounts for the probability of being
trapped exactly at t and the second the case of escaping at
t ′ ∈ [0,t] and returning at t . Similarly,

SD(t) =
∫ t

0
dt ′ SR(t ′)Pt (t − t ′). (D2)

022110-7



ALEXANDER HOLM KIILERICH AND KLAUS MØLMER PHYSICAL REVIEW A 95, 022110 (2017)

The integrals in the expressions (D1) and (D2) form convo-
lution products, so performing Laplace transforms, Lg(s) =∫ ∞

0 dt g(t)e−st , and eliminating LSD(s), we find

LSR(s) = LPr (s)

1 − LP (s)LPr (s)
. (D3)

The ensemble average trapped proportion at time T can be
written as an integral over time t ′ of the probability that the
system entered the trap at time t ′ multiplied by the probability
ψ(T − t ′) that the system remained in the trap until times later
than T ,

fE =
∫ T

0
dt ′ SR(t ′)ψ(T − t ′). (D4)

Note that ψ(T − t ′) is itself an integral over the distribution
Pt (T − t ′) of trapping times,

ψ(τ ) =
∫ ∞

τ

dτ ′ Pt (τ
′).

The Laplace transform of the convolution Eq. (D4) is

LfE(s) = LSR(s)Lψ(s), (D5)

with Lψ(s) = [1 − LP (s)]/s. Inserting Eq. (D3) we thus
reach our final expression for the Laplace transform of the
trapped proportion,

LfE(s) = LPr (s)

1 − LPt (s)LPr (s)

1 − LPt (s)

s
, (D6)

revealing

fE(T ) =
∫ T

0
dt[SR(t) − SE(t)], (D7)

which is very sensible.
With LfE(s) expressed in terms of the trapping and

recycling time distributions, we may apply our statistical
model. A small s expansion (high τt ) of the Laplace transform
of Pt (τt ) as given in Eq. (2) of the main text yields to first
order [28]

LPt (s) � 1 − �(1 − μ)(sτb)μ, (D8)

where �(x) is the Gamma function. For the recycling distribu-
tion, we focus on the case δmax < δL, where the mean recycling
time is finite so that

LPr (s) = 1 − s 〈τr〉 (D9)

for small s. Then by Eq. (D6)

LfE(s) = 1

s
− 〈τr〉

�(1 − μ)(sτb)μ
, (D10)

and one can finally show that asymptotically as T → ∞ the
inverse transform gives

fE(T ) � 1 − sin(πμ)

π

〈τr〉
τ

μ

b T 1−μ
. (D11)

For a discussion of cases in which δmax > δL, the reader is
referred to [28].

APPENDIX E: ASYMPTOTIC FREQUENCY
DISTRIBUTION

The asymptotic proportion of trajectories with |δ| < δPDS

is given by fE(T ). The asymptotic distribution P(δ,T ) of this

proportion is found by integrating the probability of entering
the trap at a time t ′ with a given δ and not leaving before the
final time T ,

P(δ,T ) = ρ(δ)
∫ T

0
dt ′ SR(t ′)φ(T − t ′|δ), (E1)

where ρ(δ) = 1/2δPDS is normalized, so fE(T ) =∫ δPDS

−δPDS
dδP(δ,T ), and we define the probability to leave

the trap after a time τ conditioned on the value of δ,

φ(τ |δ) =
∫ ∞

τ

dτ ′ Pt (τ
′|δ). (E2)

As it turns out, the time-dependent distribution of frequencies
δ � δPDS within the trap is self-similar for different times and
can in general be factorized as

P(δ,T ) = h(T )G(q). (E3)

We restrict our attention to the case δmax < δL with infinite
average trapping time and finite recycling times, and we
refer to [28] for derivations when the recycling is also
nonergodic. From Eqs. (D3) and (D8) it follows that the
small s expansion of the Laplace transform of the renewal
density function is LSR(s) = (sτb)−μ/�(1 − μ), so that for
large times SR(t) � sin(πμ)τ−μ

b tμ−1/π . One finds then the
height of the distribution,

h(T ) =
(

τPDS

τb

)μ sin(πμ)

πμδT

. (E4)

The form factor is defined as a function of q = δ/δT as

G(q) = μ

∫ 1

0
du uμ−1e−(1 − μ)q1/μ, (E5)

which for μ = 1/2 can be expressed as G(q) = D(q)/q, where
D(q) is the Dawson function. The tails of G(q) are like a
Lorentzian ∼1/2q2 and the area is π3/2/2. G(q) is compared
to a Lorentzian with the same tails and a Gaussian with the
same FWHM and normalization in Fig. 6. Notice that the
distribution is not as narrow as the Lorentzian close to the
central frequencies.

The resulting properties ofP(δ,T ) are discussed in the main
text.

-5 50
q = δ/δT

0

0.5

1

1.5

Fo
rm

fa
ct

or

G(q)
Lorentzian
Gaussian

FIG. 6. The form factor G(q) [Eq. (E5)] of P(δ,T ) is compared
to a Lorentzian with the same tails (∝ 1/2q2), and a Gaussian with
the same FWHM (2.13). All distributions are normalized to an area
π 3/2/2.

022110-8



RANDOM SEARCH FOR A DARK RESONANCE PHYSICAL REVIEW A 95, 022110 (2017)

[1] V. Giovannetti, S. Lloyd, and L. Maccone, Quantum Metrology,
Phys. Rev. Lett. 96, 010401 (2006).

[2] H. Cramér, Mathematical Methods of Statistics, Prince-
ton Mathematical Series No. 9 (Princeton University Press,
Princeton, NJ, 1954).

[3] R. A. Fisher, On the mathematical foundations of theoretical
statistics, Philos. Trans. R. Soc. London, Ser. A 222, 309 (1922).

[4] A. H. Kiilerich and K. Mølmer, Estimation of atomic interaction
parameters by photon counting, Phys. Rev. A 89, 052110 (2014).

[5] A. H. Kiilerich and K. Mølmer, Parameter estimation by
multichannel photon counting, Phys. Rev. A 91, 012119 (2015).

[6] A. H. Kiilerich and K. Mølmer, Bayesian parameter estimation
by continuous homodyne detection, Phys. Rev. A 94, 032103
(2016).

[7] D. Burgarth, V. Giovannetti, A. N. Kato, and K. Yuasa, Quantum
estimation via sequential measurements, New J. Phys. 17,
113055 (2015).

[8] H. R. Gray, R. M. Whitley, and C. R. Stroud, Coherent trapping
of atomic populations, Opt. Lett. 3, 218 (1978).
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Jarosz, and M. G. Bawendi, Lévy statistics and anomalous
transport in quantum-dot arrays, Phys. Rev. B 72, 075309
(2005).

[22] F. Bardou, J. P. Bouchaud, O. Emile, A. Aspect, and C. Cohen-
Tannoudji, Subrecoil Laser Cooling and Lévy Flights, Phys.
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