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Regular patterns in the information flow of local dephasing channels
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Cittá Universitaria, Piazza Aldo Moro 5, 00185 Roma, Italy

(Received 15 October 2016; revised manuscript received 12 January 2017; published 9 February 2017)

Consider local dephasing processes of a qubit that interacts with a structured reservoir of frequency modes
or a thermal bath, with Ohmic-like spectral density (SD). It is known that non-Markovian evolution appears
uniquely above a temperature-dependent critical value of the Ohmicity parameter and non-Markovianity can
be induced by properly engineering the external environment. In the same scenario, we find regular patterns
in the flow of quantum information: Alternate directions appear in correspondence with periodic intervals of
the Ohmicity parameter α0. The information flows back into the system over long times at zero temperature
for 2 + 4n < α0 < 4 + 4n, where n = 0,1,2, . . . , and at nonvanishing temperatures for 3 + 4n < α0 < 5 + 4n.
Under special conditions, backflow of information appears also for nonvanishing, even natural values of the
Ohmicity parameter, at zero temperature, and for odd natural values at nonvanishing temperatures. Otherwise,
the long-time information flows into the environment. In the transition from vanishing to arbitrary nonvanishing
temperature, the long-time backflow of information is stable for 3 + 4n < α0 < 4 + 4n, while it is reversed for
2 + 4n < α0 < 3 + 4n and 4 + 4n < α0 < 5 + 4n. The patterns in the information flow are not altered if the
low-frequency Ohmic-like profiles of the SDs are perturbed with additional factors that consist in arbitrary powers
of logarithmic forms. Consequently, the flow of information can be controlled, directed, and reversed over long
times by engineering a wide variety of reservoirs that includes and continuously departs from the Ohmic-like
structure at low frequencies. Non-Markovianity and recoherence appear according to the same rules along with
the backflow of information.

DOI: 10.1103/PhysRevA.95.022109

I. INTRODUCTION

In open quantum systems the loss, revival, or maintenance
of quantum correlations is deeply related to the structure
of the external environment [1,2]. Several studies have
been performed on the connection among non-Markovian
dynamics, flow of quantum information, and the nature of
the coupling between the system and the environment [3–7].
Non-Markovianity was usually interpreted via memory ef-
fects and persistent interactions between system and en-
vironment. In recent years new definitions and measures
of non-Markovianity have been proposed; see Refs. [8,9]
for a review. Non-Markovianity can be explained in terms
of the flow of quantum information, which is defined in
various ways: via Fisher information [10], fidelity [11] or
mutual information [12], to name a few. The trace-distance
measure introduced in Ref. [13] estimates the relative distin-
guishability of two arbitrary quantum states. In Markovian
processes this measure diminishes monotonically in time.
This behavior can be seen as a loss of quantum information
by the open system, while in non-Markovian dynamics the
memory effects can be interpreted as a flow of quantum
information from the external environment back into the open
system.

The dephasing process of a qubit (two-level system) that
interacts with a structured reservoir of frequency modes
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is a referential scenario for the study of phenomena such
as dissipation, decoherence, recoherence, non-Markovianity,
and information flow [1,2,14–17]. The open dynamics can
be described in terms of the spectral density (SD) of the
system. This fundamental function depends on the couplings
between the open system and the frequency modes of the
external environment [14,18–21]. This formalism is adopted
also for the description of the open dynamics in fermionic
environments [22–25]. For the system of a qubit that interacts
with a bosonic reservoir the measures of non-Markovianity
mentioned above suggest the same conditions for the appear-
ance of non-Markovian dynamics [26] and are easily evaluated
from the dephasing rate and the dephasing factor of the
system [3–6,27]. Persistent negative values of the dephasing
rate or, equivalently, a decreasing dephasing factor indicate
backflow of information into the open system and witness
non-Markovianity.

A remarkable analysis of the dependence of non-
Markovianity on the low-frequency part of the environmental
spectrum was performed in Ref. [3]. Nonconvexity properties
that involve the SD provide conditions for the appearance of
non-Markovian dynamics. For Ohmic-like SDs with exponen-
tial cutoff, the transition from Markovian to non-Markovian
dynamics is found in correspondence with a critical value of the
Ohmicity parameter. The temporary backflow of information
and recoherence manifest uniquely for values of the Ohmicity
parameters that are larger than such a critical value. This
value is equal to 2 at zero temperature, grows monotonically
by increasing the temperature, and becomes 3 at infinite
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temperature. See Ref. [3] for details. Great efforts have been
made for the experimental observation of these phenomena:
Simulations of open system dynamics have been performed
with trapped ions [28] and transitions from Markovian to
non-Markovian dynamics have been obtained in an all-optical
experiments [29], to name a few.

As a continuation of the scenario described above, here we
consider the local dephasing process of a qubit that interacts
either with a structured reservoir of frequency modes or with
a thermal bath. In addition to the Ohmic-like condition, the
SDs under study include removable logarithmic singularities
at low frequencies [30,31] and are arbitrarily shaped at higher
frequencies. We study the decoherence and recoherence pro-
cesses by evaluating the dephasing factor and we investigate
the flow of quantum information by analyzing the dephasing
rate. We also search for regular patterns in the direction of
the flow of information that allow a full manipulation of the
flow itself by engineering the low-frequency structure of the
external environment.

The paper is organized as follows. Section II is devoted to
the description of the model. In Sec. III, asymptotic coherence
is related to integral properties of the SD. In Sec. IV, the SDs
under study are defined in terms of removable logarithmic
singularities. The decoherence and recoherence processes are
studied in Sec. V, by analyzing the dephasing factor at both
zero and nonvanishing temperature. Patterns in the flow of
quantum information are shown in Sec. VI. A summary is
given in Sec. VII. Details on the calculations are provided in
the Appendix.

II. MODEL

The system of a qubit that interacts locally with a reservoir
of frequency modes is described by the microscopic Hamilto-
nian [1–4]

H = ω0σz +
∑

k

ωkb
†
kbk +

∑
k

σz(gkak + g∗
k a

†
k), (1)

in units where h̄ = 1. The transition frequency of the qubit is
ω0, while σz represents the z-component Pauli spin operator.
The index k runs over the frequency modes. The parameter
ωk represents the frequency of the kth mode, while b

†
k and

bk are the raising and lowering operator, respectively, of the
same mode. The coefficient gk represents the coupling strength
between the qubit and the kth frequency mode. The reduced
density matrix ρ(t) represents the mixed state of the qubit at
the time t and is obtained by tracing the density matrix of the
whole system at the time t over the Hilbert space of the external
environment [1]. The model is exactly solvable [15–17].

Let the qubit be initially decoupled from the external
environment that is represented by a structured reservoir of
field modes or by a thermal bath. The reduced time evolution
is described in the interaction picture by the master equation

ρ̇(t) = γ (t)[σzρ(t)σz − ρ(t)]. (2)

The function γ (t) represents the dephasing rate and is related
to the temperature of the thermal bath. At zero temperature,

T = 0, the dephasing rate is labeled here as γ0(t) and reads

γ0(t) =
∫ ∞

0

J (ω)

ω
sin(ωt)dω. (3)

The function J (ω) represents the SD of the system and is
defined in terms of the coupling constants gk via the form
J (ω) = ∑

k |gk|2δ(ω − ωk). If the external environment is
initially in a thermal state, T > 0, the dephasing rate is
represented here as γT (t) and reads

γT (t) =
∫ ∞

0

JT (ω)

ω
dω, (4)

where the effective SD JT (ω) is defined for every nonvanishing
temperature as

JT (ω) = J (ω) coth
h̄ω

2kBT
(5)

and kB is the Boltzmann constant.
The quantum coherence between the states |0〉 and |1〉 of

the qubit is described by the off-diagonal element ρ0,1(t) of
the density matrix that undergoes the evolution [15–17]

ρ0,1(t) = ρ∗
1,0(t) = ρ0,1(0) exp[−�(t)]. (6)

The function �(t) represents the dephasing factor and depends
on the temperature T of the thermal bath and on the coupling
between the system and the environment. At zero temperature,
T = 0, the dephasing factor is indicated here as �0(t) and
results in the form

�0(t) =
∫ ∞

0
J (ω)

1 − cos(ωt)

ω2
dω. (7)

If the external environment is initially in a thermal state, T > 0,
the dephasing factor is represented here as �T (t) and reads

�T (t) =
∫ ∞

0

JT (ω)

ω2
[1 − cos(ωt)]. (8)

Both for vanishing and nonvanishing temperature, the de-
phasing factor is related to the dephasing rate via the time
derivative γ0(t) = �̇0(t) and γT (t) = �̇T (t). According to
Eq. (6), recoherence corresponds to negative values of the
dephasing rate.

III. COHERENCE

The loss or persistence of coherence between the two energy
eigenstates of the qubit depends on integral properties of the
SDs. At zero temperature, T = 0, coherence is not entirely
lost over long times if the second negative moment of the SD
is finite, ∫ ∞

0

J (ω)

ω2
dω < ∞. (9)

This quantity is also referred to as the total Huang-Rys factor in
the framework of optical spectroscopy [19–21] and is relevant
for the appearance of coherence. In fact, under the condition (9)
the coherence term shows long-time persistence of residual
coherence

ρ0,1(∞) = ρ0,1(0) exp

[
−

∫ ∞

0

J (ω)

ω2
dω

]
. (10)
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If the external environment consists in a thermal bath, T > 0,
and the condition ∫ ∞

0

JT (ω)

ω2
dω < ∞ (11)

holds, the coherence term tends over long times to the
nonvanishing asymptotic value

ρ0,1(∞) = ρ0,1(0) exp

[
−

∫ ∞

0

JT (ω)

ω2
dω

]
. (12)

The maximum modulus of the ratio between asymptotic and
initial coherence is obtained at zero temperature, T = 0, from
Eq. (10).

Residual coherence persists over long times if the dephasing
factor does not diverge asymptotically, while coherence is
fully lost if the dephasing factor diverges [see Eq. (6)].
Consequently, the dependence of coherence on the structure
of the SD can be analyzed via the dephasing factor itself.
We intend to study the short- and long-time behavior of the
dephasing factor for a large variety of SDs in conditions where
the second negative moment is either finite, Eq. (9), or infinite,∫ ∞

0

J (ω)

ω2
dω = ∞. (13)

Similarly, at nonvanishing temperatures, T > 0, we consider
both the condition (11) and the following one:∫ ∞

0

JT (ω)

ω2
dω = ∞. (14)

Details on the structure of the SDs under study are provided
below.

IV. SPECTRAL DENSITIES WITH REMOVABLE
LOGARITHMIC SINGULARITIES

The fast development of quantum technologies allows the
engineering of the most various environments. According
to the remarkable analysis performed in Refs. [32,33], an
impurity that is trapped in a double-well potential and is
surrounded by a cold gas reproduces, under suitable condi-
tions, a qubit that interacts with an Ohmic-like environment.
The Ohmicity parameter increases by enhancing the scattering
length that is related to the boson-boson coupling [33]. In the
case where the gas is free and one dimensional, the SD changes
from sub-Ohmic to Ohmic and to super-Ohmic by increasing
the scattering length. In the two-dimensional noninteracting
condition the spectrum is Ohmic and the super-Ohmic regime
is obtained if the magnitude of the interaction decreases. The
SD is super-Ohmic in the noninteracting condition if the gas
is three dimensional. We refer to [33] for details.

In light of the above observation we focus on SDs that
include the Ohmic-like condition at low frequencies and are
arbitrarily shaped at higher frequency. We intend to analyze the
feature of the open dynamics, the flow of quantum information,
non-Markovianity, and recoherence of the qubit. We evaluate
the accuracy of the results obtained for the experimentally
feasible Ohmic-like SDs by perturbing the power laws of the
Ohmic-like profiles with additional factors that are represented
by arbitrary powers of logarithmic forms. Positive (negative)
values of the first logarithmic power enhance (reduce) the

power-law profiles. In this way, we consider a wide variety of
SDs that cover and continuously depart from the Ohmic-like
condition [30].

For the sake of convenience, the SDs J (ω) are described
via the dimensionless auxiliary function 	(ν). This function
is defined for every ν � 0 by the scaling property J (ν�)/� =
	(ν) in terms of a general scale frequency � of the system.
At nonvanishing temperatures the auxiliary function 	T (ν)
of the effective SD JT (ω) is 	T (ν) = 	(ν) coth(h̄�ν/2kBT ).
In this way, the action of the thermal bath is represented by
a transformed SD. We consider two general classes of SDs,
which are defined below.

A. Spectral densities with natural powers of logarithmic forms

The first class of SDs under study is defined by auxiliary
functions 	(ν) that are continuous for every ν > 0 and exhibit
the following asymptotic behavior [34] as ν → 0+:

	(ν) ∼
∞∑

j=0

nj∑
k=0

cj,kν
αj (− ln ν)k, (15)

where 0 � nj < ∞, αj < αj+1 for every j � 0, and αj ↑ +∞
as j → +∞. Furthermore, we consider α0 � 0, and n0 = 0
if α0 = 0. The power α0 is referred to as the Ohmicity
parameter [2,14]. In fact, if n0 = 0, the corresponding SDs
are super-Ohmic for α0 > 1, Ohmic for α0 = 1, and sub-
Ohmic for 1 > α0 > 0, as ω → 0+. The singularity in ν = 0
is removable by defining 	(0) as the finite limit of 	(ν)
as ν → 0+. Notice that Eq. (15) describes a large variety
of low-frequency asymptotic forms that include exponential
and stretched exponential functions, power laws, and natural
powers of logarithmic forms. The summability of the SD is
guaranteed by the constraint 	(ν) = O(ν−1−χ0 ) as ν → +∞,
where χ0 > 0. Additionally, the Mellin transforms 	̂(s) and
	̂T (s) of the auxiliary functions 	(ν) and 	T (ν), and the
meromorphic continuations [34,35] are required to decay
sufficiently fast as | Im s| → +∞. See the Appendix for
details.

B. Spectral densities with arbitrary powers of logarithmic forms

In light of the asymptotic analysis performed in
Refs. [35,36], the second class of SDs under study is
described by auxiliary functions with the following asymptotic
expansion as ν → 0+:

	(ν) ∼
∞∑

j=0

wjν
αj (− ln ν)βj . (16)

The powers βj are real valued, arbitrarily positive or negative,
or vanishing, while α0 > 0. The logarithmic singularity in
ν = 0 is removed by setting 	(0) = 0. Let the parameter n̄

be the least natural number such that αk−1 + 1 � n̄ < αk + 1,
where the index k is a nonvanishing natural number. The
function 	(n̄)(ν) is required to be continuous on the interval
(0,∞). The integral

∫ ∞
0 	(ν) exp[−ıξν]dν must converge

uniformly for all sufficiently large values of the variable ξ

and the integral
∫

	(n̄)(ν) exp[−ıξν]dν has to converge at ν =
+∞ uniformly for all sufficiently large values of the variable
ξ . The auxiliary function is required to be differentiable k
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times and the asymptotic expansion at ν → 0+,

	(k)(ν) ∼
∞∑

j=0

wj

dk

dνk
[ναj (− ln ν)βj ],

is required to hold for every k = 0,1, . . . ,n̄. Furthermore, for
every k = 0, . . . ,n̄ − 1, the function 	(k)(ν) has to vanish as
ν → +∞. We refer to [35,36] for details.

If compared to the first class of SDs, introduced in
Sec. IV A, the second class is characterized by more constraints
but includes arbitrary positive or negative, or vanishing,
real-valued powers of logarithmic forms. In both the classes
under study the auxiliary functions 	(ν) are non-negative
and summable, due to physical grounds, and, apart from
the constraints reported above, arbitrarily shaped at high
frequencies [30].

V. DEPHASING FACTOR

We start the analysis of the dephasing factor by considering
a structured reservoir of frequency modes as the external
environment. The SDs under study belong to the first class
(Sec. IV A). Over short times, t � 1/�, the dephasing factor
increases quadratically in time

�0(t) ∼ l0

2
t2, (17)

where l0 = ∫ ∞
0 J (ω)dω. This behavior is independent of the

low- or high-frequency structure of the SD. Instead, the
evolution of the dephasing factor over long times, t 	 1/�,
is various and is determined by the low-frequency structure of
the SD, given by Eq. (15). If α0 = n0 = 0 the dephasing factor
grows linearly in time for t 	 1/�,

�0(t) ∼ πc0,0

2
�t. (18)

If 0 < α0 < 1 we find for t 	 1/� the divergent behavior

�0(t) ∼ c0,n0r1(�t)1−α0 lnn0 (�t), (19)

where r1 = sin(πα0/2)�(α0)/(1 − α0). The above expression
provides power laws for n0 = 0,

�0(t) ∼ c0,n0r1(�t)1−α0 . (20)

If α0 = 1 we obtain over long times, t 	 1/�, the divergent
logarithmic form

�0(t) ∼ c0,n0

n0 + 1
lnn0+1(�t). (21)

If α0 > 1 the dephasing factor tends to the finite asymptotic
value

�0(∞) =
∫ ∞

0

J (ω)

ω2
dω. (22)

If α0 is not an even natural number, the relaxations involve
logarithmic forms

�0(t) ∼ �0(∞) + c0,n0r1(�t)1−α0 lnn0 (�t). (23)

The above expression turns into pure inverse power laws for
n0 = 0,

�0(t) ∼ �0(∞) + c0,n0r1(�t)1−α0 . (24)

If α0 > 1 and α0 = 2m0, where m0 and n0 are nonvanishing
natural numbers, we find

�0(t) ∼ �0(∞) + c0,n0r
′
1(�t)1−2m0 lnn0−1(�t), (25)

where r ′
1 = π (−1)m0n0(2m0 − 2)!/2. The above relaxations

become inverse power laws for n0 = 1,

�0(t) ∼ �0(∞) + c0,n0r
′
1(�t)1−2m0 . (26)

If α0 is an even natural number and n0 vanishes, consider the
least nonvanishing index k0 such that either αk0 does not take
even natural values or αk0 = 2mk0 , where the natural numbers
mk0 and nk0 do not vanish. The function �0(t) is obtained in
the former case from Eqs. (23) and (24) by replacing the power
α0 with αk0 and n0 with nk0 , or in the latter case from Eqs. (25)
and (26) by replacing the power m0 with mk0 and n0 with nk0 .
We consider SDs such that the index k0 exists with the required
properties.

A. The dephasing factor at zero temperature for the second
class of spectral densities

At this stage we focus on SDs that belong to the second
class (Sec. IV B) and that are characterized by a finite negative
second moment [Eq. (9)]. This condition requires that the
Ohmicity parameter α0 is larger than unity, α0 > 1. Over short
times, t � 1/�, the dephasing factor grows quadratically in
time according to Eq. (17), independently of the low- or
high-frequency structure of the SD. Over long times, t 	 1/�,
the dephasing factor relaxes to the asymptotic value �0(∞)
according to arbitrarily positive or negative, or vanishing
powers of logarithmic forms

�0(t) ∼ �0(∞) + w0(�t)1−α0 [r1 lnβ0 (�t) + r̄1 lnβ0−1(�t)],

(27)

with r̄1 = β0 sin(πα0/2)[�(1)(α0 − 1) + π�(α0 − 1)/2]. If
the Ohmicity parameter α0 is not an even natural number,
the dominant part of the above relaxation is

�0(t) ∼ �0(∞) + w0r1(�t)1−α0 lnβ0 (�t) (28)

and provides the inverse power laws

�0(t) ∼ �0(∞) + w0(�t)1−α0 (29)

for β0 = 0. If the Ohmicity parameter α0 takes even natural
values, Eq. (27) gives

�0(t) ∼ �0(∞) + w0r̄1(�t)1−α0 lnβ0−1(�t) (30)

and turns into the inverse power laws

�0(t) ∼ �0(∞) + w0r̄1(�t)1−α0 (31)

for β0 = 1. By comparing the above relaxations with those
obtained for the first class of SDs under study, we observe that,
at zero temperature, the long-time evolution of the dephasing
factor exhibits for both the classes the same dependence on
the low-frequency structure of the SD.

B. Thermal bath

Let the external environment consist of a thermal bath,
T > 0. If the SDs belong to the first class under study
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(Sec. IV A) with α0 > 0, the dephasing factor is approximated
again by a quadratic function of time for t � 1/�,

�T (t) ∼ lT

2
t2, (32)

where lT = ∫ ∞
0 JT (ω)dω. This behavior is again independent

of the low- or high-frequency structure of the SD. Instead, the
evolution of the dephasing factor over long times, t 	 1/�,
exhibits various behaviors dependent on the low-frequency
structure of the SD. If 0 < α0 < 2 and α0 �= 1 the dephasing
factor diverges for t 	 1/� as

�T (t) ∼ c0,n0rT (�t)2−α0 lnn0 (�t), (33)

where rT = 2kBT cos(πα0/2)�(α0 − 2)/h̄�. Again, power
laws appear under the above conditions for n0 = 0,

�T (t) ∼ c0,n0rT (�t)2−α0 . (34)

If α0 = 1 the dephasing factor diverges for t 	 1/� as

�T (t) ∼ c0,n0r
′
T �t lnn0 (�t), (35)

where r ′
T = πkBT /h̄�. The divergence becomes linear in time

for α0 = 1 and n0 = 0,

�T (t) ∼ c0,n0r
′
T �t. (36)

If α0 = 2 the dephasing factor grows for t 	 1/� according
to natural powers of logarithmic forms

�T (t) ∼ c0,n0r
′′
T lnn0+1(�t), (37)

where r ′′
T = 2kBT /h̄�(n0 + 1). If α0 > 2 the dephasing factor

converges for t 	 1/� to the asymptotic value

�T (∞) =
∫ ∞

0

JT (ω)

ω2
dω. (38)

If α0 is not an odd natural number and α0 > 2, the relaxations
to the asymptotic value are

�T (t) ∼ �T (∞) + c0,n0rT (�t)2−α0 lnn0 (�t), (39)

and turn into inverse power laws for n0 = 0,

�T (t) ∼ �T (∞) + c0,n0rT (�t)2−α0 . (40)

If α0 = 2m1 + 1, where m1 and n0 are nonvanishing natural
numbers, we find

�T (t) ∼ �T (∞) + c0,n0r
′′′
T (�t)1−2m1 lnn0−1(�t), (41)

where r ′′′
T = π (−1)m1kBT n0(2m1 − 2)!/h̄�. The above form

becomes an inverse power law for n0 = 1,

�T (t) ∼ �T (∞) + c0,n0r
′′′
T (�t)1−2m1 . (42)

If α0 is an odd natural number and n0 vanishes, consider
the least nonvanishing index k1 such that either αk1 does not
take odd natural values or αk1 = 2mk1 + 1, where the natural
numbers mk1 and nk1 do not vanish. The function �T (t) is
obtained in the former case from Eqs. (39) and (40) by
replacing the power α0 with αk1 and n0 with nk1 , or in the
latter case from Eqs. (41) and (42) by replacing the power m1

with mk1 and n0 with nk1 . We consider SDs such that the index
k1 exists with the required properties.

C. The dephasing factor at nonvanishing temperatures
for the second class of spectral densities

We consider SDs such that the auxiliary functions 	T (ν)
belong to the second class under study (Sec. IV B) and exhibit
a finite second negative moment [Eq. (11)]. This constraint
requires α0 > 2. Over short times, t � 1/�, the dephasing
factor grows quadratically in time according to Eq. (32),
independently of the low- or high-frequency structure of
the SD. As far as the long-time evolution is concerned, a
variety of logarithmic relaxations of the dephasing factor to
the asymptotic value �T (∞) are obtained for t 	 1/�,

�T (t) ∼ �T (∞) + w0(�t)2−α0 [rT lnβ0 (�t) + r̄T lnβ0−1(�t)],

(43)

where

r̄T = β0kBT

h̄�

[
π sin

(
πα0

2

)
�(α0 − 2)

− 2 cos

(
πα0

2

)
�(1)(α0 − 2)

]
.

If the Ohmicity parameter α0 is not an odd natural number, the
dominant part of the above relaxation is

�T (t) ∼ �T (∞) + w0rT (�t)2−α0 lnβ0 (�t). (44)

If the Ohmicity parameter α0 takes odd natural values, Eq. (43)
gives for t 	 1/� the asymptotic form

�T (t) ∼ �T (∞) + w0r̄1(�t)2−α0 lnβ0−1(�t) (45)

and provides the power laws

�T (t) ∼ �T (∞) + w0r̄1(�t)2−α0 (46)

for β0 = 1.
The comparison between the above relaxations and those

obtained for the first class of SDs suggests that, at nonvanishing
temperatures, the long-time evolution of the dephasing factor
exhibits for both classes under study the same dependence on
the low-frequency structure of the SD.

Numerical computations have been performed by adopting
the toy SDs

J1(ω) = q1�
( ω

�

)α

exp
(
−λ

ω

�

)
ln2 ω

�
, (47)

J2(ω) = q2�

(
ω

�

(
1

2
− ω

�

))
�

( ω

�

)α

lnβ ω

�
, (48)

where �(ν) represents the Heaviside step function. The first
example of SDs [Eq. (47)] is tailored at low frequencies by
a quadratic logarithmic term and power laws, exhibits an
exponential cutoff at high frequencies, and belongs to the
first class under study (Sec. IV A). The second example of
SDs [Eq. (48)] is tailored at low frequencies by arbitrary
powers of logarithmic forms and power laws, with finite
support [0,�/2], and belongs to the second class under study
(Sec. IV B). Plots of the coherence term are drawn in Fig. 1.
The persistence of asymptotic coherence is confirmed by the
long-time nonvanishing behavior of the curves. Numerical
analysis of the dephasing factor are displayed in Figs. 2–4.
The short-time quadratic growth is confirmed by the parallel
asymptotic lines, with slope 2, appearing in Fig. 2. The
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FIG. 1. Quantity ρ0,1(t)/ρ0,1(0) versus �t for 0 � �t � 6, SDs
given by Eq. (47), q1 = 1, and different values of the parameters α

and λ. Curve (a) corresponds to α = 1.6 and λ = 0.3, (b) corresponds
to α = 1.6 and λ = 0.4, (c) corresponds to α = 1.6 and λ = 0.48,
(d) corresponds to α = 1.6 and λ = 0.6, (e) corresponds to α = 2
and λ = 0.8, (f) corresponds to α = 2 and λ = 1, (g) corresponds
to α = 2.5 and λ = 1.2, (h) corresponds to α = 5 and λ = 2, (i)
corresponds to α = 5 and λ = 2.2, and (j) corresponds to α = 3 and
λ = 3.

long-time logarithmic relaxations result in the asymptotic lines
that are shown in Figs. 3 and 4. The former correspond to
the quadratic logarithmic term of the first computed SDs.
The latter refer to various noninteger logarithmic powers
of the second computed SDs.
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FIG. 2. Quantity ln{ln[ρ0,1(0)/ρ0,1(t)]} versus ln(�t) for
exp(−3) � �t � exp(5), SDs given by Eq. (47), q1 = 1, and different
values of the parameters α and λ. Curve (a) corresponds to α = 5
and λ = 15, curve (b) corresponds to α = 5 and λ = 10, curve (c)
corresponds to α = 5 and λ = 7, curve (d) corresponds to α = 2
and λ = 22, curve (e) corresponds to α = 1.5 and λ = 20, curve (f)
corresponds to α = 1.5 and λ = 9, curve (g) corresponds to α = 10
and λ = 4.8, curve (h) corresponds to α = 10 and λ = 4.3, curve (i)
corresponds to α = 1.5 and λ = 1, curve (j) corresponds to α = 10
and λ = 3.4, curve (k) corresponds to α = 1.5 and λ = 0.4, curve (l)
corresponds to α = 20 and λ = 6.1, curve (m) corresponds to α = 1.5
and λ = 0.2, and curve (n) corresponds to α = 20 and λ = 5.55.
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FIG. 3. Quantity | ln |(�t)α−1 ln[ρ0,1(∞)/ρ0,1(t)]|| versus
ln[ln(�t)] for exp(1/e) � �t � exp[exp(2.5)], SDs given by
Eq. (47), q1 = 1, and different values of the parameters α and λ.
Curve (a) corresponds to α = 2.4 and λ = 50, curve (b) corresponds
to α = 3.8 and λ = 30, (c) corresponds to α = 3 and λ = 0.01,
curve (d) corresponds to α = 3.2 and λ = 250, curve (e) corresponds
to α = 3.3 and λ = 20, curve (f) corresponds to α = 1.5 and λ = 1,
curve (g) corresponds to α = 1.4 and λ = 0.1, curve (h) corresponds
to α = 1.3 and λ = 1, curve (i) corresponds to α = 1.2 and λ = 0.1,
(j) corresponds to α = 1.14 and λ = 0.001, curve (k) corresponds
to α = 1.1 and λ = 0.1, and curve (l) corresponds to α = 1.08 and
λ = 0.001.

VI. REGULAR PATTERNS IN THE LONG-TIME
INFORMATION FLOW

For the system under study the trace distance measure
of non-Markovianity that is defined in Refs. [4,13] takes a
simple expression in terms of the dephasing rate and dephasing
factor. In this case the non-Markovianity measure results in the

(a)

(b)

(c )(d )

(e)

(f )

(g )

(h)

(i)
( j)
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|ln |(Δ t)α - 1 ln (ρ0,1 (∞)/ρ0,1 (t))||

FIG. 4. Quantity | ln |(�t)α−1 ln[ρ0,1(∞)/ρ0,1(t)]|| versus
ln[ln(�t)] for exp[exp(2.5)] � �t � exp[exp(4.5)], SDs given by
Eq. (48), q2 = 1, different values of the parameter α, and noninteger
values of the logarithmic power β. Curve (a) corresponds to α = 2.2
and β = 4.5, curve (b) corresponds to α = 2.1 and β = 6.2, curve
(c) corresponds to α = 2.3 and β = 7.7, curve (d) corresponds
to α = 2.3 and β = 10.1, curve (e) corresponds to α = 2.2 and
β = 12.4, curve (f) corresponds to α = 2.6 and β = 14.3, curve
(g) corresponds to α = 2.4 and β = 17.5, curve (h) corresponds
to α = 2.5 and β = 19.5, curve (i) corresponds to α = 2.7 and
β = 22.5, and curve (j) corresponds to α = 2.6 and β = 23.8.
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form [3,27,37]

N =
∫

γ (t)<0
|γ (t)|e−�(t)dt. (49)

The open dynamics is Markovian if the dephasing rate is
non-negative. On the contrary, persistent negative values of
the dephasing rate are a source of non-Markovianity and are
interpreted as a flow of information from the environment back
into the system. Consequently, at zero temperature, T = 0,
the open dynamics is Markovian if the function J (ω)/ω is
nonincreasing. If the SD is differentiable this condition reads

J ′(ω) � J (ω)

ω
(50)

for every ω > 0. At nonvanishing temperatures, T > 0, the
open dynamics is Markovian if the function JT (ω)/ω is
nonincreasing. If the SD is differentiable, this requirement
results in the constraint

J ′(ω) �
(

1

ω
+ h̄

kBT
cosech

h̄ω

kBT

)
J (ω) (51)

for every ω > 0. Consequently, if the open dynamics is non-
Markovian, the function J (ω)/ω, for T = 0, or the function
JT (ω)/ω, for T > 0, is increasing in an interval of frequencies
of nonvanishing measure at least. In this way, a nonvanishing
contribution is provided to the integral of Eq. (49). Let the
SD be differentiable for every ω > 0. If the open dynamics
is non-Markovian the constraint (50), for T = 0, or (51), for
T > 0, is not fulfilled for one value of the frequency at least.

In general, the asymptotic behavior of the dephasing rate
depends on integral properties of the SDs. Over long times,
t 	 1/�, the dephasing rate vanishes at zero temperature,
T = 0, if the first negative moment of the SD is finite,

∫ ∞

0

J (ω)

ω
dω < ∞. (52)

This quantity is also referred to as the reorganization energy
in the framework of optical spectroscopy [19,21]. Similarly,
at nonvanishing temperatures, T > 0, the dephasing rate
vanishes for t 	 1/� if

∫ ∞

0

JT (ω)

ω
dω < ∞. (53)

Let the external environment consist of a reservoir of
frequency modes. If the SDs belong to the first class under
study (Sec. IV A), the dephasing rate increases linearly over
short times, t � 1/�,

γ0(t) ∼ l0t. (54)

This behavior is independent of the low- or high-frequency
structure of the SD. Over long times, t 	 1/�, different forms
of relaxations are obtained dependent on the low-frequency
structure of the SD, given by Eq. (15). If α0 = n0 = 0 the
dephasing rate tends to the nonvanishing asymptotic value for
t 	 1/�,

γ0(t) ∼ πc0,0�

2
. (55)

If α0 > 0 and α0 is not an even natural number, the dephasing
rate vanishes for t 	 1/� according to the relaxations

γ0(t) ∼ c0,n0g1(�t)−α0 lnn0 (�t), (56)

which become inverse power laws for n0 = 0,

γ0(t) ∼ c0,n0g1(�t)−α0 , (57)

where g1 = � sin(πα0/2)�(α0). Notice that Eq. (55) is recov-
ered from Eq. (57) as α0 → 0+. If α0 = 2m2 where m2 and n0

are nonvanishing natural numbers, the dephasing rate vanishes
for t 	 1/� as

γ0(t) ∼ c0,n0g
′
1(�t)−2m2 lnn0−1(�t), (58)

where g′
1 = π (−1)m2+1n0(2m2 − 1)!�/2. The above relax-

ations become inverse power laws for n0 = 1,

γ0(t) ∼ c0,n0g
′
1(�t)−2m2 . (59)

If α0 is an even natural number and n0 vanishes, consider the
least nonvanishing index k2 such that either αk2 does not take
even natural values or αk2 = 2mk2 , where the natural numbers
mk2 and nk2 do not vanish. The function γ0(t) is obtained in the
former case from Eqs. (56) and (57) by replacing the power α0

with αk2 and n0 with nk2 , or in the latter case from Eqs. (58)
and (59) by replacing the power m2 with mk2 and n0 with nk2 .
We consider SDs such that the index k2 exists with the required
properties.

A. The dephasing rate at zero temperature for the second class
of spectral densities

At this stage we analyze the time evolution of the dephasing
rate at zero temperature by considering the second class of
SDs under study (Sec. IV B). Over short times, t � 1/�, the
dephasing rate increases linearly according to Eq. (54). This
behavior is independent of the low- or high-frequency structure
of the SD. Over long times, t 	 1/�, we find various forms
of logarithmic relaxations

γ0(t) ∼ w0

(�t)α0
[g1 lnβ0 (�t) − ḡ1 lnβ0−1(�t)], (60)

where

ḡ1 = β0�

[
π

2
cos

(πα0

2

)
�(α0) + sin

(πα0

2

)
�(1)(α0)

]
.

If the Ohmicity parameter α0 does not take even natural values,
the dominant part of the above asymptotic form is

γ0(t) ∼ w0g1(�t)−α0 lnβ0 (�t) (61)

and becomes the power law

γ0(t) ∼ w0g1(�t)−α0 (62)

for β0 = 0. If the Ohmicity parameter α0 is an even natural
number, Eq. (60) gives

γ0(t) ∼ −w0ḡ1(�t)−α0 lnβ0−1(�t) (63)

and becomes the power law

γ0(t) ∼ −w0ḡ1(�t)−α0 (64)

for β0 = 1. Notice the full similarity between the above
expressions and those obtained for the first class of SDs under
study, at zero temperature.
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According to the above analysis, at zero temperature and
for the first class of SDs under study, the information flows
into the environment over short times, t � 1/�. Over long
times, t 	 1/�, the information flows back into the system
for the values of the Ohmicity parameter 2 + 4n < α0 <

4 + 4n, where n = 0,1,2, . . . . Backflow of information is
obtained also for every nonvanishing even natural value of
the Ohmicity parameter if n0 = 0 and 2 + 4n < αk2 � 4 + 4n,
where n takes natural values. Additionally, if n0 > 0, long-time
backflow appears for every even natural value α0 = 4l1, where
l1 is a nonvanishing natural number. Along with the backflow
of information, the long-time dynamics is non-Markovian,
the modulus of the coherence term increases up to the
nonvanishing asymptotic value, and recoherence is observed.
If the Ohmicity parameter differs from the values reported
above, the long-time information flows into the environment,
the long-time dynamics is Markovian, and the modulus of the
coherence term decreases down to the asymptotic value, as
suggested by the long-time behavior of the dephasing factor.
If compared to the initial condition, coherence is partially lost
for α0 > 1 and is fully lost if 0 � α0 � 1.

For the second class of SDs under study, at zero tem-
perature, the information backflow, non-Markovianity, and
recoherence exhibit, over long times, exactly the same
dependence on the low-frequency structure of the SD as
the one found for the first class. Notice that in the whole
paper the analysis concerns uniquely the short- and long-time
flow of information. Consequently, the dynamics can still
be non-Markovian due to intermediate backflows, even if no
information flows from the environment back into the system
over long times.

B. Thermal bath

Let the external environment be a thermal bath, T > 0. For
SDs that belong to the first class under study (Sec. IV A) and
α0 > 0 the dephasing rate increases linearly over short times,
t � 1/�,

γT (t) ∼ lT t. (65)

This behavior is independent of the low- or high-frequency
structure of the SD. Over long times, the dephasing rate
divergences or vanishes dependent on the low-frequency
profile of the SD that is given by Eq. (15). If 0 < α0 < 1
the dephasing rate diverges for t 	 1/� according to

γT (t) ∼ c0,n0gT (�t)1−α0 lnn0 (�t), (66)

which describes power laws for n = 0,

γT (t) ∼ c0,n0gT (�t)1−α0 . (67)

The coefficient gT reads

gT = 2kBT cos(πα0/2)�(α0)

h̄(1 − α0)
.

If α0 = 1 the dephasing rate diverges for t 	 1/� as

γT (t) ∼ c0,n0πkBT

h̄
lnn0 (�t). (68)

If α0 = 1 and n0 = 0 the dephasing rate converges for
t 	 1/� to the nonvanishing value

γT (t) ∼ c0,n0πkBT

h̄
. (69)

If α0 > 1 and α0 is not an odd natural number, the dephasing
factor vanishes for t 	 1/� according to Eq. (66). If α0 =
1 + 2m3, where m3 and n0 are nonvanishing natural numbers,
the dephasing rate vanishes for t 	 1/� as

γT (t) ∼ c0,n0g
′
T (�t)−2m3 lnn0−1(�t), (70)

where g′
T = π (−1)1+m3kBT n0(2m3 − 1)!/h̄. The above relax-

ation provides inverse power laws for n0 = 1,

γ0(t) ∼ c0,n0g
′
T (�t)−2m3 . (71)

If α0 is an odd natural number and n0 vanishes, consider
the least nonvanishing index k3 such that either αk3 does
not take odd natural values or αk3 = 1 + 2mk3 , where the
natural numbers mk3 and nk3 do not vanish. The function γT (t)
is obtained in the former case from Eqs. (66) and (67) by
replacing the power α0 with αk3 and n0 with nk3 , or in the latter
case from Eqs. (70) and (71) by substituting the power m3 with
mk3 and n0 with nk3 . We consider SDs such that the index k3

exists with the required properties.

C. The dephasing rate at nonvanishing temperatures
for the second class of spectral densities

Let the external environment consist of a thermal bath,
T > 0, and the auxiliary functions 	T (ν) belong to the second
class under study (Sec. IV B). Over short times, t � 1/�,
the dephasing rate increases linearly according to Eq. (65), if
α0 > 0. Except for this requirement, the behavior is indepen-
dent of the low- or high-frequency structure of the SD. Over
long times, t 	 1/�, the dephasing rate vanishes according
to arbitrary powers of logarithmic forms

γT (t) ∼ w0(�t)1−α0 [gT lnβ0 (�t) + ḡT lnβ0−1(�t)], (72)

where

ḡT = kBTβ0

h̄

[
2 cos

(πα0

2

)
�(1)(α0 − 1)

−π sin
(πα0

2

)
�(α0 − 1)

]
.

If the Ohmicity parameter α0 does not take odd natural values,
the dominant part of the above relaxation is

γT (t) ∼ w0gT (�t)1−α0 lnβ0 (�t) (73)

and becomes the power law

γT (t) ∼ w0gT (�t)1−α0 (74)

if β0 = 0. If the Ohmicity parameter α0 is an odd natural
number, Eq. (72) gives

γT (t) ∼ w0ḡT (�t)1−α0 lnβ0−1(�t) (75)

and becomes the power law

γT (t) ∼ w0ḡT (�t)1−α0 (76)

if β0 = 1. Again, full similarity is observed between the above
expressions and the long-time evolution of the dephasing rate
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FIG. 5. Ratio γ0(t)/� versus �t for 0 � �t � 9, SDs given by
Eq. (47), q1 = 1, and different values of the parameters α and λ.
Curve (a) corresponds to α = 2 and λ = 1.1, curve (b) corresponds
to α = 0.9 and λ = 40, curve (c) corresponds to α = 1.5 and λ = 3,
curve (d) corresponds to α = 0.8 and λ = 27, curve (e) corresponds to
α = 1.3 and λ = 2.9, curve (f) corresponds to α = 1.3 and λ = 0.7,
curve (g) corresponds to α = 0.8 and λ = 17, curve (h) corresponds to
α = 1.1 and λ = 2.9, curve (i) corresponds to α = 1.1 and λ = 1.2,
(j) corresponds to α = 0.8 and λ = 10, curve (k) corresponds to
α = 0.9 and λ = 4.8, curve (l) corresponds to α = 1 and λ = 0.7,
curve (m) corresponds to α = 0.7 and λ = 9.5, curve (n) corresponds
to α = 0.8 and λ = 4.5, and (o) corresponds to α = 2 and λ = 0.9.

that is obtained at nonvanishing temperatures for the first class
of SDs under study.

Numerical computations of the dephasing rate are displayed
in Figs. 5–8. The short-time linear growth is shown in Fig. 6.
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FIG. 6. Ratio γ0(t)/� versus �t for 0 � �t � 0.8, SDs given
by Eq. (48), q1 = 1 and different values of the parameters α and λ.
Curve (a) corresponds to α = 1.5 and λ = 12, curve (b) corresponds
to α = 1.5 and λ = 5, curve (c) corresponds to α = 0.8 and λ = 12.5,
curve (d) corresponds to α = 0.7 and λ = 11.5, curve (e) corresponds
to α = 1.6 and λ = 1.9, curve (f) corresponds to α = 1.6 and λ = 1.7,
curve (g) corresponds to α = 2 and λ = 1.6, curve (h) corresponds
to α = 2 and λ = 1.5, curve (i) corresponds to α = 1.4 and λ = 1.4,
(j) corresponds to α = 1.4 and λ = 1.3, curve (k) corresponds to
α = 0.8 and λ = 1.2, curve (l) corresponds to α = 1.3 and λ = 1.1,
curve (m) corresponds to α = 1.3 and λ = 1, curve (n) corresponds
to α = 1 and λ = 0.8, and (o) corresponds to α = 1 and λ = 0.5.
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FIG. 7. Quantity ln[(�t)α|γ0(t)/�|] versus ln[ln(�t)] for
exp(1/e) � �t � exp[exp(2.6)], SDs given by Eq. (47), q1 = 1, and
different values of the parameters α and λ. Curve (a) corresponds to
α = 1 and λ = 10 000, curve (b) corresponds to α = 1 and λ = 200,
curve (c) corresponds to α = 1 and λ = 0.01, curve (d) corresponds
to α = 10 and λ = 20, curve (e) corresponds to α = 10 and λ = 4,
curve (f) corresponds to α = 10 and λ = 0.01, curve (g) corresponds
to α = 15 and λ = 5, curve (h) corresponds to α = 15 and λ = 2,
curve (i) corresponds to α = 15 and λ = 0.01, curve (j) corresponds
to α = 20 and λ = 2, curve (k) corresponds to α = 20 and λ = 1,
and curve (l) corresponds to α = 20 and λ = 0.001.

The long-time logarithmic relaxations result in the asymptotic
lines of Figs. 7 and 8. The former refer to the quadratic
logarithmic term of the first computed SDs (47). The latter
correspond to various noninteger logarithmic powers of the
second computed SDs (48).

The above results show that at nonvanishing temperatures
and for the first class of SDs under study, the information flows
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FIG. 8. Quantity ln[(�t)α|γ0(t)/�|] versus ln[ln(�t)] for
exp[exp(1.3)] � �t � exp[exp(3)], SDs given by Eq. (48), q2 = 1,
different values of the parameter α, and noninteger values of the
logarithmic power β. Curve (a) corresponds to α = 1.1 and β = 8.1,
curve (b) corresponds to α = 2.1 and β = 13.4, curve (c) corresponds
to α = 1.9 and β = 15.4, curve (d) corresponds to α = 2.2 and
β = 20.5, curve (e) corresponds to α = 2.6 and β = 25.8, curve
(f) corresponds to α = 2.6 and β = 28.1, curve (g) corresponds
to α = 3.1 and β = 33.9, curve (h) corresponds to α = 2.9 and
β = 35.9, curve (i) corresponds to α = 1.9 and β = 41.7, and curve
(j) corresponds to α = 5.9 and β = 50.7.
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into the environment over short times, t � 1/�. Over long
times, t 	 1/�, the information flows back into the system for
the values of the Ohmicity parameter 3 + 4n < α0 < 5 + 4n,
where n = 0,1,2, . . . . Backflow of information is obtained
also for every odd natural value of the Ohmicity parameter
if n0 = 0 and 3 + 4n < αk3 � 5 + 4n, where n takes natural
values. Additionally, if n0 > 0, long-time backflow appears for
every odd natural value α0 = 1 + 4l2, where l2 is a nonvanish-
ing natural number. If the Ohmicity parameter differs from the
values reported above, the long-time information spreads into
the environment under Markovian evolution and the modulus
of the coherence term decreases down to the asymptotic value.
If compared to the initial condition, coherence is partially
lost if α0 > 2. Coherence is fully lost if 0 < α0 � 2. By
considering the second class of SDs, the information backflow,
non-Markovianity, decoherence, and recoherence exhibit over
long times, at nonvanishing temperatures, exactly the same
dependence on the low-frequency structure of the SD and on
the temperature as the one found for the first class.

Consider the transition from vanishing to an arbitrary
nonvanishing temperature. For both classes of the SDs under
study, the backflow of information is stable for 3 + 4n < α0 <

4 + 4n. Additionally, the backflow is stable for the values
3 + 4n under the special conditions mentioned above. The
backflow is inverted for 2 + 4n < α0 < 3 + 4n and 4 + 4n <

α0 < 5 + 4n, where n = 0,1,2, . . . . In the same transition,
the long-time recoherence process is unaffected in the former
conditions and is destroyed in the latter ones.

VII. CONCLUSION

We have considered the local dephasing process of a
qubit that interacts with a structured reservoir of frequency
modes or a thermal bath. We have studied the coherence
between the two energy eigenstates of the qubit and the
flow of quantum information by analyzing the dephasing
factor and dephasing rate over short and long times. The SDs
under study are obtained by introducing in the low-frequency
Ohmic-like structure additional factors that are represented by

powers of logarithmic forms J (ω)∝∼�(ω/�)α0 [− ln(ω/�)]β0

for ω � �. For the first class of SDs, the Ohmicity param-
eter α0 takes arbitrarily non-negative real values, while the
logarithmic power β0 is natural valued. For the second class,
the Ohmicity parameter takes arbitrarily positive real values,
while the logarithmic power is real valued, arbitrarily positive
or negative, or vanishing. The logarithmic singularities are
removable and enhance, for positive logarithmic powers, or
reduce, for negative logarithmic powers, the low-frequency
power-law profiles of the physically feasible Ohmic-like SDs.
Over higher frequencies the SDs are arbitrarily tailored.

The full loss or persistence of coherence, over long times,
is determined by integral properties of the SD and corresponds
to a divergent or a convergent dephasing factor, respectively.
For both classes of SDs under study the dephasing factor
increases quadratically and the dephasing rate grows linearly
over short times, both at zero and at an arbitrary nonvanishing
temperature. Over long times, the dephasing factor and the
dephasing rate exhibit various relaxations to the asymptotic
values that are described by logarithmic and power laws.

The dependence on the low-frequency structure of the SD
is the same for both classes of SDs. For the second class, the
relaxations are arbitrarily faster or slower, or coincide with
inverse power laws, due to the arbitrariness of the logarithmic
powers.

The information flows into the environment over short
times, at both vanishing and nonvanishing temperature. Over
long times, we have found that regular patterns appear in the
direction of the flow of information, back into the system or
forth into the environment, dependent on the Ohmicity param-
eter α0 of the SD, regardless of the logarithmic form factors.
At zero temperature, the long-time information flows from
the environment back into the system in correspondence with
the periodic intervals 2 + 4n < α0 < 4 + 4n for every n =
0,1,2, . . . . Under special conditions, backflow of information
appears at zero temperature also for nonvanishing even natural
values of the Ohmicity parameter. At nonvanishing tempera-
tures, backflow of information is obtained over the periodic
intervals 3 + 4n < α0 < 5 + 4n. Under special conditions,
backflow of information is found at nonvanishing temperatures
also for odd natural values of the Ohmicity parameter. In
the transition from vanishing to an arbitrary nonvanishing
temperature, the backflow of information stably persists over
the intervals 3 + 4n < α0 < 4 + 4n and, under the special
conditions mentioned above, for the values α0 = 3 + 4n.
Instead, the backflow is inverted over the intervals 2 + 4n <

α0 < 3 + 4n and 4 + 4n < α0 < 5 + 4n. Non-Markovianity
and recoherence of the qubit appear along with the backflow
of information. Consequently, the transition from vanishing
to an arbitrary nonvanishing temperature does not destroy
the recoherence process for 3 + 4n < α0 < 4 + 4n and, under
special conditions, for the values α0 = 3 + 4n.

Argumentation on the experimental setting is beyond the
purposes of the present paper. Still, it is worth mentioning that
the present results apply to the Ohmic-like SDs of trapped im-
purity atoms that are immersed in a Bose-Einstein condensate
environment. Furthermore, if the low-frequency power-law
profiles of the Ohmic-like SDs are enhanced or reduced via
arbitrary positive or negative powers of logarithmic form
factors, the direction of the information flow is not altered by
the logarithmic terms and depends uniquely on the Ohmicity
parameter of the Ohmic-like term of the SD. Consequently,
the patterns in the information flow remain stable with respect
to the mentioned logarithmic perturbations of the Ohmic-like
SDs. We believe that the present analysis provides further
scenarios for the implementation of a stable control of the
flow of quantum information and the appearance of non-
Markovian dynamics and recoherence via the engineering
reservoir approach.

APPENDIX: DETAILS

The evolution of the reduced density matrix ρ(t) is given
by the master equation (2). The off-diagonal elements of
the reduced density matrix are described by Eq. (6) in
terms of the dephasing factor �(t). This function is given
by Eq. (7), for T = 0, and Eq. (8), for T > 0. If the
second negative moment of the SD is finite, the expression∫ ∞

0 J (ω) cos(ωt)/ω2dω vanishes over long times due to the
Riemann-Lebesgue lemma. In this way, Eq. (10) is obtained.
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For T > 0, according to the Riemann-Lebesgue lemma, if
the second negative moment of the effective SD is finite, the
expression

∫ ∞
0 JT (ω) cos(ωt)/ω2dω vanishes over long times.

In this way, Eq. (12) is obtained.
The asymptotic behavior of the function �0(t) is studied

in the dimensionless variables ν = ω/� and τ = �t by
considering the function F0(τ ), which is defined as F0(τ ) =
�0(τ/�). According to this definition, the function reads

F0(τ ) = 2
∫ ∞

0

	(ν)

ν2
sin2

(
τν

2

)
dν. (A1)

The Mellin transform [34,35] of the function F0(τ ) is defined
as F̂0(s) = ∫ ∞

0 τ s−1F0(τ ) dτ and reads

F̂0(s) = − cos

(
πs

2

)
�(s)	̂(−1 − s). (A2)

The fundamental strip depends on the asymptotic behavior of
the auxiliary function [34,35]. Consider the first class of SDs
under study (Sec. IV A) and the asymptotic form (15). The
fundamental strip of the Mellin transform F̂0(s) is min{0,α0 −
1} > Re s > −2. The asymptotic relationship [38]∣∣∣cos

(πs

2

)
�(s)

∣∣∣ ∼
∣∣∣sin

(πs

2

)
�(s)

∣∣∣ ∼
(π

2

)1/2
| Im s|Re s−1/2

(A3)

about the Gamma function �(s) holds for | Im s| → +∞. In
the strip max{−4, −2 − χ0} < Re s < min{−1/2 − ε0,α0 −
1} and for | Im s| → +∞, the Mellin transform of the function
F0(t) vanishes as F̂0(s) = o(| Im s|−1−ε0 ), where ε0 ∈ (0,3/2).
Consequently, the function F̂0(s) decreases sufficiently fast
in the strip as | Im s| → +∞ and the singularity in s = −2
provides the asymptotic expansion (17) of the dephasing factor
at short times. As far as the long-time evolution is concerned,
let the strip μ0 � Re s � δ0 exist such that the function
	̂(−1 − s), or the meromorphic continuation, vanishes as

	̂(−1 − s) = O(| Im s|−ζ0 ) (A4)

for | Im s| → +∞, where ζ0 > 1/2 + δ0. The parameters μ0

and δ0 fulfill the constraints μ0 ∈ (−2, min{0,α0 − 1}) and
δ0 ∈ (α0 − 1,0) for 0 � α0 < 1 or δ0 ∈ (αk4 ,αk5 ) for α0 � 1.
The parameter αk4 coincides with the positive power α0 if α0

is not an even natural number or if α0 = 2m0 and n0 > 0;
otherwise αk4 coincides with the parameter αk0 that is defined
in Sec. V. The index k4 is the least natural number that is
larger than k3 and such that αk4 is not an even natural number,
or such that αk4 is an even natural number and nk4 > 0. Under
the above conditions, the singularity of the function F̂0(s)
in s = α0 − 1 for 0 � α0 � 1 or in s = 0 and s = αk4 − 1 for
α0 > 1 provides the asymptotic forms given by Eqs. (18)–(26).

At nonvanishing temperatures the asymptotic behavior of
the dephasing factor is evaluated via the function FT (τ ),
defined as FT (τ ) = �T (τ/�), and the Mellin transform F̂T (s),
which reads

F̂T (s) = − cos

(
πs

2

)
�(s)	̂T (−1 − s). (A5)

The fundamental strip is min{0,α0 − 2} > Re s > −2 for
α0 > 0. The relationship (A3) implies that in the
strip max{−4, −2 − χ0} < Re s < min{−1/2 − ε1,α0 − 2}

and for | Im s| → +∞, the Mellin transform of the function
FT (t) vanishes as F̂T (s) = o(| Im s|−1−ε1 ), where ε1 ∈ (0,3/2).
Consequently, the function F̂T (s) decreases sufficiently fast
in the strip as | Im s| → +∞ and the singularity in s = −2
provides the asymptotic expansion (32) of the dephasing factor
at short times. As far as the long-time behavior is concerned,
let the strip μ1 � Re s � δ1 exist such that the function
	̂T (−1 − s), or the meromorphic continuation, vanishes as

	̂T (−1 − s) = O(| Im s|−ζ1 ) (A6)

for | Im s| → +∞, where ζ1 > 1/2 + δ1. The parameters μ1

and δ1 fulfill the constraints μ1 ∈ (−2,α0 − 2) and δ1 ∈ (α0 −
2,0), for 0 < α0 < 2, or μ1 ∈ (−2,0) and δ1 ∈ (αk6 ,αk7 ), for
α0 � 2. The parameter αk6 coincides with the positive power
α0 if α0 is not an odd natural number or if α0 = 1 + 2m1 and
n0 > 0; otherwise αk6 coincides with the parameter αk1 that
is defined in Sec. V. The index k7 is the least natural number
that is larger than k6 and such that αk7 is not an odd natural
number, or αk7 is an odd natural number and nk7 > 0. Under
the above conditions, the singularity of the function F̂T (s) in
s = α0 − 2, for 0 < α0 � 2, or in s = 0 and s = αk6 − 2, for
α0 > 2, provides Eqs. (33)–(42).

For the second class of SDs under study (Sec. IV B), the
short time evolution of the dephasing factor coincides, at both
zero and nonvanishing temperature, with the one obtained for
the first class of SDs, due to the dominated convergence of
the time-series expansion. As far as the long-time evolution
is concerned, the study performed in Refs. [35,36] allows the
asymptotic analysis of the expression (7), for T = 0, and (8),
for T > 0, in terms of the dimensionless variables ν and τ .
In this way, the asymptotic forms (27)–(31), for T = 0, and
(43)–(46), for T > 0, are obtained.

The dephasing rate γ (t) is defined by Eq. (3), for T = 0,
and by Eq. (4), for T > 0. The constraints (50) and (51)
are obtained by observing that the sine transforms of non-
increasing functions are non-negative. For the first class of
SDs (Sec. IV A), the asymptotic behavior of the dephasing
rate γ0(t) is studied by considering the function G0(τ ) that is
defined as G0(τ ) = γ0(τ/�) and reads

G0(τ ) = �

∫ ∞

0

	(ν)

ν
sin(ντ )dν. (A7)

The Mellin transform Ĝ0(s) is

Ĝ0(s) = � sin

(
πs

2

)
�(s)	̂(−s). (A8)

The fundamental strip is min{1,α0} > Re s > −1. The rela-
tionship (A3) suggests that in the strip max{−3, −1 − χ0} <

Re s < −1/2 − ε2 and for | Im s| → +∞, the Mellin trans-
form of the function G0(t) vanishes as Ĝ0(s) = o(| Im s|−1−ε2 ),
where ε2 ∈ (0,1/2). Consequently, the function Ĝ0(s) de-
creases sufficiently fast in the strip as | Im s| → +∞ and the
singularity in s = −1 provides Eq. (54). As far as the long-time
evolution is concerned, let the strip μ2 � Re s � δ2 exist such
that the function 	̂(−s), or the meromorphic continuation,
vanishes as

	̂(−s) = O(| Im s|−ζ2 ) (A9)
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for | Im s| → +∞, where ζ2 > 1/2 + δ2. The parameters μ2

and δ2 fulfill the constraints μ2 ∈ (−1, min{1,α0}) and δ2 ∈
(αk8,αk9 ). The parameter αk8 coincides with the positive power
α0 if α0 is not an even natural number or if α0 = 2m2 and
n0 > 0; otherwise αk8 coincides with the power αk2 that is
defined in Sec. V. The index k9 is the least natural number
that is larger than k8 and such that αk9 is not an even natural
number, or such that αk9 is an even natural number and nk9 > 0.
Under the above condition, the singularity of the function
Ĝ0(s) in s = αk8 provides the asymptotic forms given by
Eqs. (55)–(59).

For nonvanishing temperatures, T > 0, we study the func-
tion GT (τ ) that is defined as GT (τ ) = γT (τ/�). The Mellin
transform ĜT (s) results in the form

ĜT (s) = � sin

(
πs

2

)
�(s)	̂T (−s). (A10)

The fundamental strip is min{1,α0 − 1} > Re s > −1,
where α0 > 0. The relationship (A3) implies that in
the strip max{−3, −1 − χ0} < Re s < min{−1/2 − ε3,α0 −
1} and for | Im s| → +∞, the Mellin transform of the
function GT (t) vanishes as Ĝ0(s) = o(| Im s|−1−ε3 ), where
ε3 ∈ (0,1/2). Consequently, the function ĜT (s) decreases suf-
ficiently fast in the strip as | Im s| → +∞ and the singularity
in s = −1 gives Eq. (65). As far as the long-time behavior
is concerned, let the strip μ3 � Re s � δ3 exist such that the

function 	̂(−s), or the meromorphic continuation, vanishes as

	̂T (−s) = O(| Im s|−ζ3 ) (A11)

for | Im s| → +∞, where ζ3 > 1/2 + δ3. The parameters μ3

and δ3 fulfill the constraints μ3 ∈ (−1, min{1,α0 − 1}), for
α0 > 0, and δ3 ∈ (αk10 ,αk11 ). The parameter αk10 coincides with
the positive power α0 if α0 is not an odd natural number, or if
α0 = 1 + 2m3 and n0 > 0; otherwise αk10 coincides with the
power αk3 that is defined in Sec. VI. The index k11 is the least
natural number that is larger than k10 and such that αk11 is not an
odd natural number, or such that αk11 is an odd natural number
and nk11 > 0. Under the above conditions the singularity of the
function ĜT (s) in s = αk10 − 1 provides the asymptotic forms
given by Eqs. (66)–(71).

Consider the second class of SDs (Sec. IV B). The short-
time evolution of the dephasing rate coincides, at both zero and
nonvanishing temperature, with the one obtained for the first
class of SDs, due to the dominated convergence of the time-
series expansion. The long-time behavior of the dephasing
rate is evaluated from the study performed in Refs. [35,36] in
terms of the dimensionless variables ν and τ . In this way, we
derive the expressions (60)–(64), for T = 0, and (72)–(76),
for T > 0.

The direction of the flow of information, over short and
long times, is determined by studying the sign of the first
term of the asymptotic expansion of the dephasing rate, over
short and long times, respectively. Persistent negatives values
correspond to backflow of information. This concludes the
demonstration of the present results.
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[20] V. May and O. Kühn, Charge and Energy Transfer Dynamics in
Molecular Systems (Wiley-VCH, Weinheim, 2000).

[21] G. Ritschel and A. Eisfeld, J. Chem. Phys. 141, 094101 (2014).
[22] M. W. Y. Tu and W. M. Zhang, Phys. Rev. B 78, 235311 (2008).
[23] W.-M. Zhang, P.-Y. Lo, H.-N. Xiong, M. W.-Y. Tu, and F. Nori,

Phys. Rev. Lett. 109, 170402 (2012).
[24] H.-N. Xiong, W.-M. Zhang, M. W.-Y. Tu, and D. Braun,

Phys. Rev. A 86, 032107 (2012).
[25] F. Giraldi, Phys. Rev. A 91, 062112 (2015).
[26] C. Addis, B. Bylicka, D. Chruscinski, and S. Maniscalco,

Phys. Rev. A 90, 052103 (2014).
[27] Z. He, J. Zou, L. Li, and B. Shao, Phys. Rev. A 83, 012108

(2011).
[28] J. T. Barreiro, M. Müller, P. Schindler, D. Nigg, T. Monz, M.

Chwalla, M. Hennrich, C. F. Roos, P. Zoller, and R. Blatt, Nature
(London) 470, 486 (2011).

022109-12

https://doi.org/10.1103/PhysRevA.87.010103
https://doi.org/10.1103/PhysRevA.87.010103
https://doi.org/10.1103/PhysRevA.87.010103
https://doi.org/10.1103/PhysRevA.87.010103
https://doi.org/10.1088/1367-2630/17/12/123004
https://doi.org/10.1088/1367-2630/17/12/123004
https://doi.org/10.1088/1367-2630/17/12/123004
https://doi.org/10.1088/1367-2630/17/12/123004
https://doi.org/10.1103/PhysRevA.93.012118
https://doi.org/10.1103/PhysRevA.93.012118
https://doi.org/10.1103/PhysRevA.93.012118
https://doi.org/10.1103/PhysRevA.93.012118
https://doi.org/10.1103/PhysRevA.94.010101
https://doi.org/10.1103/PhysRevA.94.010101
https://doi.org/10.1103/PhysRevA.94.010101
https://doi.org/10.1103/PhysRevA.94.010101
https://doi.org/10.1103/PhysRevA.92.012315
https://doi.org/10.1103/PhysRevA.92.012315
https://doi.org/10.1103/PhysRevA.92.012315
https://doi.org/10.1103/PhysRevA.92.012315
https://doi.org/10.1038/srep13843
https://doi.org/10.1038/srep13843
https://doi.org/10.1038/srep13843
https://doi.org/10.1038/srep13843
https://doi.org/10.1142/S021974991461005X
https://doi.org/10.1142/S021974991461005X
https://doi.org/10.1142/S021974991461005X
https://doi.org/10.1142/S021974991461005X
https://doi.org/10.1103/RevModPhys.88.021002
https://doi.org/10.1103/RevModPhys.88.021002
https://doi.org/10.1103/RevModPhys.88.021002
https://doi.org/10.1103/RevModPhys.88.021002
https://doi.org/10.1088/0034-4885/77/9/094001
https://doi.org/10.1088/0034-4885/77/9/094001
https://doi.org/10.1088/0034-4885/77/9/094001
https://doi.org/10.1088/0034-4885/77/9/094001
https://doi.org/10.1103/PhysRevA.82.042103
https://doi.org/10.1103/PhysRevA.82.042103
https://doi.org/10.1103/PhysRevA.82.042103
https://doi.org/10.1103/PhysRevA.82.042103
https://doi.org/10.1103/PhysRevA.84.052118
https://doi.org/10.1103/PhysRevA.84.052118
https://doi.org/10.1103/PhysRevA.84.052118
https://doi.org/10.1103/PhysRevA.84.052118
https://doi.org/10.1103/PhysRevA.86.044101
https://doi.org/10.1103/PhysRevA.86.044101
https://doi.org/10.1103/PhysRevA.86.044101
https://doi.org/10.1103/PhysRevA.86.044101
https://doi.org/10.1103/PhysRevLett.103.210401
https://doi.org/10.1103/PhysRevLett.103.210401
https://doi.org/10.1103/PhysRevLett.103.210401
https://doi.org/10.1103/PhysRevLett.103.210401
https://doi.org/10.1103/PhysRevA.81.062115
https://doi.org/10.1103/PhysRevA.81.062115
https://doi.org/10.1103/PhysRevA.81.062115
https://doi.org/10.1103/PhysRevA.81.062115
https://doi.org/10.1103/RevModPhys.59.1
https://doi.org/10.1103/RevModPhys.59.1
https://doi.org/10.1103/RevModPhys.59.1
https://doi.org/10.1103/RevModPhys.59.1
https://doi.org/10.1016/0378-4371(90)90299-8
https://doi.org/10.1016/0378-4371(90)90299-8
https://doi.org/10.1016/0378-4371(90)90299-8
https://doi.org/10.1016/0378-4371(90)90299-8
https://doi.org/10.1098/rspa.1996.0029
https://doi.org/10.1098/rspa.1996.0029
https://doi.org/10.1098/rspa.1996.0029
https://doi.org/10.1098/rspa.1996.0029
https://doi.org/10.1103/PhysRevA.65.032326
https://doi.org/10.1103/PhysRevA.65.032326
https://doi.org/10.1103/PhysRevA.65.032326
https://doi.org/10.1103/PhysRevA.65.032326
https://doi.org/10.1103/PhysRevA.55.2290
https://doi.org/10.1103/PhysRevA.55.2290
https://doi.org/10.1103/PhysRevA.55.2290
https://doi.org/10.1103/PhysRevA.55.2290
https://doi.org/10.1103/PhysRevA.55.4636
https://doi.org/10.1103/PhysRevA.55.4636
https://doi.org/10.1103/PhysRevA.55.4636
https://doi.org/10.1103/PhysRevA.64.053813
https://doi.org/10.1103/PhysRevA.64.053813
https://doi.org/10.1103/PhysRevA.64.053813
https://doi.org/10.1103/PhysRevA.64.053813
https://doi.org/10.1088/0953-4075/39/16/020
https://doi.org/10.1088/0953-4075/39/16/020
https://doi.org/10.1088/0953-4075/39/16/020
https://doi.org/10.1088/0953-4075/39/16/020
https://doi.org/10.1103/PhysRevA.77.033831
https://doi.org/10.1103/PhysRevA.77.033831
https://doi.org/10.1103/PhysRevA.77.033831
https://doi.org/10.1103/PhysRevA.77.033831
https://doi.org/10.1063/1.4893931
https://doi.org/10.1063/1.4893931
https://doi.org/10.1063/1.4893931
https://doi.org/10.1063/1.4893931
https://doi.org/10.1103/PhysRevB.78.235311
https://doi.org/10.1103/PhysRevB.78.235311
https://doi.org/10.1103/PhysRevB.78.235311
https://doi.org/10.1103/PhysRevB.78.235311
https://doi.org/10.1103/PhysRevLett.109.170402
https://doi.org/10.1103/PhysRevLett.109.170402
https://doi.org/10.1103/PhysRevLett.109.170402
https://doi.org/10.1103/PhysRevLett.109.170402
https://doi.org/10.1103/PhysRevA.86.032107
https://doi.org/10.1103/PhysRevA.86.032107
https://doi.org/10.1103/PhysRevA.86.032107
https://doi.org/10.1103/PhysRevA.86.032107
https://doi.org/10.1103/PhysRevA.91.062112
https://doi.org/10.1103/PhysRevA.91.062112
https://doi.org/10.1103/PhysRevA.91.062112
https://doi.org/10.1103/PhysRevA.91.062112
https://doi.org/10.1103/PhysRevA.90.052103
https://doi.org/10.1103/PhysRevA.90.052103
https://doi.org/10.1103/PhysRevA.90.052103
https://doi.org/10.1103/PhysRevA.90.052103
https://doi.org/10.1103/PhysRevA.83.012108
https://doi.org/10.1103/PhysRevA.83.012108
https://doi.org/10.1103/PhysRevA.83.012108
https://doi.org/10.1103/PhysRevA.83.012108
https://doi.org/10.1038/nature09801
https://doi.org/10.1038/nature09801
https://doi.org/10.1038/nature09801
https://doi.org/10.1038/nature09801


REGULAR PATTERNS IN THE INFORMATION FLOW OF . . . PHYSICAL REVIEW A 95, 022109 (2017)

[29] B.-H. Liu, Y.-F. Huang, C.-F. Li, G.-C. Guo, E.-M.
Laine, H.-P. Breuer, and J. Piilo, Nat. Phys. 7, 931
(2011).

[30] F. Giraldi, arXiv:1612.03690v1.
[31] F. Giraldi, Eur. Phys. J. D 69, 5 (2015); 70, 229 (2016).
[32] M. A. Cirone, G. De Chiara, G. M. Palma, and A. Recati, New

J. Phys. 11, 103055 (2009).
[33] P. Haikka, S. McEndoo, G. De Chiara, G. M.

Palma, and S. Maniscalco, Phys. Rev. A 84, 031602
(2011).

[34] N. Bleistein and R. A. Handelsman, Asymptotic Expansion of
Integrals (Dover, New York, 1975).

[35] R. Wong, Asymptotic Approximations of Integrals (Academic,
Boston, 1989).

[36] R. Wong and J. F. Lin, J. Math. Anal. Appl. 64, 173 (1978).
[37] F. F. Fanchini, G. Karpat, L. K. Castelano, and D. Z. Rossatto,

Phys. Rev. A 88, 012105 (2013).
[38] I. S. Gradshteyn and I. M. Ryzhik, in Table of Integrals, Series

and Products, 5th ed., edited by A. Jeffrey (Academic, New
York, 2000).

022109-13

https://doi.org/10.1038/nphys2085
https://doi.org/10.1038/nphys2085
https://doi.org/10.1038/nphys2085
https://doi.org/10.1038/nphys2085
http://arxiv.org/abs/arXiv:1612.03690v1
https://doi.org/10.1140/epjd/e2014-40756-8
https://doi.org/10.1140/epjd/e2014-40756-8
https://doi.org/10.1140/epjd/e2014-40756-8
https://doi.org/10.1140/epjd/e2014-40756-8
https://doi.org/10.1140/epjd/e2016-70301-8
https://doi.org/10.1140/epjd/e2016-70301-8
https://doi.org/10.1140/epjd/e2016-70301-8
https://doi.org/10.1088/1367-2630/11/10/103055
https://doi.org/10.1088/1367-2630/11/10/103055
https://doi.org/10.1088/1367-2630/11/10/103055
https://doi.org/10.1088/1367-2630/11/10/103055
https://doi.org/10.1103/PhysRevA.84.031602
https://doi.org/10.1103/PhysRevA.84.031602
https://doi.org/10.1103/PhysRevA.84.031602
https://doi.org/10.1103/PhysRevA.84.031602
https://doi.org/10.1016/0022-247X(78)90030-6
https://doi.org/10.1016/0022-247X(78)90030-6
https://doi.org/10.1016/0022-247X(78)90030-6
https://doi.org/10.1016/0022-247X(78)90030-6
https://doi.org/10.1103/PhysRevA.88.012105
https://doi.org/10.1103/PhysRevA.88.012105
https://doi.org/10.1103/PhysRevA.88.012105
https://doi.org/10.1103/PhysRevA.88.012105



