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Nonadiabatic tunneling via conical intersections and the role of the geometric phase
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As a ubiquitous quantum effect, tunneling has attracted attention ever since the dawn of quantum mechanics.
However, recent evidence suggests that nonadiabatic atomic tunneling near a conical intersection (CI) behaves
differently from its adiabatic counterpart, producing lifetime differences of up to two orders of magnitude. Using
two-dimensional models, we demonstrate here that the failure of the adiabatic model in describing tunneling
near a CI can be attributed largely to the neglect of the geometric phase, which is associated with the adiabatic
electronic wave function transported around a CI. The geometric phase–induced destructive interference among
wave functions following different paths around the CI, manifested as a node in the adiabatic wave function,
retards tunneling.
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I. INTRODUCTION

Tunneling describes wavelike behavior of a quantum
particle in penetrating classically forbidden regions. This
quantum effect is omnipresent in physics, chemistry, and
biology [1]. In molecular physics, tunneling of a light atom
is conventionally characterized by the nuclear Schrödinger
equation on an adiabatic potential energy surface (PES),
namely, the dependence of electronic energy on nuclear
coordinates. This separation of electronic and nuclear motions,
originally introduced by Born and Oppenheimer (BO) [2], is
justified by the large mass disparity between the electrons
and nuclei and has since become the standard paradigm in
discussing molecular spectroscopy and reaction dynamics.

However, this adiabatic picture becomes inadequate near
an electronic degeneracy, such as a conical intersection
(CI) [3–6]. Near a CI, electronic states interact strongly via
nonadiabatic couplings (NACs), which are ignored in the BO
approximation. Furthermore, a real-valued adiabatic electronic
wave function changes sign when transported around a CI, an
effect termed the geometric (or Berry’s) phase (GP), which
renders the electronic wave function double valued [7–11].
Since the total wave function must be single valued, this
double valuedness in the electronic wave function requires
the nuclear wave function to be double valued as well. Since
the GP is associated with nuclear motion, it has important
consequences in spectroscopy and dynamics for systems
affected by CIs [7,8,12–33]. Interestingly, GP is implicitly
included in the diabatic representation, which is related to the
adiabatic representation through a unitary transformation that
minimizes the NACs [34–36].

We focus here on a seldom considered situation, in
which metastable vibronic states prepared by photoexcitation
decay via tunneling near a CI. This scenario is common in
photochemistry [5], because the electronically excited states
involved are more likely to exhibit CIs than their ground-state
counterparts. It is tempting to model such dynamics using
a single adiabatic PES if the CI has a much higher energy,
because the upper adiabat is energetically “inaccessible,”
and indeed such models have been in wide use [37–39].
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However, recent studies suggest that nonadiabatic tunneling
behaves very differently from adiabatic tunneling. In one
study [28,29], it was shown that in a double-well Jahn-Teller
system formed by a CI, the spatial delocalization of a wave
packet seen in the adiabatic model is severely curtailed by
the inclusion of the GP. In another investigation from our
groups [40], it was demonstrated that nonadiabatic tunneling
decay of the lowest vibronic level of phenol (C6H5OH) in
the S1 state, which forms a CI with the S2 state near the
Franck-Condon region [41–46], proceeds much more slowly
than that predicted by the adiabatic model. While the lifetime
computed in the diabatic representation which tacitly includes
the GP is in reasonably good agreement with experiment,
the lifetime computed in the adiabatic representation without
the GP is about two orders of magnitude faster [40]. These
surprising results called into question the appropriateness
of many existing adiabatic models for treating tunneling in
photochemical systems [37–39]. Here, we demonstrate that the
overestimate of the tunneling rate in phenol photodissociation
by the adiabatic model is largely due to the neglect of the
GP, and that with the inclusion of the GP much of the error
is recovered. We follow with a discussion of the mechanistic
aspects of nonadiabatic tunneling.

II. THEORY

We adapt here a two-dimensional (2D) model, in which
the CI between two interacting electronic states is simply a
point. This model represents a special case, where adiabatic
NAC is completely removable by the adiabatic-to-diabatic
(AtD) transformation [6]. The diabatic Hamiltonian assumes
the following form (h̄ = 1):

Ĥ (d) =
(

T̂ 0

0 T̂

)
+

(
V11 V12

V12 V22

)
, (1)

where T̂ = −∇2/2 = −(∂2/∂x2 + ∂2/∂y2)/2 is the kinetic
energy operator (KEO) while the potential energy operator
(PEO) is a 2 × 2 matrix. The corresponding adiabatic
Hamiltonian,

Ĥ (a) =
(

T̂ + τ̂11 iτ̂12

−iτ̂21 T̂ + τ̂22

)
+

(
W− 0
0 W+

)
, (2)
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is obtained via the following unitary AtD transformation

U =
(

cos θ sin θ

− sin θ cos θ

)
, (3)

where θ is the mixing angle between two diabatic states:

θ = 1
2 arctan 2V12

V11−V22
. (4)

In the adiabatic representation, the PEO is diagonal,

W± = 1
2 (V11 + V22) ± 1

2

√
(V11 − V22)2 + 4V 2

12, (5)

and the NAC includes the scalar diagonal BO correction
(DBOC)

τ̂11 = τ̂22 = 1
2∇θ · ∇θ, (6)

and vectorial derivative coupling (DC),

τ̂12 = τ̂21 = 1
2 [(−i∇)† · ∇θ + ∇θ · (−i∇)], (7)

where † denotes Hermitian conjugation.
Numerically, the adiabatic model is difficult to handle

because at the CI the NAC diverges and the PESs (W±) are not
differentiable. Consequently, most nonadiabatic calculations
are performed in the diabatic representation [3,47]. Since we
are interested in quantifying the effect of the GP, we focus
on Eq. (2), but recognize that the diabatic representation in
Eq. (1) provides the exact solution to which all approximate
adiabatic models can be compared. Although related by a
unitary transformation, the Hamiltonians in Eqs. (1) and (2)
required different, single-valued vs double-valued, boundary
conditions [29]. To enforce the double-valued boundary
condition of the adiabatic wave function, we follow Mead and
Truhlar [9] and introduce a position-dependent phase factor
einθ(x,y) (n is an integer) into the adiabatic wave function,
which makes the total wave function single valued and leads
to the following Hamiltonian with a vector or gauge potential:

Ĥ
(a)
GP = e−inθ Ĥ (a)einθ =

(
T̂ + τ̂GP

11 iτ̂GP
12

−iτ̂GP
21 T̂ + τ̂GP

22

)

+
(

W− 0

0 W+

)
, (8)

where

τ̂GP
11 = τ̂GP

22 = τ̂11 + (e−inθ T̂ einθ − T̂ ), (9)

τ̂GP
12 = τ̂GP

21 = e−inθ τ̂12e
inθ . (10)

This two-state adiabatic model with a vector potential is
denoted as Model IA for odd n values, and IB for even n

values [9].
We further examine a single-state adiabatic model (Model

II), in which n = 1 and the upper adiabat and associated off-
diagonal terms in Eq. (8) are removed:

Ĥ
(a)
GP− = T̂ + τ̂GP

11 + W−

= T̂ + ∇θ · ∇θ + 1
2 [(−i∇)† · ∇θ + ∇θ · (−i∇)]

+W−. (11)

In Model IIA or IIB, the DBOC term is either retained or
removed. Finally, Model IIIA is defined by the Hamiltonian in

Eq. (11) without the GP term:

Ĥ
(a)
− = T̂ + τ̂11 + W− = T̂ + 1

2∇θ · ∇θ + W−, (12)

and Model IIIB further ignores the DBOC.
All calculations are carried out in polar coordinates (ρ, ϕ),

x = ρ cos ϕ and y = ρ sin ϕ, with the CI at the origin. This
choice allows a dense grid near the singularity (ρ = 0) of
the adiabatic Hamiltonians. The KEO assumes the following
form:

T̂ = −1

2

(
∂2

∂ρ2
+ 1

4ρ2
+ 1

ρ2

∂2

∂ϕ2

)
, (13)

and the wave function is expanded in a direct-product basis:

ψ(ρ,ϕ) = 1√
2πρ

∑
m,n

CmnRn(ρ)eimϕ

=
∑
m,n

C ′
mn|nm〉,m = 0,±1,±2, . . . , (14)

with the orthonormality∫ b

a

Rn(ρ)Rn′ (ρ)dρ = δnn′ . (15)

The radial basis function Rn(ρ) is chosen as [48]

Rn(ρ) =
√

2

b − a
sin

[
nπ (ρ − a)

b − a

]
, n = 1,2, . . . , (16)

where a and b are the minimum and maximum of the ρ range,
respectively. So the KEO matrix elements represented in the
basis of Eq. (14) are

[T ]nm,n′m′ = 〈nm|T̂ |n′m′〉

= −1

2

(
〈nm| ∂2

∂ρ2
|n′m′〉 + 〈nm| 1

4ρ2
|n′m′〉

+ 〈nm| 1

ρ2

∂2

∂ϕ2
|n′m′〉

)

= −1

2
([T1]nm,n′m′ + [T2]nm,n′m′ + [T3]nm,n′m′),

(17)

where

[T1]nm,n′m′ = −
(

nπ

b − a

)2

δnn′δmm′ , (18a)

[T2]nm,n′m′ = δmm′
1

4

∫ b

a

Rn(ρ)
1

ρ2
Rn′(ρ)dρ, (18b)

[T3]nm,n′m′ = −m2δmm′

∫ b

a

Rn(ρ)
1

ρ2
Rn′ (ρ)dρ. (18c)

The one-dimensional (1D) integrals in Eqs. (18b) and (18c)
can be readily calculated by the Gauss-Legendre quadrature.
The matrix elements of PEO are computed by 2D Gauss-
Legendre quadrature:

[V ]nm,n′m′ = 〈nm|V |n′m′〉

= 1

2π

∫ 2π

0

∫ b

a

Rn(ρ)V (ρ,ϕ)Rn′ (ρ)ei(m′−m)ϕdρdϕ.

(19)
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The matrix elements of the DBOC terms in polar coordi-
nates are

[τ11]nm,n′m′ = [τ22]nm,n′m′

= 1

4π

∫ 2π

0

∫ b

a

Rn(ρ)
∂θ

∂ρ

∂θ

∂ρ
Rn′ (ρ)ei(m′−m)ϕdρdϕ

+ 1

4π

∫ 2π

0

∫ b

a

Rn(ρ)
1

ρ2

∂θ

∂ϕ

∂θ

∂ϕ
Rn′(ρ)ei(m′−m)ϕ

× dρdϕ, (20)

and the DC terms are

[τ12]nm,n′m′ = [τ21]nm,n′m′

= i

4π

∫ 2π

0

∫ b

a

dRn(ρ)

dρ

∂θ

∂ρ
Rn′(ρ)ei(m′−m)ϕdρdϕ

− i

4π

∫ 2π

0

∫ b

a

Rn(ρ)
∂θ

∂ρ

dRn′(ρ)

dρ
ei(m′−m)ϕdρdϕ

+ (m+m′)
4π

∫ 2π

0

∫ b

a

Rn(ρ)
1

ρ2

∂θ

∂ϕ
Rn′(ρ)ei(m′−m)ϕ

× dρdϕ. (21)

The matrix elements in Eqs. (20) and (21) are both
computed using the 2D Gauss-Legendre quadrature. Matrix
elements of other related operators can be obtained in an
analogous way.

We first examine the well-studied 2D Jahn-Teller
model [3,7,28]:

V11 = ω2
1

2

(
x + a

2

)2
+ ω2

2

2
y2, (22a)

V22 = ω2
1

2

(
x − a

2

)2
+ ω2

2

2
y2 − �, (22b)

V12 = cy. (22c)

The PESs are displayed in Fig. 1(a) for a typical set of
parameters. The unique topological feature is a CI located
at the symmetry plane in the coupling mode (y = 0) flanked

by two equivalent and energetically lower saddle points (y >

and < 0), which form a significant adiabatic barrier along the
tuning mode (x) between the two wells. The eigenproblem was
solved by direct diagonalization of the Hamiltonian matrix.

To investigate dissociative tunneling dynamics, such as in
phenol photodissociation [40], we replace V22 in Eq. (22b)
with a repulsive form and introduce a Gaussian-shaped V12:

V22 = Ae−α(x+b) + ω2
2

2
y2 − �, (23a)

V12 = cy exp
[−(x − xCI)

2/2σ 2
x

]
exp

[−y2/2σ 2
y

]
. (23b)

The corresponding PESs are displayed in Fig. 1(b), which
also has the CI flanked by two lower but equienergetic saddle
points. The low-lying vibrational levels in the left well can
only tunnel as they are below both the CI (2.603 a.u.) and
saddle points (1.878 a.u.).

For this dissociative problem, the wave packet is propagated
using the Chebyshev propagator [49],

ψk = 2DHsψk−1 − D2ψk−2, k � 2, (24)

with ψ1 = DHsψ0 and ψ0 = ψi , where ψi is the eigen-
function of the diabatic Hamiltonian T̂ + V11. The Hamil-
tonian matrix is scaled to the spectral range of (-1,1) via
Hs = (H − H̄ )/�H , in which the spectral medium [H̄ =
(Hmax + Hmin)/2] and half width [�H = (Hmax−Hmin)/2]
were determined by the spectral extrema, Hmax and Hmin [50].
Here, the former was determined by convergence. D is the
damping function, which is used to avoid reflection at the
edge of the radial grids. To extract tunneling lifetimes, a
low-storage filter diagonalization method [49] was used to
determine the complex energies (E−i�/2) of the lowest-lying
state. To this end, the Chebyshev correlation functions are
used to build an energy-localized Hamiltonian matrix, from
which the complex energies of the resonances are obtained by
diagonalization [49].

FIG. 1. Adiabatic PESs (W±) for two typical sets of parameters (a.u.): (a) ω1 = 1, ω2 = 1, a = 6, � = 0, and c = 1; (b) ω1 = 1, ω2 =
1, a = 4, A = 5.0, b = −11, � = 12.0, α = 0.1; c = 2, σx = 1.699 and σy = 0.849.
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TABLE I. Low-lying eigenvalues (in a.u.) for diabatic and adiabatic models. The parameters (in a.u.) used in model PESs: ω1 = 1,ω2 =
1,a = 6, � = 0.01,c = 3.

One-state adiabatic with GP One-state adiabatic without GP
Two-state adiabatic (model II) (model III)

Two-state (model I) With DBOC Without DBOC With DBOC Without DBOC

diabatic (exact) Odd n (IA) Even n (IB) (IIA) (IIB) (IIIA) (IIIB)

0.50960 0.50960 0.49501 0.50985 0.49265 0.49501 0.47738
0.51462 0.51462 0.56173 0.51487 0.49765 0.56233 0.54592
0.64067 0.64067 0.56192 0.64163 0.62612 0.56252 0.54610
0.64067 0.64067 0.74515 0.64163 0.62612 0.74647 0.73185
0.87189 0.87189 0.74515 0.87353 0.85977 0.74647 0.73185
0.87189 0.87189 1.01800 0.87353 0.85977 1.01993 1.00696

III. RESULTS AND DISCUSSION

For the Jahn-Teller model, 35 and 31 functional bases were
used for the ρ and ϕ coordinates, respectively. One thousand
Gauss-Legendre quadrature points were used in the ranges
[0.0, 8.0] a.u. and [0.0, 2π ], respectively, for each of the two
degrees of freedom. The large grids used in the integration
reflect the difficulties associated with converging the matrix
elements of divergent operators. The derivatives of θ were
obtained numerically using centered differences.

Table I compares low-lying eigenvalues of the exact two-
state diabatic model with those of the adiabatic models. These
levels lie much lower than the CI (4.495 a.u). Model IA yields
results identical to those of the diabatic model, as these results
must be, thus validating our algorithm. These results also
indicate that this model is gauge invariant as all odd (even)
n values give the same results, corresponding to the inclusion
(exclusion) of the GP. When DBOC is included, the values
from Model IIA are quite accurate, but those from Model IIIA
have larger errors. Ignoring DBOC leads to additional errors
in Models IIB and IIIB.

To illustrate the role played by the GP, adiabatic wave func-
tions of the lowest-lying state obtained from various models are
compared in Fig. 2. The most striking feature in both the two-
state diabatic [Fig. 2(a)] and one-state GP-corrected adiabatic
[Fig. 2(b) models is the node on the left side of the CI (x < 0),
which is a hallmark of GP [15,16,27–29,31]. In the diabatic

representation, the transition between V11 and V22 necessitates
a change of symmetry in the wave function as the coupling term
(V12) is antisymmetric with respect to y = 0. In the adiabatic
representation without GP [Eq. (12)], on the other hand, such
symmetry change is absent, as evidenced by the nodeless
structure of the adiabatic wave function [Fig. 2(c)]. The node
is recovered when the GP is included in the adiabatic model
[Eq. (11)]. These conclusions are consistent with the recent
work of Izmaylov and co-workers [28,29], who examined
the time-dependent behavior of similar models. These model
studies clearly suggest that the neglect of the GP in the
adiabatic representation leads to qualitatively incorrect results.

In our calculations of the dissociative system, the pa-
rameters (in a.u.) of model PESs are ω1 = 1,ω2 = 1,a =
4,A = 5.0,b = −11,� = 12,α = 0.1,c = 2,σx = 1.274, and
σy = 0.849. Forty-five and seventy-five bases were used
for the ρ and ϕ coordinates, respectively. One thousand
and two thousand Gauss-Legendre quadrature points were
used in ranges [0.0, 15.0] a.u. and [0.0, 2π ] for the ρ

and ϕ coordinates, respectively. A damping function D =
exp[−0.0027(x − 9.0)2] for x > 9.0 a.u. was used to avoid
reflection.

In Fig. 3, lifetimes obtained from both diabatic and
adiabatic models are compared, again using the former as
a benchmark. The Model IIIB yields lifetimes approximately
two orders of magnitude too short, similar to our previous
observation for phenol photodissociation [40]. The lifetimes

FIG. 2. Modulus of the adiabatic wave functions (|�|) of the lowest-lying state in the diabatic model (a), one-state adiabatic model with
GP (Model IIA) (b), and one-state adiabatic model without GP (Model IIIA) (c).
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FIG. 3. Lifetimes (ps) of the lowest-lying state in the diabatic
and adiabatic models for different σx ; other parameters (a.u.): ω1 =
1, ω2 = 1, a = 4, A = 5.0, b = −11, � = 12, α = 0.1, c = 2, and
σy = 0.849.

with only the DBOC included (Model IIIA) are better than
the standard adiabatic ones without the GP and DBOC. The
inclusion of the GP (Model IIB) significantly improves the
results, suggesting that it captures the essential physics, similar
to the bound system discussed above. The lifetimes from the
single-state adiabatic model with both the GP and DBOC
(Model IIA) agree best with the exact results. The remaining
errors are necessarily due to the neglect of the upper adiabat,
as suggested by the bound system results.

As expected, the poor performance of the adiabatic models
without the GP stems from the symmetry change introduced
by the vector potential. To this end, wave functions from the
two adiabatic models are compared in Fig. 4. Without the
GP, the wave function is nodeless throughout [Fig. 4(b)], as
the tunneling follows the adiabatic pathway under the barrier.
However, the inclusion of the GP leads to the development of a
node at y = 0 (x > 0) [Fig. 4(a)], as noted in previous studies
of similar problems [15,27,31,40,42].

To shed further light on the nodal structure in the GP-
corrected adiabatic wave function, we adapt the topological
approach of Althorpe and co-workers [51,52] to unwind the
dissociation wave function. The essential idea of this approach
is to separate the wave function into two components with
even and odd loops around the CI: �e and �o. These two
wave functions correspond to clockwise and counterclockwise
Feynman paths around the CI [31]. Numerically, these two
wave functions can be obtained from the adiabatic wave
functions on the lower adiabat obtained with and without the
GP; �GP and �NGP:

�e = 1√
2

(�GP + �NGP), (25a)

�o = 1√
2

(�NGP − �GP). (25b)

The former (�GP) can be obtained in this 2D model from the
diabatic Hamiltonian in which the GP is implicitly included,
while the latter (�NGP) can be obtained from the corresponding
adiabatic Hamiltonian without GP. The phase difference of the
two wave functions is determined by

cos(φe − φo) = |�e|2 + |�o|2 − 2|�GP|2
2|�e||�o| . (26)

By symmetry of the system, the clockwise and counter-
clockwise wave functions of the adiabatic system have the
same amplitude and phase at y = 0, in which the interference is
constructive. The addition of the GP changes the relative phase
of �e and �o, and converts the constructive interference to a
destructive one, which leads to the node in the GP-corrected
adiabatic wave function. From Fig. 4(c), it is clear that the wave
functions �e and �o are in phase for y = 0 for x > 0, so that
�GP has a node. The destructive interference between �e and
�o retards tunneling, thus providing a definitive mechanism
for the large difference between nonadiabatic and adiabatic
lifetimes observed in our recent work [40]. We further note that
destructive inference is also responsible for the experimentally
observed propensity of odd quantum numbers for out-of-plane
vibrations in the phenoxyl product [26,31]. All wave packets in
the above discussion were represented in the time domain. The
time-dependent wave packet can be obtained by assembling

FIG. 4. Modulus of the adiabatic wave functions (|�|) in the one-state adiabatic models with (a) and without (b) GP for parameters (a.u.):
ω1 = 1, ω2 = 1, a = 4, A = 5.0, b = −11, � = 12, α = 0.1, c = 2, σx = 1.274, and σy = 0.849. The position of the CI is marked as a red
dot. (c) Relative phase between the clockwise and counterclockwise wave packets (t = 5000 a.u. as an example) at x = 3.1 a.u.
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the Chebyshev wave packets (ψk) using the method of Tal-Ezer
and Kosloff [50].

To further understand the mechanism of nonadiabatic
tunneling, the parameter σx of V12 is varied in such a way
that its impact on the adiabatic barrier is minimal. In Fig. 3,
it is seen that nonadiabatic tunneling is largely controlled by
the width of the nonadiabatic coupling, in sharp contrast to
adiabatic tunneling, which is largely determined by the height
and width of the barrier. The dependence of the tunneling
lifetime on nonadiabatic coupling can be readily understood
as the diabatic coupling (V12) enables a transient population
on the high-energy V22 state in the Franck-Condon region,
which is subjected to a repulsive force towards the dissociation
asymptote. This nonadiabatic mechanism also explains the
isotope effect observed in our recent work [40], due to its
more compact wave function in deuterated phenol, in which
it is more difficult to access V12 as it is farther from the CI.
In the GP-corrected adiabatic models, these effects are largely
recovered through the DBOC and GP terms.

IV. SUMMARY

Despite the conventional wisdom that low-energy dynam-
ics can be effectively described by the Born-Oppenheimer
approach, it is shown here and elsewhere that tunneling at ener-
gies much below the CI is still significantly affected by the GP.
In this work, 2D models have been used to elucidate the role
of the GP in affecting tunneling dynamics near a CI. The GP
is introduced in adiabatic models by a coordinate-dependent
phase factor. It is convincingly shown that the neglect of
the GP in the adiabatic model, as done in several recent
models, gives rise to a qualitatively incorrect characterization
of nonadiabatic tunneling in both bound and dissociative
systems. The inclusion of the GP in an adiabatic model enables
destructive interference, as evidenced by the nodal structure
in the wave function. The destructive interference retards the
tunneling facilitated dissociation. However, it is also worth
pointing out that the neglect of the upper adiabat introduces
sufficient errors such that a single-state adiabatic treatment
cannot reach a quantitative agreement with the results obtained
from a two-state diabatic calculation, even when the GP

and DBOC terms are included. The results presented here
motivate us to rethink how nonadiabatic tunneling should
be treated in the adiabatic representation. The correct and
efficient characterization of the GP in nonadiabatic dynamics
could help us to better understand a wide array of issues in
molecular physics, and to explore alternative ways to control
the dynamics.

While the 2D models shed valuable light on the GP effects
in spectroscopy and dynamics in systems affected by CIs, the
methodology used here needs to be significantly modified to
treat real systems that have higher dimensionalities. Because
the seam of a CI spans N–2 dimensions, it is difficult to find a
high-dimensional path encircling the CI, which is needed for
defining the vector potential. In many real systems studied
so far (e.g., X3), the vector potential has been defined in
hyperspherical coordinates as a function of a hyperangle
by taking advantage of the intrinsic high symmetry in such
systems [9,13,19]. For molecules without high symmetry, it
is not clear how this hyperangle can be defined. To solve this
problem, we have recently proposed an approach in which the
vector potential can be uniquely defined by the derivative of
the line integral in a removable approximation to the ab initio
DC [53], which can be accurately determined by fitting ab
initio data [54]. It has been demonstrated that this two-state
description of the nonadiabatic system is possible, despite
the well-known fact that the ab initio derivative coupling
is nonremovable and consequently has a curl so that its
line integral is path dependent [35,36,55]. However, even
with a clear definition of the vector potential, the treatment
of the singularities at the seam of the CI in the adiabatic
Hamiltonian, with and without the GP, remains extremely
challenging. Efficient numerical algorithms are needed to solve
the corresponding multidimensional adiabatic dynamics.
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[3] H. Köppel, W. Domcke, and L. S. Cederbaum, Adv. Chem. Phys.

57, 59 (1984).
[4] D. R. Yarkony, Rev. Mod. Phys. 68, 985 (1996).
[5] W. Domcke, D. R. Yarkony, and H. Köppel, Conical Intersec-
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