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Quantum spin correlations in Møller scattering of relativistic electron beams
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The relativistic spin correlation function was calculated for a pair of electrons originating from Møller scattering
of two polarized electron beams. The results were discussed in view of a possible measurement of the correlation
function and the corresponding probabilities. The special case of scattering off a stationary target (both polarized
and unpolarized) was also analyzed. It was shown that the Clauser-Horne-Shimony-Holt (CHSH) inequality may
be violated in the relativistic energy range when both scattering electrons are highly polarized.
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I. INTRODUCTION

Nonlocality of quantum mechanics has been a subject of
debate since the early days of this theory [1]. Even though this
feature has already been experimentally verified (see e.g. [2]),
there is still need to further investigate the details of quantum
correlations for entangled systems at relativistic energies (see,
e.g., [3–16] and references therein).

The unexpected features of the spin correlation function
for relativistic particles with mass have been reported by us
since 2008 [15,16]. The relativistic spin correlation function in
general depends on particle momenta. Our studies revealed its
nonmonotonic dependence on energy in systems containing at
least one massive particle. Both for fermions and for bosons the
function may have local extrema in energy also in the center-
of-mass frame. This finding has not yet been investigated
experimentally; in all of the correlation experiments performed
until now [17–19] the energy of the particles was insufficient
to observe relativistic effects.

Preparation of a pure, maximally entangled state in
the relativistic energy range is a significant experimental
challenge. Therefore, the correlation function for a pair of
electrons originating from Møller scattering (e−e− → e−e−)
was studied [20] for experimental reasons. Another advantage
of this process is that it is well understood and the final
spin state can be determined, which makes it well suited
for the calculation of the theoretical predictions for the
correlation function. Although before the Møller scattering
the two-particle state is separable, the final state (for which the
correlations are calculated and measured) may be entangled.

Spin projections of the final state electrons can be measured
by means of Mott polarimetry [21]; its applicability was
confirmed for energies up to 15 MeV [22]. It takes advantage
of the dependence of a Mott scattering cross section on the
spin direction due to the spin-orbit interaction and allows
for measuring spin projections on directions perpendicular to
particle momenta.
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The correlation function and the corresponding probabili-
ties were calculated and thoroughly discussed in a special case
of a polarized electron beam scattering off atomic electrons of
an unpolarized target [20], which is the simplest case that can
be realized experimentally. It was found that the correlation
function exhibits a nonmonotonic dependence on energy,
which confirms our earlier observations for other systems.
The case of a 15-MeV fully polarized beam and symmetric
scattering was considered in which the correlation function
reaches the value of approximately 0.08.

The Møller and Mott scattering cross sections are very low
for this energy, which makes the studied interactions extremely
rare. Therefore, in this paper we will focus on energy equal
to 3 MeV (as the cross sections increase with decreasing
energy), which is sufficient for observing relativistic effects
in the correlation function. This particular value was chosen
in view of an ongoing project to measure the quantum spin
correlations [23].

Our principal aim was to generalize the studies presented in
the previous paper [20], in search for configurations resulting
in higher absolute values of the correlation function. As an
intermediate step, scattering on polarized target electrons is
discussed. Ultimately, the most general case of scattering of
two polarized electron beams is analyzed. Using two polarized
beams would additionally eliminate the problem of high rate
of background originating from Mott scattering in the target,
which is unavoidable in stationary target experiments (due to
the fact that the cross section for Møller scattering is much
lower than for Mott scattering).

II. THE FINAL STATE IN THE MØLLER SCATTERING

The initial state (before the scattering) is separable, since
the colliding electrons are prepared separately. Therefore it
can be represented by a tensor product of the density matrices
of individual electrons:

ρ̂ in = ρ̂1 in ⊗ ρ̂2 in, (1)

and in terms of matrix elements:

ρ in
(τ1,τ2),(τ ′

1,τ
′
2)(q1,q2,q

′
1,q

′
2) = ρ1in

τ1τ
′
1
(q1,q

′
1)ρ2in

τ2,τ
′
2
(q2,q

′
2), (2)

where τi,τ
′
i , i = 1,2, represent indices related to the spin part

of the matrix and can take values ±1/2, while qi , q ′
i denote

the four-momenta of the interacting electrons.
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If one assumes that the electrons have well-determined
polarization vectors ξ i and are in sharp momentum state at
the moment of interaction, the matrices ρ̂i in take the simple
form [20]

ρi in
τi τ

′
i
(qi,q

′
i) = 2p0

i

δ3(0)
δ3(qi − pi)δ

3(q′
i − pi)

1

2
(1 + ξ i · σ )τiτ

′
i
,

(3)
where ξ i and pi denote the polarization vector and the four-
momentum of the ith electron, respectively; σ = (σ1,σ2,σ3),
where σk are the Pauli matrices and 2p0

i /δ
3(0) is the normal-

ization factor.
The final state after the scattering reads

ρ̂out = M̂ρ̂ inM̂†

Tr{M̂ρ̂ inM̂†} , (4)

where M denotes the scattering amplitude. The explicit form
of its matrix element (to the first order of approximation) can
be found elsewhere [24] and the explicit form of (4) in the
paper by Caban et al. [20]. It has been shown that although the
initial state is separable, the degree of entanglement of the final
state is nonzero and depends on both energies of the interacting
particles and the scattering angle. In general, it is impossible to
assign polarization vectors to the electrons after the scattering,
because only their joint polarization state is well defined. One
can thus use only reduced density matrices of the final state
electrons to calculate their mean polarization vectors.

Even in the simplest case of a polarized beam scattering
off an unpolarized target, the formulas describing the mean
polarization vectors after the scattering are too complex to
be presented here. In Fig. 1, transverse and longitudinal
components of the polarization vectors, as well as the total
length of the polarization vectors for both electrons, are shown
as functions of the scattering angle of the first electron. One
can see that after the scattering both Møller electrons share the
initial polarization.

In Fig. 2(a) one can also see that their joint polarization
vector (i.e., the sum of the mean polarization vectors of
both electrons) is also not a unit vector, which indicates
a certain degree of entanglement. The maximum of entan-
glement corresponds to the symmetric scattering in which
both electrons have the same mean polarization due to their
indistinguishability. In Fig. 2(b) the dependence of the length
of the joint polarization vector on the beam kinetic energy is
shown for symmetric scattering. It suggests that decreasing
the beam energy results in a more entangled state after the
scattering.

Negativity N , which is a proper entanglement measure, is
defined as

N (ρ̂out) = �i

|λi | − λi

2
, (5)

where λi are the eigenvalues of the density matrix ρ̂out. It
has already been shown [20] that it reaches its maximum
for the symmetric scattering angle independent of the beam
energy. On the other hand, in case of symmetric scattering,
the degree of entanglement increases with the decrease of the
beam kinetic energy, T . In the limit of T −→ 0, the final state
becomes a pure singlet state.

FIG. 1. The dependence of transverse (a) and longitudinal (b)
polarization vector component and mean polarization vector length
(c) for two Møller electrons on the scattering angle in the case of
scattering of a 100% transversely polarized 3-MeV beam off an
unpolarized target. The initial beam polarization vector is perpen-
dicular to the beam direction and in the Møller scattering plane. The
scattering angle θ is the angle between the initial beam direction and
the direction of the electron whose polarization is plotted with a solid
line; the polarization of the other electron is plotted with a dashed
line. The length of the joint polarization vector (the sum of the mean
polarization vectors of both electrons) is represented by a dotted line.

III. THE CORRELATION FUNCTION AND THE
PROBABILITIES

Given observables Â and B̂ one can define the correlation
function C(A,B) as

C(A,B) = �a,bab Pab, (6)
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FIG. 2. Joint polarization vector length as a function of the
scattering angle (a) for several fixed kinetic energies: 0.5 MeV (solid
line), 3 MeV (dashed line), 10 MeV (dotted line), and 15 MeV
(dotted-dashed line), and as a function of the beam kinetic energy
(b) assuming symmetric scattering.

where Pab denote the joint probabilities of obtaining a and b as
a result of a measurement of observables Â and B̂, respectively.
The probabilities Pab can be calculated using the formula

Pab = Tr{	̂a ⊗ 	̂bρ̂
out}, (7)

where 	̂a/b are the projectors from the spectral decomposition
of the Â/B̂ observable corresponding to the eigenvalues a/b.

In order to calculate the spin correlation function, the
relativistic spin-projection observables aŜ and bŜ should be
used, where a and b are unit vectors on which the particle spin
is projected and Ŝ is the relativistic spin operator. In the case of
a two-fermion state, the correlation function is a linear combi-
nation of four probabilities: P++, P+−, P−+, and P−−, where
± denotes positive and negative spin projection. Therefore, a
relativistic spin operator is needed to calculate the correlation
function and the corresponding probabilities in the framework
of relativistic quantum mechanics. Spin, however, is not
a self-contained geometrical object in relativistic quantum
mechanics and only the spin-square operator can be uniquely
defined in terms of the generators of the Poincaré group:

Ŝ
2 = − 1

m2
ŴμŴμ, (8)

where m is the particle mass, Ŵμ is the Pauli-Lubanski
four vector: Ŵμ = 1

2εναβμP̂ν Ĵαβ , P̂μ is the four-momentum
operator, and Ĵαβ are the generators of the Lorentz group.

A well-defined relativistic operator should possess certain
properties: (i) not convert positive (negative) energy states into
negative (positive) energy states, (ii) be a pseudovector, (iii)
have eigenvalues independent of the direction on which spin
is projected, and (iv) have a proper nonrelativistic limit. The
Newton-Wigner spin operator [25] of the form

Ŝ = 1

m

(
Ŵ − Ŵ 0 P̂

P̂ 0 + m

)
(9)

satisfies the above conditions and is the only operator that,
additionally, (i) is a linear combination of the Pauli-Lubanski
four-vector components and (ii) fulfills the standard commu-
tation relations. In one-particle subspace, the projection of the
Newton-Wigner operator on an arbitrary direction n takes the
form

S(ki,n) = 1

2m

[(
mn + n · ki

m + k0
i

ki

)
γ γ 5 − (n · ki)γ

0γ 5

+ i((n × ki)γ )γ 0 −
(

k0
i n − n · ki

m + k0
i

ki

)
γ γ 0γ 5

]
.

(10)

where γ μ are the Dirac matrices and γ 5 = iγ 0γ 1γ 2γ 3. It has
been shown [26] that the correlation function calculated in
the relativistic quantum mechanics framework using (9) has
the same form as that obtained within the quantum field theory
framework. It has also been shown [8] that the Newton-Wigner
operator corresponds to the Stern-Gerlach procedure of spin-
projection measurement for Dirac particles.

Mott polarimetry has been established as the standard
experimental method of determining the spin projection for
electrons of energies up to several MeV [21]. It is, however,
sensitive only to the spin component perpendicular to the
electron momentum. Therefore, in this specific case the spin-
projection operator reduces to

S(ki,n) = 1

2m

[
mn · γ γ 5 + i((n × ki)γ )γ 0 − k0

i n · γ γ 0γ 5
]
.

(11)

The correlation functions in this paper will be calculated using
the spin-projection observable in the above form.

As was shown in Sec. II, the degree of entanglement of
the state after the Møller scattering is maximal for symmetric
scattering. Therefore all the following results will be shown
for the symmetric configuration.

In Sec. III A the results for the unpolarized target are
recalled and further analyzed for different configurations of the
a and b vectors. Results regarding the relativistic correlation
function and the probabilities are presented for electrons
originating from Møller scattering of a polarized beam off
a polarized target (Sec. III B) and off another electron beam
(Sec. III C). The calculations are much more complicated when
both electrons have nonzero polarization. Further increase in
the number of parameters describing the system occurs in the
case of scattering of two electron beams (see Appendix A).
Therefore the calculations were performed numerically using
MATHEMATICA and the FEYNCALC package. The results are
presented in graphical form due to the complexity of the
resulting formulas.
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FIG. 3. The correlation function (a) and the relativistic correction
(b) as functions of the beam kinetic energy for symmetric Møller
scattering and different configurations of the a and b vectors: (i) both
in the Møller scattering plane (solid line), (ii) both perpendicular to
the Møller scattering plane (dashed line), and (iii) at angles equal to
60◦ and 120◦ to the Møller scattering plane, respectively (dotted line).

A. Scattering of a polarized beam off an unpolarized target

The relativistic correlation function for a pair of electrons
originating from Møller scattering of a polarized electron beam
off an unpolarized target has been calculated and analyzed by
Caban et al. [20]. It has been shown that in this simplest case
the correlation function does not depend on beam polarization
and in general is a nonmonotonic function of the beam kinetic
energy. For symmetric scattering, when both Møller electrons
have equal energies and are equally polarized, local extrema
in energy occur.

In Fig. 3(a) one can see the dependence of the correlation
function on the beam kinetic energy for symmetric Møller
scattering and for different configurations of the a and b
vectors: (i) both in the Møller scattering plane (solid line),
(ii) both perpendicular to the Møller scattering plane (dashed
line), and (iii) at angles equal to 60◦ and 120◦ to the Møller
scattering plane, respectively (dotted line). The absolute value
of the correlation function is small (of the order of 0.1) in the
range of relativistic energies (over a few MeV). Nevertheless,
the difference between the nonrelativistic and relativistic value
(the relativistic correction) can be quite large (even of the order
of 1) for vectors a and b outside the Møller scattering plane,
which can be seen in Fig. 3(b).

Unlike the correlation function, the probabilities do depend
on beam polarization, as shown in Fig. 4 for configuration

FIG. 4. Probabilities as functions of the kinetic energy for unpo-
larized beam (a), beam transversely polarized at 85%, polarization
vector in the Møller scattering plane (b), and beam longitudinally
polarized at 85% (c) for an unpolarized target, symmetric scattering
and the a and b vectors at angles equal to 60◦ and 120◦ to the Møller
scattering plane, respectively.

(iii) and for different beam polarization directions. Their
dependence on energy is different than in the case of an
unpolarized beam.

B. Scattering of a polarized beam off a polarized target

Before moving to the most general case of colliding beams,
we analyze the case of a beam scattering off a polarized
target. In this specific case, the following was observed: (i)
the correlation function is described by exactly the same
formula as in the case of an unpolarized target when the beam
and the target polarization vectors are perpendicular to each
other and (ii) in the case when the aforementioned vectors
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FIG. 5. The correlation function as a function of the beam kinetic
energy for beam transversely polarized at 85%, polarization vector in
the Møller scattering plane, for different degrees of target polarization
(parallel target and beam polarization vectors): 0% (solid line), 20%
(dashed line), 50% (dotted line), and 85% (dot-dashed line) (a); and
different angles between the beam and the target polarization vectors:
90◦ (solid line), 60◦ (dashed line), 30◦ (dotted line), and 0◦ (dot-
dashed line) (b). The a and b vectors are at angles equal to 60◦ and
120◦ to the Møller scattering plane, respectively.

are not perpendicular, the correlation function increases with
increasing degree of target polarization.

Figure 5 illustrates the dependence of the correlation
function on energy for a beam polarized transversely at
85% (this value was chosen for experimental reasons [23])
polarization vector in the Møller scattering plane and the a
and b vectors at angles 60◦ and 120◦ to the Møller scattering
plane, respectively. In Fig. 5(a) the correlation function is
plotted for target electrons polarized in the same direction
and for several different degrees of the target polarization.
One can see that in the considered configuration the difference
between the nonrelativistic and the relativistic value is bigger
for higher degrees of target polarization. In Fig. 5(b) the case
of both electrons polarized at 85% is shown for different
angles between the polarization vectors. The absolute value
of the relativistic correlation function and the relativistic
correction increase with the decrease of the angle between
the polarization vectors. This outcome leads to the conclusion
that polarizing the target in the direction parallel to the beam
polarization direction could result in higher absolute values of
the correlation function in the relativistic energy range and, as
will be shown in Sec. IV, allow for violation of the Bell-type
inequalities.

FIG. 6. The correlation function as a function of the kinetic
energy of one electron for two unpolarized beams colliding at γ = 10◦

and the a and b vectors: in the Møller scattering plane (a), at angles
equal to 60◦ and 120◦ to the Møller scattering plane (b). The kinetic
energy of the second electron is equal to 0 MeV (solid line), 3 MeV
(dashed line), and 15 MeV (dotted).

C. Scattering of two polarized beams

The correlation function and the probabilities for two
colliding electron beams of arbitrary polarization were cal-
culated and investigated as the most general case. Assuming
symmetric scattering, this process can be parametrized by (i)
polarization (degree and direction) of both beams, (ii) their
kinetic energies, (iii) angle at which the beams collide γ , and
(iv) the a and b vectors on which the spin of the electrons
is projected. The details of the parametrization used in our
calculations are given in Appendix A.

We start the discussion with the simplest case of two
unpolarized beams. It can be shown that in terms of the
correlation function this setup is equivalent to one beam being
unpolarized. In Fig. 6 one can see the dependence of the
correlation function on the beam kinetic energy for two beams
colliding at γ = 10◦ and for two different configurations of
the a and b vectors. It can be noticed that for a fixed γ the
correlation function exhibits different behavior for different
energies of the second beam—it can be either a monotonic
function in one case or have several extrema in another.
The impact of the second beam energy on the value of the
relativistic correction depends on the choice of the a and b
directions. In one case increasing the energy can increase and
in another, decrease the difference between the nonrelativistic
and the relativistic correlation function.
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FIG. 7. The four probabilities as a function of the kinetic
energy of one electron for two beams colliding at γ = 10◦ for
two unpolarized beams (a) and for one unpolarized beam and one
polarized transversely at 85%, polarization vector in the Møller
scattering plane (b). The a and b vectors are at angles equal to 60◦

and 120◦ to the Møller scattering plane. The kinetic energy of the
second electron is equal to 3 MeV.

Unlike the correlation function, the probabilities do depend
on polarization also when only one beam is polarized, which
can be seen in Fig. 7. The same effect was observed in the case
of scattering off an unpolarized target. Although the correlation
function was insensitive to beam polarization, the probabilities
differed for different beam polarization vectors.

In the case of two polarized beams, the correlation function
depends both on the degree of their polarization and on
the directions in which they are polarized. In Fig. 8(a) one
can see the influence of changing the degree of the second
beam polarization, while both beams are polarized parallel to
each other, transverse to the first beam direction and with
the polarization vector in the Møller scattering plane. In
Fig. 8(b) one can see the influence of changing the second
beam polarization vector direction for both beams polarized
at 85%. In the case of two polarized beams, unlike the case
of a polarized target, the situation of perpendicular polar-
izations is not equivalent to one electron being unpolarized
[see Fig. 8(c)].

We also investigated how the correlation function depends
on the angle at which the beams collide. In Fig. 9 the
dependence of the correlation function on the kinetic energy
of one of the beams is shown for two different a and b
configurations and for the energy of the second electron
equal to 3 MeV. Both electrons are polarized in the same

FIG. 8. The correlation function as a function of the kinetic
energy of one electron for two beams colliding at γ = 10◦. One beam
is polarized in 85% transversely to the beam direction, polarization
vector in the Møller scattering plane. The other beam is: polarized at
85%, the angle between the polarization vectors is equal to 90◦ (solid
line), 60◦ (dashed line), 30◦ (dotted line), and 0◦ (dot-dashed line)
(a); polarized in the same direction as the first one at 0% (solid line),
20% (dashed line), 50% (dotted line), and 85% (dot-dashed line) (b).
Figure (c) illustrates the difference between the case of one beam
being unpolarized (solid line) and polarized at 85% in the direction
perpendicular to the first beam polarization (dotted line).

direction perpendicular to the first electron momentum and
in the Møller scattering plane. Again, the behavior of the
correlation function depends on the choice of the a and b
vectors. In case of both vectors in the Møller scattering plane,
small γ yields a greater difference between the relativistic and
nonrelativistic case than large γ , while in the case of a and b
at angles equal to 60◦ and 120◦ the opposite is true.
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FIG. 9. The correlation function as a function of the kinetic
energy of one of the beams for different angles between the beams
(γ ): 10◦ (solid line), 45◦ (dashed line), 90◦ (dotted-dashed line), and
120◦ (dotted line); and the a and b vectors at angles equal to 60◦ and
120◦ to the Møller scattering plane (a) and in the Møller scattering
plane (b). Both beams are polarized at 85% in a direction transverse to
the first beam direction, polarization vectors in the Møller scattering
plane. The kinetic energy of the second beam is 3 MeV.

IV. THE BELL-TYPE INEQUALITIES

It has been shown that in the case of relativistic spin
correlations, the Bell-type inequalities can be violated for
maximally entangled states [16] and that the degree of
violation depends on energy. One of the aims of the present
paper was to verify whether the Bell-type inequalities can also
be violated in the state originating from the Møller scattering
(i.e., not maximally entangled).

The most commonly used Bell-type inequality in the
case of spin-1/2 fermions is the Clauser-Horne-Shimony-Holt
(CHSH) inequality of the form [27]

|C(a,b) + C(c,b) + C(c,d) − C(a,d)| < 2, (12)

where C(m,n) denotes the correlation function for two spin-
projection observables mŜ and nŜ. In the simplest case of
scattering of a polarized beam off an unpolarized target,
the correlation function is small enough to fulfill the above
inequality for electrons of energies over few MeV. However,
in the case of a polarized target and two colliding polarized
beams it is possible to find configurations in which the CHSH
inequality is violated. For two opposing beams of equal energy
the CHSH inequality is violated for beam polarization over
85% when both electrons are polarized in the same direction,
perpendicular to the momentum and in the Møller scattering

FIG. 10. The left-hand side of the CHSH inequality as a function
of the beam kinetic energy in the case of a polarized target (a) and
two polarized beams (b). In both cases the electrons are polarized at
90% in the same direction, perpendicular to the momentum of one
of them and in the Møller scattering plane. The vectors on which the
spin is projected are at angles equal to αa = 0◦, αb = 45◦, αc = 90◦,
and αd = 135◦ to the Møller scattering plane. In case of two beams,
the energies of both beams are equal and the angle γ = 180◦.

plane, and the vectors on which the spin is projected are at
angles equal to αa = 0◦, αb = 45◦, αc = 90◦, and αd = 135◦
to the Møller scattering plane. The left-hand side of the
inequality (12) is greater than 2 in the relativistic energy range
(see Fig. 10) both for a target (a) and for two beams of equal
energy colliding at γ = 180◦ (b). (The degree of polarization
was chosen equal to 90% for illustrative purposes.)

V. SUMMARY AND CONCLUSIONS

The relativistic spin correlation function was calculated for
the final-state electrons in Møller scattering. The calculations
were performed for the most general case involving scattering
of two beams of arbitrary polarization, which is a general-
ization of our previous work regarding the scattering on a
stationary unpolarized target only [20].

This work has been done in the context of experimental in-
vestigation of relativistic spin correlations, since the discussed
process can be conveniently realized experimentally, contrary
to the preparation of pure, maximally entangled spin states. An
experiment involving the scattering of two polarized beams
would be technically challenging. Therefore the results were
discussed both in case of scattering of two electron beams,
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as well as scattering off a target, which is more suitable for
measurement.

In some configurations there might be a large difference
between the nonrelativistic value of the correlation function
and its value for a few MeV beam energy. Observing rela-
tivistic effects, and therefore investigation of the fundamental
properties of quantum entanglement in the relativistic regime,
is possible even in the simplest case of a polarized electron
beam scattering off an unpolarized target.

Nevertheless, the correlation function can take much larger
absolute values if both electrons are polarized, which makes
this configuration better suited for experimental verification
of the predictions of relativistic quantum mechanics. For a
polarized target the largest absolute value of the relativistic
correlation function is achieved when both scattering electrons
are highly polarized in the same direction and the a and b
vectors are outside the Møller scattering plane. Configurations
resulting in even higher absolute values can be found for
two polarized beams, but the analysis of this case is more
complicated due to the increase in the number of free
parameters describing the system. (The correlation function
depends both on the configuration of the a and b vectors and
the angle at which the beams collide.)

The analysis has shown that violation of the Bell-type
inequalities is possible for relativistic electrons originating
from Møller scattering of two polarized beams, contrary to
the case of an electron beam scattered off an unpolarized
target. Violation of the Bell-type inequalities has not yet been
observed for relativistic particles with mass.
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APPENDIX: PARAMETRIZATION

We consider Møller scattering of two polarized electrons
with four-momenta p1 and p2, respectively. Let us denote the
angle between their three-momenta p1 and p2 as γ . Without
loss of generality one can assume that the scattering takes
place in the XZ plane and that one of the particles (e.g., the
first one) propagates along the Z direction (see Fig. 11). It
implies

p1 =
√

p0
1

2 − m2

⎛
⎝0

0
1

⎞
⎠, (A1)

p2 =
√

p0
2

2 − m2

⎛
⎝sin γ

0
cos γ

⎞
⎠, (A2)

FIG. 11. The figure illustrates the kinematics of the Møller
scattering for two electrons with three-momenta p1 and p2, colliding
at angle γ . The scattering takes place in the XZ plane (denoted p

plane). Outgoing particles of three-momenta k1 and k2 propagate in
the k plane, at angle φ to the aforementioned plane p. θ1 and θ2 are the
angles between the total momentum direction pt , and the k1 and k2

vectors, respectively. The three-momentum conservation law implies
that the p and k planes intersect along the pt direction.

where m stands for the electron mass. The total momentum
pt = p1 + p2 has the following form:

pt =

⎛
⎜⎜⎝

sin γ

√
p0

2
2 − m2

0

cos γ

√
p0

2
2 − m2 +

√
p0

1
2 − m2

⎞
⎟⎟⎠. (A3)

Let us now consider the particles after the scattering and
denote their four-momenta as k1 and k2. Their three-momenta,
k1 and k2, determine a plane (k) which is at an angle φ to the
XZ scattering plane (p). Planes p and k intersect along the pt

direction. Now let us rotate the reference frame XYZ in the p

plane so that the new Z̃ axis coincides with the pt direction.
In such a frame (X̃Y Z̃), the total momentum vector has an
especially simple form:

p̃t = |pt |
⎛
⎝0

0
1

⎞
⎠, (A4)

where

|pt | =
√

p0
1

2 + p0
2

2 − 2m2 + 2
√

p0
1

2 − m2

√
p0

2
2 − m2 cos γ ,

(A5)

and the vectors k̃1 and k̃2 read

k̃1 =
√

k0
1

2 − m2

⎛
⎝sin θ1 cos φ

sin θ1 sin φ

cos θ1

⎞
⎠, (A6)

k̃2 =
√

k0
2

2 − m2

⎛
⎝− sin θ2 cos φ

− sin θ2 sin φ

cos θ2

⎞
⎠, (A7)

where θ1 and θ2 are the angles between the total momentum
vector and k1 and k2, respectively. One can easily notice that
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the condition pt = k̃1 + k̃2 implies

sin θ2 =
√

k0
1

2 − m2√
k0

2
2 − m2

sin θ1, (A8)

and

cos θ2 = ±
√

k0
2

2 − k0
1

2
sin2 θ1 − m2 cos2 θ1√
k0

2
2 − m2

. (A9)

The relation

|pt | =
√

k0
1

2 − m2 cos θ1 +
√

k0
2

2 − m2 cos θ2 (A10)

implies

k0
1 = 1

|pt |2 cos2 θ1 − (
p0

1 + p0
2

)2

{(
p0

1 + p0
2

)(√
p0

1
2 − m2

√
p0

2
2 − m2 cos γ − m2 − p0

1p
0
2

)

− |pt | cos θ1

√(√
p0

1
2 − m2

√
p0

2
2 − m2 cos γ − m2 − p0

1p
0
2

)2 + m2
[|pt |2 cos2 θ1 − (

p0
1 + p0

2

)2]}
. (A11)

Since k0
2 = p0

1 + p0
2 − k0

1, the only free parameters are θ1 and the angle φ, which can take arbitrary values. After rotating k̃1 and
k̃2 back to the XYZ frame, we get

k1 =
√

k0
1

2 − m2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(√
p0

2
2−m2 cos γ+

√
p0

1
2−m2

)
sin θ1 cos φ+

√
p0

2
2−m2 sin γ cos θ1√

p0
1

2+p0
2

2−2m2+2
√

p0
1

2−m2

√
p0

2
2−m2 cos γ

sin θ1 sin φ

(
√

p0
2

2−m2 cos γ+
√

p0
1

2−m2) cos θ1−
√

p0
2

2−m2 sin γ sin θ1 cos φ√
p0

1
2+p0

2
2−2m2+2

√
p0

1
2−m2

√
p0

2
2−m2 cos γ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(A12)

k2 =
√

k0
2

2 − m2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−
(√

p0
2

2−m2 cos γ+
√

p0
1

2−m2
)

sin θ2 cos φ+
√

p0
2

2−m2 sin γ cos θ2√
p0

1
2+p0

2
2−2m2+2

√
p0

1
2−m2

√
p0

2
2−m2 cos γ

− sin θ2 sin φ

(
√

p0
2

2−m2 cos γ+
√

p0
1

2−m2) cos θ2+
√

p0
2

2−m2 sin γ sin θ2 cos φ√
p0

1
2+p0

2
2−2m2+2

√
p0

1
2−m2

√
p0

2
2−m2 cos γ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (A13)

Symmetric scattering of two colliding beams corresponds to the θ1 = θ2 condition. In this case the formula (A11) takes the
simple form

k0
1 = k0

2 = p0
1 + p0

2

2
(A14)

and

cos θ1 = cos θ2 = |pt |
2
√(

k0
1

)2 − m2
. (A15)
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Frekers, M. N. Harakeh, J. Heyse, M. Hunyadi, M. A. de Huu,
C. Polachic et al., J. Phys. G: Nucl. Part. Phys. 30, 481 (2004).

[19] H. Sakai, Phys. Rev. Lett. 97, 150405 (2006).
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A. Poliszczuk, J. Rembieliński, and M. Włodarczyk, Eur. Phys.
J. Web Conf. (to be published).

[24] J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics
(McGraw-Hill, New York, 1964).

[25] T. D. Newton and E. P. Wigner, Rev. Mod. Phys. 21, 400 (1949).
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