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Consequences of recent loophole-free experiments on a relaxation of measurement independence
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Recent experiments using innovative optical detectors and techniques have strongly increased the capacity
of testing the violation of the Bell’s inequalities in Nature. Most of them have used the Eberhard’s inequality
(EI) to close the “detection” loophole. Closing the “locality” loophole has been attempted by spacelike separated
detections and fast changes of the bases of observation, driven by random number generators of new design. Also,
pulsed pumping and time-resolved data recording to close the “time-coincidence” loophole, and sophisticated
statistical methods to close the “memory” loophole, have been used. In this paper, the meaning of the EI is
reviewed. A simple hidden variables theory based on a relaxation of the condition of “measurement independence,”
which was devised long ago for the Clauser-Horne-Shimony and Holt inequality, is adapted to the EI case. It
is used here to evaluate the significance of the results of the recent experiments, which are briefly described. A
table summarizes the main results.
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I. INTRODUCTION

In 1965, Bell showed that the predictions of quantum
mechanics (QM) are in contradiction with at least one of
two intuitive notions; roughly speaking, (i) the result of a
measurement cannot be affected by what happens outside
its past light cone, and (ii) the existence of a world whose
properties are independent of being observed [1]. The set
of these two notions is usually named local realism (LR).
The resolution of the QM vs LR controversy is crucial to the
foundations of physics. Bell also proposed an experiment to
decide whether QM or LR is valid in Nature, by measuring
the violation of inequalities between the statistical averages of
observations performed on a spatially spread entangled state
of two particles.

Due to practical limitations, Bell’s original proposal is
difficult to perform. These limitations allow the existence
of alternative descriptions, generally named hidden variable
theories, which apparently violate the inequalities without
violating LR. The types of practical limitations are known
as loopholes [2]. The one often named locality or freedom-
of-choice loophole arises from the possibility that information
is interchanged between the remote stations where the state
is observed, and the source of entangled pairs. It implies
the violation of the assumptions that the probability of joint
detection is the product of the probabilities of detection at
each station (locality) and that the hidden variables and the
analyzers’ settings in each station are statistically independent
(measurement independence). To close this loophole, unpre-
dictable and spacelike determined variation of the analyzers’
settings must be achieved. The possibility that the state of
the system varies in time, depending on earlier outcomes
of the observations, is known as the memory loophole,
and can be refuted through a special statistical analysis of
the experimental data. The time-coincidence loophole is the
possibility that the particle detections are shifted in time,
in or out of the coincidence window. It can be disproved
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also by a statistical analysis, but the simplest solution is to
get a pulsed source of entangled pairs and a time-stamped
record of the detections. Finally, the detection or fair-sampling
loophole is the possibility that the particles are detected (or not)
depending on the agreement of the hidden variables they carry
with the analyzers’ setting they find. To close it, detection
efficiency higher than some threshold ηthr must be achieved.
For the Clauser-Horne-Shimony and Holt (CHSH) inequality,
ηthr = 2(

√
2 − 1) ≈ 0.83,1 for the Eberhard inequality (EI)

ηthr = 2/3. That is why the EI has been chosen in a series of
recent optical experiments [3–6] aimed to reach the “loophole-
free” condition.

In the next section, the derivation of the EI is reviewed.
The QM predictions for the EI, which are not often available,
are displayed. In Sec. III a hidden variables theory, which was
devised long ago to evaluate experiments using the CHSH, is
adapted to the EI case. It defines a bound to the predictability of
the analyzers’ settings in order to close the locality loophole.
The recent experiments using the EI and their main results
are briefly described in Sec. IV. Another recent loophole-free
experiment [7], which follows a different approach and uses
CHSH, is also described. Section V is the discussion of the
consequences of the results of the five experiments, which are
summarized in Table I.

II. EBERHARD INEQUALITY

The original form of the EI is [10]

N++(a,b) − N+0(a,b′) − N0+(a′,b) − N++(a′,b′) � 0, (1)

where N++(i,j ) is the number of coincidences recorded
in an Einstein-Podolsky-Rosen-Bohm (EPRB) setup [1]
when the analyzer’s orientations settings are {i,j}, and
N+0(i,j ) [N0+(i,j )] are the number of detections in station

1ηthr = 0.83 is the value stated in the earliest description of this
loophole [8]; different approaches lead to ηthr = 1/

√
2 ≈ 0.71 and

even to [2(
√

2 − 1)]2 ≈ 0.68 [9]. The safest criterion is to use the
most stringent condition.
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A (B) that do not produce coincidences. As the number of
single detections in, e.g., station A is S(a,j ) = N+0(a,j ) +
N++(a,j ), it is possible to rewrite Eq. (1) as

N++(a,b) + N++(a,b′) + N++(a′,b) − N++(a′,b′)

− S(a) − S(b) � 0, (2)

which is the Clauser-Horne (CH) inequality [8]. This is the
reason why the EI is often named the CH-Eberhard inequality.

Ideally, Eq. (2) is violated by some entangled states,
implying that QM is not compatible with LR. In order to violate
the bound in a real experiment, the detection efficiencies
must be taken into account. Assuming, for simplicity, that the
efficiency η is the same for all the detectors and settings, and
dividing by the total number of pairs for each setting (assumed
equal) in order to get probabilities, the Eq. (2) becomes

η2[P ++(a,b) + P ++(a,b′) + P ++(a′,b) − P ++(a′,b′)]

− η[P +(a) + P +(b)] ≡ J � 0. (3)

The probability of singles is always larger than the
probability of coincidences for the same setting and, to make
things even worse, singles are multiplied by η instead of η2,
so that violating the inequality seems impossible for practical
values of η.

Eberhard’s brilliant idea was the use of a nonmaximally
entangled state. It is certainly anti-intuitive that, to test QM vs
LR, a partially entangled state can be better than a maximally
entangled one. He defined the state (r < 1) as follows:

|ψE〉 = (1 + r2)−1/2{|xA,yB〉 + r|yA,xB〉}, (4)

whose concurrence is 2|r|/(1 + r2). The probability of coin-
cidences for this state is

P ++(a,b) = (1 + r2)−1[cos (a) sin (b) + r sin (a) cos (b)]2,

(5)
and the probabilities of single detections are as follows:

P +(a) = (1 + r2)−1[cos2(a) + r2sin2(a)], (6)

P +(b) = (1 + r2)−1[r2cos2(b) + sin2(b)]. (7)

Note that P +(a) �= 1
2 �= P +(b). In other words, the pho-

tons in each station are observed as partially polarized.
Equations. (4)–(7) converge to the usual case if r = 1.

The state |ψE〉 is able to violate Eq. (3) for lower values of
ηthr in the following way: Choosing the angle settings so that
cos(a) ≈ 0 and sin(b) ≈ 0, the single probabilities are ≈r2.
From Eq. (5) also P ++(a,b), P ++(a,b′), and P ++(a′,b) ≈ r2.
The settings {a′,b′} are still free to make P ++(a′,b′) ≈ 0. Then

J ≈ 3ηr2 − 2r2 � 0, (8)

so that η > 2/3 to violate the bound, which is the well-known
result. Note that the key is the small value (≈r2) of the
probabilities of single detection, thanks to the wise choosing
of the (partially entangled) state emitted by the source and
the almost nontransmitting orientation of the analyzers. Fine
tuning of r and the angle settings with a computer code
maximizes J .

Replacing Eqs. (5)–(7) into Eq. (3) gives the ideal QM
prediction value JQM. It is easy to calculate, but cumbersome

FIG. 1. Each analyzer has transmitting (gray) and reflective
(white) regions in the space of the hidden variable λ. The probability
of coincident detection is simply given by the overlap of the
transmitting regions. The regions’ sizes are different if r = 1 (CH
or CHSH, P + = 1

2 ) or r < 1 (EI, typically P + < 0.1).

to display as an explicit function. An approximate expression is

JQM ≈ ηr2. (9)

For example, for the values in [4] and η = 1, the exact value
of JQM is 0.067, while the one from Eq. (9) is 0.084.

Some setups use the state |φE〉 = (1 + r2)−1/2{|xA,xB〉 +
r|yA,yB〉} instead of |ψE〉. The coincidence probability is

P ++(a,b) = (1 + r2)−1[cos (a) cos (b) + r sin (a) sin (b)]2,

(10)

while the probability of single detections is given by Eq. (6)
for both stations, due to the symmetry of |φE〉.

III. HV + DZ FOR THE EBERHARD INEQUALITY

In 1991, I proposed a simple model called “hidden variables
with directionalization” (HV + DZ) as a tool to evaluate the
results of experiments using the CH or CHSH inequalities [11].

To make this paper self-consistent, the HV + DZ model is
reviewed in the Appendix. In brief, assume a yes-no probability
of passage on a hidden variable λ (see Fig. 1). This scheme
saturates the inequality. It may seem that a small shift of
the transmitting regions suffices to violate it. But it does not,
because the advantage obtained for some analyzers’ settings is
compensated by the disadvantage for others. A hidden variable
μ is then added, that defines “target” settings for the particles.
A critical parameter is the correlation q (q > 1

2 ) between
the value of μ and the settings. This correlation means a
violation of the condition of measurement independence. The
experiments attempt to enforce it by random and spacelike
choosing of the settings. Yet, some (small) correlation may still
exist due to the statistical predictability of the future settings
(because of some unbalance or bias in their distribution) and
the instrumental imperfections. The problem addressed by
HV + DZ is to calculate the minimum degree of correlation
necessary to reproduce the QM predictions.

HV + DZ was devised to study the experiment by Aspect
et al. [12]. Later, it was used to evaluate the improvements
reached by the experiment by Weihs et al. [13,14]. The
correlation necessary to reproduce the ideal QM predictions for
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FIG. 2. Scheme of the probability distributions for each setting
and station as a function of the hidden variable λ, for HV + DZ
adapted to the EI. Light gray: transmission regions. Dark gray: two
regions of coincidence, indicated as an illustration. The horizontal
axis is scaled such that it directly reads the probability of passage.

the CH and CHSH inequalities is q = (1/
√

2 − 7
16 )1/2 + 1

4 ≈
0.769, or ≈0.27 in excess to the minimum value of 1

2 . The
consequences of a deviation from perfect measurement inde-
pendence were considered by several authors from different
points of view [15–17]. A general approach almost halves
the excess value calculated in HV + DZ, to (

√
2 − 1)/3 ≈

0.14 [15].
In summary: a relatively small relaxation of measurement

independence allows reproducing the ideal QM predictions
for the CH and CHSH inequalities. It is then pertinent to study
how such relaxation affects the EI.

To adapt HV + DZ to the EI, the size of the “trans-
mitting” regions is given by Eqs. (6) and (7). Typically,
P +(a), P +(b) < 0.1, and P +(a′), P +(b′) ≈ 1

4 . The resultant
probability distributions on λ for each station and setting are
sketched in Fig. 2 (compare with Fig. 3 in the Appendix). The
gray regions have height equal to 1 (indicating probability = 1
of transmission for the corresponding values of λ) and their
widths are scaled here to be equal to the probabilities of single
passage. For example, using the data in [5] the lengths of the

areas in the axes named a and b are P +(a) = 0.0825 and
P +(b) = 0.0884. The values of P +(a′) and P +(b′) extend out
of the figure and are irrelevant for the EI. The overlap of two
areas gives the probability of the corresponding coincidence. In
Fig. 2, the dark gray areas indicate P ++(a,b′) and P ++(a′,b′)
as an illustration. The distances dj are defined as

P ++(a,b) = P +(a) − d1,

P ++(a′,b) = P +(b) + d1 − d2,

P ++(a,b′) = P +(a) − d3,

P ++(a′,b′) = P +(a) − d2 − d3, (11)

the EI is saturated (J = 0) regardless of the values of the dj .
Let us define now an auxiliary hidden variable μ. The

pairs with μ = 1 have the setting {a,b} as their target; the
ones with μ = 2 the {a,b′}, μ = 3 the {a′,b}, and μ = 4
the {a′,b′}. Each pair of emitted particles tries to reach its
target by guessing the future settings when leaving the source,
and also by exploiting the instrumental imperfections when the
guess fails. The probability q of reaching the target is (at first
order) the sum of the probabilities of success of both strategies.
In general, q measures the correlation between μ and the
settings regardless of the physical cause; ε = q − 1

2 > 0 is then
the deviation from perfect measurement independence. As all
the numbers in the EI are smaller than in CHSH the necessary
shifts (see the Appendix) are also smaller, and besides, they
are different for each setting. The set of the dj (in CHSH are
all equal to π/8) is therefore enlarged to a set of djμ whose
values are chosen to maximize the value of J :

P μ=1(a,b) = P +(a)(⇔ d11 = 0),

P μ=2(a,b′) = P +(a)(⇔ d32 = 0),

P μ=3(a′,b) = P +(b)(⇔ d13 = d23),

P μ=4(a′,b′) = 0[⇔ d24 + d34 = P +(a)]. (12)

For example, for μ = 1 one wants to get P μ=1(a,b) =
P +(a), which is the maximum possible value for P ++(a,b).
Therefore, one must define d11 = 0, and then it follows that
P μ=1(a,b′) = P +(a) − d31, P μ=1(a′,b) = P +(b) − d21, and
P μ=1(a′,b′) = P +(a) − d21 − d31. In the same way, expres-
sions for all the P μ(i,j ) are found. Note that the values of some
djμ remain free. Assuming for simplicity that the correlation q

is the same for all μ, the observable coincidence probabilities
are

P ++(a,b) = q2P μ=1(a,b) + q(1 − q)[P μ=2(a,b) + P μ=3(a,b)] + (1 − q)2P μ=4(a,b),

P ++(a,b′) = q2P μ=2(a,b′) + q(1 − q)[P μ=1(a,b′) + P μ=4(a,b′)] + (1 − q)2P μ=3(a,b′),

P ++(a′,b) = q2P μ=3(a′,b) + q(1 − q)[P μ=1(a′,b) + P μ=4(a′,b)] + (1 − q)2P μ=2(a′,b),

P ++(a′,b′) = q2P μ=4(a′,b′) + q(1 − q)[P μ=2(a′,b′) + P μ=3(a′,b′)] + (1 − q)2P μ=1(a′,b′). (13)

Replacing the P μ(i,j ) of Eq. (12) into Eq. (13) and then into Eq. (3) with η = 1, the value of J according to the HV + DZ
model is

JDZ = q2P +(a) − (1 − q){qP +(a) + (1 − 2q)[d14 + d22 + d33−(d12 + d21 + d31)]}
= q2P +(a) − q(1 − q)P +(a) − (1 − q)(1 − 2q){P +(a) + P +(b) − P μ=4(a,b) − P μ=2(a′,b)

−P μ=3(a,b′) + P μ=1(a′,b′)}. (14)
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Note that q = 1
2 ⇒ JDZ = 0, as it must be. The factor between

keys in the second equality has the form of an EI but with
the opposite sign and coincidence probabilities for nontarget
settings. It is convenient to define this factor as (−J ′), so that
Eq. (14) is written

JDZ = q2P +(a) − q(1 − q)P +(a) + (1 − q)(2q − 1)
(−J ′).

(15)

The numerical value of J ′ depends on the precise choosing
of the djμ that remained free. It is always J ′ � 0 because the
choosing defines a LR theory, which necessarily holds to the
EI. The last term in Eq. (15) is hence positive, or zero. Then

JDZ � P +(a)(ε + 2ε2), (16)

so that the EI is violated by any q > 1
2 . The same is valid for

the original HV + DZ case (r = 1) and CHSH:

S = 2(1 + ε + 2ε2). (17)

A different situation is faced if J is required not to merely
violate the bound, but to fit the QM prediction JQM. For a
choosing of the remaining djμ such that −J ′ = 2P +(a) +
P +(b) ≈ 3P +(a) then, from Eq. (15),

qQM ≈ 1 − 1
2 [1 − JQM/P +(a)]1/2 (18)

for the ideal values in [5]; qQM ≈ 0.78 (compare with qQM ≈
0.769 required by the original HV + DZ model to fit SCHSH =
2
√

2). Finally, replacing the measured values of J and P +(a)
in Eq. (18), the minimum correlation qm needed to reproduce
the observed violation of the EI is obtained.

In summary: the counterexample provided by the HV +
DZ model shows that the EI bound is violated as soon as a
relaxation of measurement independence is allowed, even if
η = 1. The same holds for the CHSH. The ideal values JQM

and S = 2
√

2 are reached by qQM ≈ 3
4 in both cases. Hence,

the capacity to discriminate QM from LR is the same by the
EI and the CHSH. This result concurs with the conclusions
reached in [18,19] from a different point of view.

IV. BRIEF DESCRIPTION OF THE RECENT
EXPERIMENTAL RESULTS

A. Definition of relevant parameters in common

Three experiments [3–5] (see Secs. IV B–IV D) are based
on the use of transition edge sensors (TESs) [20] operating
at cryogenic temperatures. These photon detectors have a
separately measured efficiency up to 98%, and are crucial to
closing the detection loophole.

In order to close the memory loophole, a refined statistical
method is performed, which was first developed in [21]. The
idea is to calculate the maximal probability (called the p
value) that the observed outcome has been produced by a
statistical fluctuation under the conditions to be disproved,
in this case, LR. This type of test was formalized for the
first time in [22,23]. Other methods to calculate the p value
were developed in [24–26], to include a bias in the setting
distributions (which is a common practical imperfection) for
both the CHSH and EI. The predictability of the settings
is taken into account in a recently published paper [27],
allowing for two different cases: perfect predictability in some

trials, or else, constant average predictability during the whole
run. The latter can be considered as a different approach to
the situation addressed by HV + DZ. The two approaches
lead to the same conclusion. The p value is used in the
experiments [5–7] detailed in Secs. IV D–IV F to close the
memory loophole, and in Secs. IV D and IV E [5,6] also as
an alternative to the calculation of the standard error of J

to quantify the reliability of the results. A main practical
concern is finding the value of the sample size (or cut point)
that provides a statistically significant p value. This can be
done without assuming any a priori distribution, following a
special procedure that is detailed, e.g., in the Supplemental
Material section of the experiment [6] (Sec. IV E). Note that
the value qm obtained from HV + DZ is not the consequence
of a statistical fluctuation, but of a systematical behavior at the
hidden variables level. The results of HV + DZ are valid even
in the limit of an infinite statistical set. In general, the p value
and qm define different and complementary bounds.

In principle, the correlation between the hidden variable
μ and the analyzers’ settings can have two causes: the pre-
dictability of the settings and the instrumental imperfections of
the settings’ realizations. In the originally studied experiment
of Aspect et al., the latter was mainly determined by the con-
trast of the acousto-optical modulators that deflected the beams
towards the different fixed settings. In the recent experiments,
it is related with the latency time of the electro-optical mod-
ulators (EOMs) and the errors in the time-stamping devices.
For simplicity, I take into account here the first cause only. The
predictability of the settings is given mainly by the bias of the
random number generators (RNGs). Using physical models of
the random processes and measurements of the RNG outputs,
estimates of the predictability in each setup, qset, can be devel-
oped. In what follows, the values of qset are the ones estimated
by the authors of the experiments. In order to close the locality
loophole, the value of qset must be smaller than the value qm

the HV + DZ needs to reproduce the observed value Jm.
Other relevant parameters are the separately measured

efficiencies of the detectors ηmeas. Inserted in Eq. (3), they
provide a “first-order” corrected value Jcorr. One expects
Jcorr/Jm ≈ 1. Conversely, ηeq is the efficiency value that,
inserted into Eq. (3) with the ideal values of the probabilities,
reproduces Jm. It is a compact way to take into account the
experimental imperfections. Ideally, ηeq ≈ ηmeas. The criterion
to close the detection loophole is ηeq > ηthr. Recall that, in the
experiments using the EI, ηthr depends on the level of noise.

Be aware that the CHSH parameter S is used instead of J

in the experiment in Sec. IV F. Also, note that the coincidence
rate depends on the angle settings, which are different in each
experiment, so that a direct comparison is impossible. Hence,
the values displayed in Table I just give a rough idea of the rate
of detected particles and of the contrast of the coincidence vs
angle curves in each case.

B. Giustina et al. [3]

A continuous wave (cw) laser diode at 405 nm pumps a
ppKTP-II crystal placed inside a Sagnac interferometer. The
insertion of additional crystals on the pump beam prepares the
state |ψE〉 with r ≈ 0.3. The pairs of photons at 810 nm are
selected with interferential filters, focused into single-mode
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TABLE I. Summary of some parameters of interest; Jm is the experimentally obtained value of the left-hand side of the EI, JQM is the QM
ideal prediction, Jcorr is the QM prediction but corrected by the separately measured efficiencies ηmeas, ηeq is the efficiency value that makes
Jcorr = Jm, qQM is the correlation probability between the hidden variable μ and the analyzers’ settings the HV + DZ needs to reproduce JQM,
qm is the same but to reproduce Jm, and qset is the predictability of the RNG as estimated by the authors of the experiments.

Giustina et al. Christensen et al. Giustina et al. Shalm et al. Hensen et al.
[3]; see Sec. IV B [4]; see Sec. IV C [5]; see Sec. IV D [6]; see Sec. IV E [7]; see Sec. IV F

Jm 5.24 × 10−3 ± 8 × 10−5 5.4 × 10−5 ± 7 × 10−6 7.27 × 10−6 1.41 × 10−5 Sm = 2.42 ± 0.07
JQM 0.0701 0.0549 0.0671 0.0645 SQM = 2

√
2

Jcorr 8.53 × 10−3 5.7 × 10−2 1.03 × 10−2 6.26 × 10−3 Scorr = 2.30
ηmeas 0.738 and 0.786 0.75 0.786 and 0.762 0.747 and 0.756 0.971 and 0.963
ηeq 0.745 0.710 0.719 0.715 Not applicable
ηthr 0.667 0.667 0.667 (?) 0.725 0.828
Jcorr/Jm 1.6 106 1422 444 0.95
qQM 0.785 0.787 0.783 0.776 0.769
qm

1
2 + 2.1 × 10−2 1

2 + 8 × 10−3 1
2 + 7.6 × 10−3 1

2 + 1.6 × 10−2 0.659

qset 1 1 1
2 + 1.2 × 10−4 1

2 + 10−4 1
2 + 10−5

p Value Not computed 1.16 × 10−10 [32] 3.74 × 10−31 5.9 × 10−9 0.039
Coincidence rate (min) 232 s−1 1.7 s−1 9.6 s−1 0.059 s−1 ≈2 × 10−5 s−1

Coincidence rate (max) 3970 s−1 31 s−1 162 s−1 3.60 s−1 ≈1.3 × 10−4s−1

optical fibers; they find analyzers with fixed settings, and are
detected with TESs. The time of detection of each photon is
stored in a time-tagged file. Each setting is left fixed during a
period of 300 s.

The measured value of the violation of the EI is Jm =
5.24 × 10−3 ± 8 × 10−5, while the ideal value is JQM =
7.01 × 10−2. The difference is explained by taking into
account several practical imperfections [26]. Without going
into the details, note that Jcorr = 8.53 × 10−3, which is
reasonably close to Jm. Conversely, the equivalent efficiency
is ηeq = 0.745. Hence, assuming a small deterioration of the
average efficiency suffices to explain the difference between
Jm and Jcorr. This feature is found also in the other experiments
using EI, where Jcorr/Jm is even larger (see Table I). The reason
why the value of the efficiency is so critical to the value of J

is a consequence of the EI, which deals with numbers that are
all close to zero.

The measured value of P +(a) is 0.063, reasonably close
to the ideal 0.088. From Eq. (18), qm ≈ 1

2 + 2 × 10−2. In this
setup and the next the settings are fixed, so that qset = 1 > qm.
Recall, however, that these experiments were not aimed to
close the locality loophole.

C. Christensen et al. [4]

The third harmonic of a mode-locked Nd:YAG laser (5 ps at
120 MHz) is used to pump a pair of crossed BBO-I crystals in
a standard configuration. Additional crystals prepare the state
|φE〉 with r = 0.26. The pairs of photons at 710 nm are filtered
with single-mode optical fibers and detected with a TES cooled
at 100 mK. The TESs have a jitter of about 1 μs, so that they are
unable to resolve the time between the mode-locking pulses.
The pump beam is then modulated with a Pockels cell to pro-
duce bursts 1 μs long (or 240 mode-locking pulses), separated
by 40 μs. The time of detection of each photon is saved in
a time-tagged file. The settings are randomly changed with a
periodicity of 1 s. This is not done to close the locality loophole

(the period is too long for that), but to avoid any instrumental
drift that may produce a spurious violation of the EI.

The measured value Jm = 5.4 × 10−5 ± 7 × 10−6 is three
orders of magnitude smaller than the ideal JQM = 5.49 ×
10−2, yet ηeq = 0.71 suffices to fit the two values. In this
experiment and in the previous one ηeq > ηthr = 2/3, so that
the detection loophole is successfully closed in both cases. In
this experiment the CHSH parameter is also measured (after
adjusting r = 1) and the excellent value SCHSH = 2.827 ±
0.017 is obtained.

The measured value of P +(a) is ≈1.69 × 10−3, much
smaller than the ideal 0.067. However, as Jm is also small,
qm is only ≈ 1

2 + 8 × 10−3.

D. Giustina et al. [5]

The source is the same as in [3] (Sec. IV B) (with r =
−0.29) but the 405-nm pump laser diode is now modulated to
emit pulses 12 ns FWHM at 1 MHz repetition rate. An output
signal from the laser synchronizes the measuring process
and defines the “natural time” a valid photon is expected to
arrive to the stations. The entangled photons are spectrally
and spatially filtered by focusing into single-mode optical
fibers, which transport them to the stations of observation.
The stations are separated ≈58 m, with the source near the
middle point. In each station, EOMs are driven to change the
angle settings of the analyzers. The settings are decided by
identical RNGs, one in each station. The RNGs are based on
laser phase diffusion, and produce raw series of random bits
at 200 MHz speed. At the time an output is required, only
the most recent raw bits are chosen to run a parity calculation
to decide the measurement setting. This is to make sure that
the definitions of the settings are spacelike separated. The
process of choosing and driving the EOM is completed in
only 26 ns, shorter than the distance from each station to the
source (≈87 ns). The predictability of this process is estimated
smaller than 1

2 + 1.2 × 10−4. The photons are detected with
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TES with separately measured efficiencies ηA = 0.786 and
ηB = 0.762.

All the relevant data are saved in time-tagged files. The
digitizer operates in a triggered mode starting with a photon
detected during the natural time (which is defined by the signal
coming from the pump laser), but it also records 1024 ns before
and after the trigger at a sample rate of 250 MHz, or 4 ns time
resolution. This is far more than enough, taking into account
the jitter of the detectors. One limitation is that the digitizer
requires 2.176 μs to rearm after a trigger. This means that it is
blind to the next two or three pump pulses. Yet, this is not a
serious limitation, for the probability of producing one photon
per pulse is low, to keep the number of accidental coincidences
small [28].

Data are recorded during 4.8 h, in three blocks of 1, 1,
and 2.8 h. The experiment stops when a real-time running
check of entanglement indicates that the setup is drifting out
of alignment. Using the second block of data, the value Jm =
7.27 × 10−6 is obtained, four orders of magnitude smaller than
the ideal one.

The measured value of P +(a) is not directly provided. As
the singles in station 1 must be independent of the setting
in station 2, I estimate P +(a) from the sum N++

11 + N+0
12 =

141 439 + 67 941 (see Supplemental Material in [5]) and
dividing by the average of the number of trials in each case,
or (875 683 790 + 875 518 074)/2, then P +(a) ≈ 2.4 × 10−4.
It agrees with the value 2.2 × 10−4 obtained using ηeq, but it
is far from the ideal 0.083. Anyway, qm = 1

2 + 7.6 × 10−3 is
larger than qset = 1

2 + 1.2 × 10−4, so that the locality loophole
is closed. If the ideal value of P +(a) were used instead,
qm = 1

2 + 2.2 × 10−5 and the loophole would not be closed.
The p value defined in this experiment takes into account
the predictability of the settings. It is measured smaller than
3.74 × 10−31, hence closing both the memory and the locality
loopholes.

Background photons raise the value of ηthr. Here, the elec-
trical signal produced by the TES is digitized and its shape is
used to discriminate detections of valid photons at 810 nm from
photons of lower energy coming from blackbody radiation.
However, remaining background is claimed, together with
imperfect state purity, for the large difference between Jm

and Jcorr. I have found no reported estimation of the remaining
background level or of the increase of ηthr.

E. Shalm et al. [6]

A mode-locked Ti:sapphire laser emits ps pulses at a
repetition rate of 79.3 MHz at 775 nm. It is split into two beams
with orthogonal polarizations to pump a ppKTP crystal. These
two beams are inserted into a polarization Mach-Zehnder
interferometer that allows preparing the state |φE〉 (r = 0.287).
The downconverted photons are in the communications band,
which is an attractive feature of this setup. They are sent to
the observation stations via optical fibers. The mode-locked
pulses are used as a clock to synchronize the measurements.
They are detected at the laser’s output with a fast photodiode,
one each of 800 is picked out, and the electrical signal is sent
to the stations. Once per second, a signal from the GPS helps
to prevent any slow drift between the time tags in each station
during an experimental run (30 min).

The source and the stations are positioned at the vertices of a
nearly right-angle triangle. Each station is at about 130 m from
the source, and the straight line distance between the stations
is 184.9 m. While the photons are in flight, the electrical signal
from the pump laser triggers a RNG, to choose a measurement
setting. This occurs at a rate 79.3 MHz/800 = 99.1 KHz.
At each station, the photons pass through an EOM and
are detected by a superconducting nanowire single-photon
detector (SNSPD) with a separately measured efficiency of
91% [29]. The detected signal is saved in a time tagger
with a 10-MHz clock. The process is completed before any
information from the other station may arrive at luminal speed.

The EOMs remain on the same state for about 200 ns, or 15
mode-locked pulses. Therefore, only the pulses at the center of
this set fulfill the condition that the setting is completed before
the photon arrival. In consequence, there is a compromise:
taking into account only the central pulse No. 6 to get the
best condition of spacelike separation, and scarce statistics,
or else, adding neighboring pulses to improve the statistics at
the cost of relaxing the condition of spacelike separation. The
number of pulses taken into account into the statistics (which
can be decided after the experiment has finished) is therefore
a crucial parameter in this experiment. A table of p-values
for different numbers of pulses and predictability excess of
the RNG is provided. Excepting for the extreme cases, the
memory loophole is clearly closed.

As in [5] (Sec. IV D), the probability per pulse of generating
a pair is very low (≈5 × 10−4), so that the chance of getting
two events inside the same time window is negligible (<1%).
Yet, if the aggregate pulses do not fulfill the condition of being
spacelike (even if less than one event per time window is
recorded in the average) the test becomes, of course, unreliable.

The RNG in this setup deserves a special comment. There
are three in each station. Two of them are relatively usual:
One is based on measuring optical phase diffusion in a
gain-switched laser, the other one on sampling the amplitude
of an optical pulse at the single-photon level. The third one
is unusual: it produces a bit by scrambling the digitized
version of popular movies (one different in each station)
with the digits of π . I had discussed the issue of the RNG
in [11], and found that there were two possible sources of
unpredictable results. One was a quantum state that projected
into orthogonal bases. The other one was a series of random
numbers stored in a computer. There was always an untestable
hypothesis involved: (i) the projection of the quantum state
was uncorrelated with the hidden variables carried by the pair,
or (ii) the source of pairs was unable to read the memory of
the computer. In this experiment, both possible sources are
available and their outputs are scrambled. The predictability
of this (in my opinion, “ultimate”) source is estimated smaller
than 1

2 + 10−4 = qset.
The value Jm = 1.41 × 10−5 is obtained for five aggregate

pulses (around the optimal pulse No. 6) more than three
orders of magnitude smaller than the ideal value. The p value
is 5.9 × 10−9, closing the memory loophole. The p value
obtained using the method developed in [22,23] is comparable.
If an excess predictability of the RNG even 15 times larger is
allowed, the p value rises to only 2.3 × 10−7. The result for
seven aggregate pulses is worse (2 × 10−7 and 9.2 × 10−6,
respectively), in spite of fulfilling the spacelike condition and
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the improved statistics. This is probably due to instabilities
of the voltage applied to the EOM near the moment a setting
change is made.

The measured value of P +(a) is 2.17 × 10−4, in the order
of the value estimated in Sec. IV D and, once again, far from
the ideal 0.081. Then qm = 1

2 + 1.6 × 10−3 > qset so that the
locality loophole is closed. If the ideal value of P +(a) were
used instead, qm = 1

2 + 4.4 × 10−5 and the loophole would
not be closed.

The effect of background counts coming from blackbody
radiation and room light is carefully taken into account. In
order to reduce their number, the only events considered are
those that occur within a window of 625 ps (at station A)
and 781 ps (B) around the natural time. The probability of
observing a background count during the natural time is found
to be 8.9 × 10−7 (A) and 3.2 × 10−7 (B). Yet, these small
numbers suffice to raise ηthr from 2/3 up to 0.725, marginally
larger than ηeq = 0.715. Therefore, this experiment is in the
limit of closing the detection loophole.

F. Hensen et al. [7]

This experiment is very different from the previously
described ones. The entangled particles to be detected in this
experiment are not photons, but the electronic spins associated
with single nitrogen vacancy defects (NVs) in diamond chips.
The spin orientation can be handled by applying rf signals. Its
state can be measured with efficiency close to 100%. The time
required to measure the state of a NV is relatively long, which
makes it necessary to have a distance between the stations
longer than in the previous experiments, in order to ensure that
all the setting choices and measurements are spacelike isolated.
The NV are then placed in stations A at 493 m and B at 818
m from the “source” station (see below); the distance between
A and B is 1280 m. Each spin is entangled with an emitted
photon, which is inserted into an optical fiber and sent to the
source station. In this station the two photons are subjected to
a Hong-Ou-Mandel measurement. If coincident photons are
recorded at the two output ports of a beam splitter, then the
biphoton state is |ψ−〉 (|ψE〉 with r = −1) and then the two
remote NVs are also in the state |ψ−〉. This is because of the
phenomenon of entanglement swapping, which is based on the
following equality involving the states of the Bell’s basis:

|ψ−
1A〉|ψ−

B2〉 = 1
2 (|ψ+

12〉|ψ+
AB〉 − |ψ−

12〉|ψ−
AB〉

−|φ+
AB〉|φ+

AB〉 + |φ−
12〉|φ−

AB〉), (19)

where 1,2 are the photons and A,B are the NVs.
This setup is the closest to the original Bell’s proposal, for

the photons detected at the source not only prepare the NV
state, but they also play the role of an “event-ready” signal
heralding that an entangled state (of the two NVs) is available
for measurement.

Yet the whole process occurs rarely. The probability of
entanglement generation per attempt is estimated as 6.4 ×
10−9, or slightly more than one event-ready signal per hour.
Once an event-ready signal from the source is recorded, the
detection probability of the NV is almost 100%, closing the
detection loophole (ηthr = 0.83 here). The whole experiment
ran 245 trials during a total measurement time of 220 h. The

measured CHSH parameter is Sm = 2.42 (it is noteworthy
that it is higher than the previous estimation, Scorr = 2.30).
The HV + DZ model needs qm = 0.659 to fit this value. The
fast RNGs are similar to the ones in [5] (Sec. IV D), but
here the predictability excess is estimated as one order of
magnitude smaller. Anyway, the precise numerical value of
qset is irrelevant, for it is surely much smaller than qm, so that
the locality loophole is widely closed. The p value is 0.039,
much larger than in [5,6] (Secs. IV D and IV E) because of the
smaller size of the statistics, but sufficient to close the memory
loophole too.

V. DISCUSSION AND CONCLUSIONS

Table I shows that, leaving aside some details, the five
experiments reach their goals. The models in [15–17], which
study the consequences of a relaxation of measurement
independence using approaches different from HV + DZ,
produce also different values of qm, but the essential results do
not change, for the low level of predictability achieved in the
experiments, especially in [7] (Sec. IV F), is widely sufficient
to close the locality loophole for these approaches too.

In what follows, I discuss the details I find worth
mentioning.

The reader may have perceived my admiration regarding
the realization of the RNG, especially in the [6] (Sec. IV E).
Yet, the condition qset < qm is not fulfilled with a margin
as wide as expected in the experiments using the EI. The
cause of this weakness is not in the RNG, but in the low
values of Jm attained, which are from one to four orders
of magnitude below the ideal. The same occurs with P +(a)
excepting in [3] (Sec. IV B). Even though the locality loophole
is closed according to the established criterion, the mentioned
differences and the sensitivity of the results to numbers that
are all close to zero leave a sense of uncertainty. The excellent
value of S obtained in [4] (Sec. IV C) with the same setup
indicates that CHSH is more robust than EI and should be
preferred, when possible. The reason why EI is chosen in
[3–6] (Secs. IV B–IV E) is that the detectors’ efficiencies are
measured lower than the value of ηthr for CHSH.

The results of [7] (Sec. IV F) are more satisfactory because
they do not merely violate the inequality (S > 2), but get
halfway close to the ideal value 2

√
2. In order to achieve

this remarkable result, the setup combines the advantages of
propagating photons and the high detection efficiency of sta-
tionary NV spins. Entanglement swapping is used to teleport
the photons’ state to the spins. Nevertheless, entanglement
swapping is a pure QM phenomenon with no classical or
semiclassical counterpart. I wonder if a true logical loophole
might be lurking there. For, in order to select the results of
the NV measurements to be included into the statistically
relevant set, one must assume QM correct, and QM certainly
violates the Bell’s inequalities. Perhaps what is believed to be
demonstrated true by the observations is what is being assumed
true from the data selection. This is a subtle issue that deserves
to be studied in detail elsewhere.

The time-coincidence loophole was closed few years ago
[30,31], but not simultaneously with the other loopholes. The
experiment detailed in Sec. IV D [5] claims to have closed the
detection and the time-coincidence loopholes together. Even
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though the setup is apparently able to reach this goal, the
data analysis provided is, in my view, insufficient. A further
analysis [32] uses the method developed in [22,23] and is
based on the definition of a “distance” between time series
to close the loophole, reaching a p value smaller than 10−10.
The achievements of this approach, including the detection
of a fake source of entangled states, are remarkable. Yet,
I find this approach more complex and indirect than the
originally proposed one and, in consequence, more vulnerable
to new loopholes. I believe that a “traditional” analysis of the
time-tagged data in [5,6] (Secs. IV D and IV E), including the
detections outside the natural time, is a more reliable way to
close the time-coincidence loophole simultaneously with the
others. As far as I know this analysis has not been done yet,
but it may be done using the already recorded data.

Finally, [7] (Sec. IV F) is event-ready and hence is not
affected by the time-coincidence loophole. Therefore, it closes
all the loopholes without further analysis of the data.

Note that the thresholds have been calculated for each
loophole separately. If the loopholes are combined (e.g, q > 1

2
and η < 1), the thresholds change depending on the details
of the hidden variables model. It should also be kept in
mind that more loopholes may be found in the future. Faking
techniques, which have consequences for the security of QKD
schemes, may be considered as a sort of new loophole [33].
It is therefore conceivable that an experiment entirely free of
loopholes cannot be done [34]. What real experiments can do,
in my opinion, is to shrink the space left to the loophole-based
theories down to the point that (say, asymptotically) they
become too exotic to be tenable. Also in my personal opinion,
the reported experiments have already reached this point, and
the defenders of LR should not insist on the little vulnerability
left, but pay attention to some barely explored alternatives, for
example, the possibility of nonergodic dynamics at the hidden
variables level [35,36].

During the process of review of this paper, another
loophole-free and event-ready experiment was reported [37].
It uses the CHSH and is based on the measurement of the states
of remote atoms linked through entanglement swapping, in a
way similar to [7] (Sec. IV F). The value S = 2.22 ± 0.033 is
obtained, hence violating the inequality, and a p value <10−9.
These results confirm the conclusions already made.

Because of its purpose, this report must be critical with the
claimed results. Yet I would like to emphasize my admiration
for the extraordinary skills demonstrated by all the groups.
They have developed new and formidable abilities of practical
interest in the field of quantum information. They have also
climbed many steps towards the ideal Bell’s proposal. To say
the least, they have imposed new and severe restrictions to the
set of loophole-based theories.
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APPENDIX: ORIGINAL HV + DZ MODEL

Suppose the photons carry a hidden variable λ, similar to
the classical plane of polarization, with a uniform distribution
in [0,π ]. If the source emits the totally symmetrical Bell state
|φ+〉, the two photons of the pair carry the same value of
λ. Let us also assume that the analyzers transmit (reflect) a
photon with probability =1 if 0 � λ � π/2 (π/2 � λ � π ).
In the λ space, the analyzers have then two transmitting and
two reflecting quadrants (see Fig. 1), and hence the total
probabilities of transmission are P +(a) = P +(b) = 1

2 . The
probability of coincidence P ++(a,b) is given simply by the
overlap of the two transmitting regions. Then P ++(a,b) is
a straight line between the points {a − b = 0,P ++(a,b) = 1

2 }
and {a − b = π/2, P ++(a,b) = 0}. This produces SCHSH = 2,
exactly in the limit allowed by LR.

Let assume now that the pairs also carry a hidden variable
μ with values 1 to 4. It has the purpose of increasing P ++
for some settings (those having an angle between analyzers
of π/8) and to reduce it for others (the ones having 3π/8).
For example, if a photon with μ = 1 reaches the analyzer with
setting b, the probability distribution on λ is shifted an angle
π/8 “leftwards” (see Fig. 3) to increase P ++(a′,b) from 3

8 to
1
2 (which is its maximum possible value). There is no effect
otherwise. In the same way, shifts are defined for the other
three possible settings. Yet, the addition of μ is not enough
to violate the inequality. The photons which miss their target
produce an effect opposite to that desired and the average result
is again SCHSH = 2.

Let us assume now that the pairs with μ = 1 have a tendency
to reach the setting {a′,b}, μ = 2 to reach {a′,b′}, μ = 3 to

FIG. 3. Probability distributions in the original HV + DZ model
(or r = 1 case). The gray regions are the transmitting regions in
the space of the hidden variable λ for each setting. Note that
they correspond simply to the angle orientation of the analyzers
{a = 0, a′ = −π/4, b = −π/8, b′ = π/8}. The overlap of two gray
regions gives the probability of coincidence [e.g., P ++(a,b′) = 3/8].
The arrows indicate the shifts (in an amount of π/8 leftwards in
all cases) of the regions in each setting when the additional hidden
variable μ takes the indicated value. There is no shift otherwise. The
shifted transmitting regions are indicated with dashed lines. Yet the
shifts do not produce a violation of the inequality by themselves. Some
correlation (measured with the parameter q) between the settings and
μ is necessary to achieve it.
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reach {a,b} and μ = 4 to reach {a,b′}. The parameter q (in [11]
it was named 1

2

√
a) is the probability a photon has to reach its

target setting. The observable probability of coincidence of,
e.g., P ++(a′,b) is (assuming μ is equally distributed)

P ++(a′,b) = q2P μ=1(a′,b) + q(1 − q)[P μ=2(a′,b) + P μ=3(a′,b)] + (1 − q)2P μ=4(a′,b)

= q2 1
2 + q(1 − q)

[
1
4 + 3

8

] + (1 − q)2 3
8 . (A1)

For, if μ = 1, the target (which is {a′,b} in this case) is
reached in both stations, if μ = 2,3 the target is reached in
only one of the stations, and if μ = 4 both targets are missed.
The other three coincidence probabilities are written in the

same way. Yet, the resultant equations are linearly dependent;
thus it suffices to ask that, e.g., P ++(a′,b) = 1

2 cos2(a′ − b) ≈
0.4268 ⇒ q = 0.769 to exactly reproduce the QM predictions
for all the settings.
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