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Assessing the quantumness of a damped two-level system
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We perform a detailed analysis of the nonclassical properties of a damped two-level system. We compute
and compare three different criteria of quantumness, the l1 norm of coherence, the Leggett-Garg inequality,
and a quantum witness based on the no-signaling in time condition. We show that all three quantum indicators
decay exponentially in time as a result of the coupling to the thermal reservoir. We further demonstrate that
the corresponding characteristic times are identical and given by the coherence half-life. These results quantify
how violations of Leggett-Garg inequalities and nonzero values of the quantum witness are connected to the
coherence of the two-level system.
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I. INTRODUCTION

The question of what genuinely distinguishes quantum from
classical physics is as old as quantum theory itself [1,2]. That
issue is not only of fundamental, but also of technological
importance. Quantum features have indeed been shown to be
a physical resource that allows performing tasks that are not
possible classically [3]. Prominent examples include quantum
cryptography [4], quantum teleportation [5], and quantum
computing [6]. However, the boundary between the classical
and the quantum worlds is notoriously blurry [7,8]. Charac-
terizing nonclassicality is, as a result, a challenging exercise.
The topic recently has attracted renewed interest in the fields
of quantum biology [9,10], quantum computation [11,12], and
quantum thermodynamics [13,14].

An inherent property of quantum mechanics is the coherent
superposition of different states [15]. A popular example
of such a quantum superposition is given by Schrödinger’s
famous cat that can simultaneously be both dead and alive [2].
Cat states are nowadays routinely created and studied in
the laboratory [16,17]. A rigorous theoretical framework of
quantum coherence as a physical resource has been developed
lately [18–22] (see Ref. [23] for a review). In particular,
different quantifiers of coherence, such as coherence measures
and monotones, have been introduced [23]. A commonly used
example of a coherence monotone is the l1-norm Cl1 (ρ) =∑

i �=j |ρij |, which is simply the sum of the modulus of the
nondiagonal matrix elements of the density operator ρ of a
system [19]. A nonvanishing Cl1 (ρ) indicates the presence of
quantum coherence in the considered basis.

Another approach to identify quantumness is to impose
classical constraints that are violated by quantum theory. For
instance, the classical assumptions of realism and locality lead
to Bell’s inequality [24]. After early successful observations
of the violation of the Bell inequality by quantum sys-
tems [25–27], loophole-free experiments have been reported
recently [28–30]. The violation of Bell’s inequality is related
to the existence of nonclassical spatial correlations between
two parties. It is therefore not well suited to detect quantum
behavior of a single system. The Leggett-Garg inequality, on
the other hand, may be seen as a temporal analog of Bell’s
inequality [31,32]. It is based on the classical notions of
macroscopic realism, i.e., the assumption that macroscopic
systems remain in a well-defined state at all times, and of

noninvasive measurability, i.e., the possibility to measure
in principle the state of a system without perturbing it. A
violation of the Leggett-Garg inequality reveals the presence
of nonclassical temporal correlations in the dynamics of
an individual system. Such a violation has experimentally
been seen in an increasing number of systems in the past
years from superconducting qubits to neutrinos [33–47]. It
should, however, be pointed out that, although the nonviolation
of Bell’s inequalities is necessary and sufficient for local
realism [48], the nonviolation of Leggett-Garg inequalities
is a necessary but not sufficient condition for macroscopic
realism [49].

A third witness for nonclassical behavior has been proposed
latterly, based on the classical assumption of no-signaling in
time, i.e., the idea that a measurement does not change the
outcome statistics of a later measurement [50,51] (it has also
been called a non-disturbing-measurement condition [40,52]).
In essence, the criterion compares the dynamics of the
population of a quantum system in the presence and in
the absence of a measurement. A deviation between the
two dynamics then signifies quantumness. Advantages of the
quantum witness are that: (i) its implementation only requires
two time measurements, in contrast to the three measurements
usually needed to test the Leggett-Garg inequality and that
(ii) it involves one-point expectations rather than two-point
correlations. In addition, it provides a necessary and sufficient
condition for macrorealism [49]. Experimental implementa-
tions with a single atom [46] and a superconducting flux qubit
have been reported [53].

In this article, we compare the above three criteria of
nonclassicality by applying them to a damped two-level
system, a paradigmatic model of quantum optics [15], and
condensed-matter physics [54]. We begin by solving the
Markovian master equation of the dissipative two-level system
in the Heisenberg picture and by computing the two-time
correlation function of the Pauli operator σx in Sec. II. We
then evaluate the coherence monotone Cl1 (ρ) in the σz basis
in Sec. III, derive the Leggett-Garg inequalities in Sec. IV,
and calculate the quantum witness in Sec. V. We find that all
three quantum indicators show an exponential decay of the
quantum properties of the two-level system induced by the
coupling to the external thermal reservoir. Remarkably, we
establish that all three characteristic times are equal and given
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by the coherence half-life [55,56]. These findings clarify how
violations of the Leggett-Garg inequalities and nonvanishing
values of the quantum witness are related to the quantum
coherence of the two-level system.

II. DAMPED TWO-LEVEL SYSTEM

We consider a two-level system weakly coupled to a bath of
harmonic oscillators at temperature T , e.g., a two-level atom
interacting with a thermal radiation field. In the Born-Markov
approximation, the time evolution in the Heisenberg picture
of a system observable X(t) is governed by a Lindblad master
equation of the form [57,58] (we set h̄ = 1 throughout for
simplicity)

dX

dt
= L[X]

= i
ω

2
[σz,X] + ∂X

∂t

+ γ0

2
n(ω,T )(σ−[X,σ+] + [σ−,X]σ+)

+ γ0

2
[n(ω,T ) + 1](σ+[X,σ−] + [σ+,X]σ−). (1)

Here ω is the frequency of the two-level system, γ0 is the
spontaneous decay rate, and n(ω,T ) = [exp(ω/kBT ) − 1]−1

is the thermal occupation number. We denote the total
transition rate by γ = γ0[2n(ω,T ) + 1].

The master equation (1) may conveniently be solved by
using a superoperator formalism [59,60]. By choosing a
basis consisting of the Pauli matrices σi (i = x,y,z) and the
identity operator I , the matrix representation of the Liouvillian
superoperator L reads

d

dt

⎛
⎜⎜⎜⎝

σx

σy

σz

I

⎞
⎟⎟⎟⎠ = L

⎛
⎜⎜⎜⎝

σx

σy

σz

I

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

− γ

2 −ω 0 0

ω − γ

2 0 0

0 0 −γ −γ0

0 0 0 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

σx

σy

σz

I

⎞
⎟⎟⎟⎠.

(2)

This solution may be used to compute two-point correlation
functions of the system with the help of the quantum regression
theorem [61]. For the time-symmetrized correlation function
C(τ ) = 〈{σx(t),σx(t + τ )}〉/2, we find (see Appendix A)

C(τ ) = exp

(
−γ

2
τ

)
cos(ωτ ). (3)

The correlation function C(τ ) only depends on the time lag τ

and is hence stationary. It will be useful in the derivation of
the Leggett-Garg inequalities in Sec. IV.

III. l1 NORM OF COHERENCE

In this section, we assess the quantumness of the two-
level system by computing the l1 norm of coherence Cl1 =∑

i �=j |ρij |, arguably the simplest and most intuitive coherence
monotone [19]. This quantity depends on the state of the
system, described by the density operator ρ, and on the basis
in which the matrix elements ρij are evaluated. We here
choose the natural basis for the problem at hand given by

the eigenbasis of the Hamiltonian of the two-level system
H = (ω/2)σz. In the σz basis, the density-matrix ρ may be
expressed in terms of the expectation values of the Pauli
operators [57],

ρ = 1

2

(
I + 〈σz〉 〈σx〉 − i〈σy〉

〈σx〉 + i〈σy〉 I − 〈σz〉
)

. (4)

We accordingly obtain the coherence monotone,

Cl1 (τ ) =
√

〈σx〉2 + 〈σy〉2. (5)

Equation (5) may be computed from the solution (2) of the
master equation (1). We select the initial state of the two-level
system to be maximally coherent. As shown in Ref. [19], an
example of such a state is given by

|�d〉 = 1√
d

d∑
i=1

|i〉, (6)

where d is the dimension of the system. We choose the
eigenstate |+〉 = (| ↑〉 + | ↓〉)/√2 of the Pauli operator σx ,
which is obviously of this form for d = 2. As a result, we
obtain the l1 norm,

Cl1 (τ ) = exp(−γ τ/2). (7)

In general, the l1 norm of coherence satisfies the inequality
Cl1 � d − 1 [23]. The coherence monotone (7) takes its
maximum possible value at τ = 0 from which it decays
exponentially with a characteristic time scale given by the
coherence time tc = 2/γ . The latter quantity is defined as the
time at which coherence is reduced to 1/e times its initial
value [57]. It is also advantageous to introduce the coherence
half-life τc = 2 ln 2/γ , defined as the time at which coherence
decays to half its initial value [55,56].

IV. LEGGETT-GARG INEQUALITY

Let us next characterize the nonclassicality of the two-level
system by using the Leggett-Garg inequality. Consider a
dichotomous observable Q, which can take the values ±1
and which is measured at three consecutive times t1, t2,
and t3. Based on the classical assumptions of macroscopic
realism and noninvasive measurability, one can derive the
inequality [31,32],

K3 = 〈Q(t2)Q(t1)〉 + 〈Q(t3)Q(t2)〉 − 〈Q(t3)Q(t1)〉 � 1. (8)

Quantum theory violates the above inequality. A value of the
Leggett-Garg function K3 above unity is thus a signature
of nonclassical behavior. For Q = σx and equally spaced
measurements with separation τ/2, we find

K3(τ ) = −C(τ ) + 2C(τ/2), (9)

where C(τ ) is the quantum correlation function (3). Equa-
tion (9) is shown in Fig. 1 for the case of an isolated two-level
system (γ = 0). We observe that the function K3 takes on val-
ues that are larger than one (shaded area), revealing quantum
properties. However, owing to the oscillatory nature of K3, we
also note values that are smaller than one, even though the dy-
namics of the system is coherent in the absence of the thermal
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FIG. 1. Leggett-Garg functions K+(τ ) (red) and K3(τ ) = K−(τ )
(black) Eqs. (9)–(11) as a function of the time τ for an isolated
two-level system (γ = 0). The blue shaded area corresponds to the
classically forbidden regime indicated by a violation of the Leggett-
Garg inequalities (9)–(11). The frequency is set to ω = 1 as in the
other figures.

reservoir. The dynamics of the system may thus be quantum,
even though the Leggett-Garg inequality is not violated.

The above-mentioned problem can here be solved by
considering Leggett-Garg-type inequalities introduced in
Ref. [62]. Based on the classical assumption of macroscopic
realism and the condition of stationarity, the following inequal-
ities hold for Markovian systems:

K+(τ ) = −C(τ ) − 2C(τ/2) � 1 (10)

K−(τ ) = −C(τ ) + 2C(τ/2) � 1. (11)

These inequalities are violated by unitary quantum dynamics;
note that K−(τ ) = K3(τ ) [63]. As seen in Fig. 1, the two
inequalities for K+ and K− are complementary: One being
violated when the other one is not and vice versa. The
addition of a second Leggett-Garg function therefore allows
a complete detection of the nonclassical properties of the
two-level system for γ = 0. An experimental violation of

FIG. 2. Leggett-Garg functions K+(τ ) and K−(τ ) Eqs. (10)
and (11) as a function of the time τ for a damped two-level system
for two values of the damping coefficient γ . Above a critical value of
the time τ , violations of the Leggett-Garg inequalities (10) and (11)
are not possible, and the dynamics will be classical.
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FIG. 3. Quantum times τ±
q (red dotted and black dashed lines)

Eq. (12) defined as the maximum time τ for which a violation of the
Leggett-Garg inequalities (10) and (11) is possible as a function of the
temperature T of the thermal reservoir. Both quantum times τ±

q are
bounded from above by the decoherence half-life τc (blue dot-dashed
line) Eq. (7). Parameters are here ω = 20 and γ0 = 0.01.

the two inequalities (10) and (11) has been described in
Refs. [38,39,45].

Figure 2 displays the Leggett-Garg functions K+(τ ) and
K−(τ ) for increasing values of the coupling constant γ . The
interaction with the thermal reservoir leads to a damping
of the oscillations of the two functions. After a certain
maximal measurement spacing, no further violations of the
Leggett-Garg inequalities (10) and (11) will be observed, and
the dynamics of the two-level system will be classical. We
accordingly introduce a quantum time τ±

q , defined as the
largest measurement time τ , between the first and the last
measurements for which a violation of the inequalities (10)
and (11) may occur

τ±
q = max{τ |K±(τ ) � 1}. (12)

The times τ±
q characterize the quantum-to-classical transition

of the two-level system as quantum features are only possible
for times smaller than τ±

q .
Figure 3 shows the numerically determined quantum times

τ±
q as a function of the temperature T of the thermal reservoir.

As expected the quantum times decrease with increasing
temperature, indicating that nonclassical properties (shaded
area) are destroyed faster when the system is coupled to
a hot environment. We remark that the times τ±

q are step
functions (owing to the oscillatory nature of the Leggett-Garg
functions K+ and K−) and that the decay with temperature
of the height of the steps is precisely given by the coherence
half-life τc = 2 ln 2/γ of the coherence monotone Cl1 Eq. (7).
We may hence conclude that violations of the Leggett-Garg
inequalities (10) and (11) occur until the coherence induced
by a first measurement has decayed to half its initial value at
the time of a subsequent measurement.

V. QUANTUM WITNESS

We finally analyze the quantum properties of the damped
two-level system by employing the quantum witness which has
been introduced in two slightly different ways in Refs. [50,51].
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Following Ref. [50], we consider a d-level system and denote
by pn(t0) its probability to be at t = t0 in the classical state
n (1 � n � d). The probability to find the system in state m

at time t is [50]

p̄m(t) =
d∑

n=1

	mn(t,t0)pn(t0), (13)

where the propagator 	mn(t,t0) = p(m,t |n,t0) gives the prob-
ability of a transition from state n to state m in time t − t0 (the
bar emphasizes that state n is classical). The quantum witness
is then defined as [50]

Wq =
∣∣∣∣∣pm(t) −

d∑
n=1

	mn(t,t0)pn(t0)

∣∣∣∣∣. (14)

A nonzero value of the quantum witness Wq > 0 reveals the
nonclassicality of the initial state. Compared to the Leggett-
Garg inequality (8), the condition of noninvasive measurability
is here replaced by the requirement to perform an ideal state
preparation of each state n and m.

The same expression may be obtained directly from the
classical no-signaling in time condition [51]. Consider two
observables A and B, respectively, measured at time t = t0
and at time t > 0. The measurement outcome n of A is
obtained with probability pn(t0), whereas the measurement
outcome m of B is obtained with probability p′

m(t). For a
joint measurement of the two observables, the probability of
obtaining m in the second measurement is given by

p′
m(t) =

d∑
n=1

p(m,t |n,t0)pn(t0), (15)

with the conditional probability p(m,t |n,t0). In the absence of
the first measurement on A, the probability of outcome m of
B is denoted by pm(t). According to the classical no-signaling
in time assumption, the measurement of A should have no
influence on the statistical outcome of the later measurement
of B and p′

m(t) = pm(t). The quantum witness then is defined
as the difference Wq = |pm(t) − p′

m(t)|, which is identical to
Eq. (14).

Quantum witnessWq
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FIG. 4. Quantum witness Wq (orange solid line) Eq. (14) as a
function of the time τ for an isolated two-level system (γ = 0).
The quantum witness Wq is bounded from above by the coherence
monotone Cl1 (τ )/2 (purple dot-dashed line) Eq. (7).
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FIG. 5. Quantum witness Wq (orange solid line) Eq. (14) as a
function of the time τ for a damped two-level system (γ = 0.04).
The quantum witness Wq is bounded from above by the coherence
monotone Cl1 (τ )/2 (purple dot-dashed line) Eq. (7).

The quantum witness (14) may be evaluated for the
dissipative two-level system by using the solution (2) of
the master equation (1). The system is prepared initially in
the |+〉 state at t = 0. At time t = τ/2, a first nonselective
measurement in the σx basis is performed or not, whereas
at time t = τ the projector 
+ = |+〉〈+| is measured. By
explicitly computing the propagator 	mn(τ,τ/2), we find (see
Appendix B)

Wq(τ ) = 1
2e−γ τ/2 sin2(ωτ/2). (16)

In the case of unitary dynamics (γ = 0), the quantum wit-
ness (16) reaches its maximum value of Wmax

q = 1 − 1/d =
1/2 at times ωτ = nπ with n ∈ N [64]. We note that the maxi-
mum value ofWmax

q is equal to Cl1 (τ )/2 (see Fig. 4). Moreover,
at times ωτ = nπ , the two-level system is in a superposition
of eigenstates of σy and is therefore maximally disturbed
by a measurement of σx (see Appendix C). For nonunitary
dynamics (γ �= 0), the maxima of the quantum witness decay
exponentially in time with a characteristic time again equal
to the coherence half-life τc = 2 ln 2/γ of the coherence
monotone Cl1 Eq. (7). We further observe that Wq(τ ) �
C�1 (τ )/2 and that the latter upper bound corresponds exactly
to the envelop of the oscillatory quantum witness (see Fig. 5).

We finally remark that the quantum witness is here directly
related to the expectation value of the σy operator,

Wq(τ ) = 1
2 〈σy(τ/2)〉2. (17)

This is an interesting result that may simplify the experimental
detection of the nonclassicality of a damped two-level system:
Instead of two measurements in the σx basis required to
realize the quantum witness, single measurements of σy after
a suitable state preparation along σx should be sufficient.

VI. SUMMARY

We have presented a comprehensive examination of the
quantum signatures of a damped two-level system. We have
derived explicit expressions for the l1 norm of coherence Cl1 ,
the Leggett-Garg functions K+ and K−, and the quantum
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witness Wq based on the no-signaling in time condition.
We have shown that all three quantum indicators allow for
identifying a clear boundary between quantum and classical
behaviors, defined by a unique characteristic time given by
the coherence half-life τc. This clarifies in a quantitative
manner how violations of the Leggett-Garg inequalities and
nonzero values of the quantum witness are linked to the
existence of coherence in the system. There exists, however,
a crucial qualitative difference among the three quantifiers
of nonclassicality. The coherence half-life characterizes the
exponential temporal decay of both the l1 norm of coherence
and the quantum witness; it thus corresponds to a soft border
between quantum and classical properties. By contrast, the
coherence half-life defines a sharp transition for the Leggett-
Garg inequalities beyond which quantum features abruptly
disappear, akin to so-called sudden-death behaviors [65]. We
finally mention that each of the three tests of quantumness faces
different experimental challenges: full state tomography for
the l1 norm of coherence, the noninvasive measurement of two-
time correlation functions for the Leggett-Garg inequalities,
and ideal state preparation for the quantum witness. The
noted direct connection (17) of the quantum witness to the
expectation value of the σy Pauli operator may simplify such
an experimental test.
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APPENDIX A: DERIVATION OF
THE CORRELATION FUNCTION

In this appendix, we compute the two-point correlation
function C(τ ) Eq. (3). According to the quantum regression
theorem, the equation of motion for the two-time correlation
function is the same as that for the corresponding one-time
function in the limit of weak coupling [57,61]. We thus have
in general for operators O and A,

d

dτ
〈Ô(t) 
A(t + τ )〉 = L〈Ô(t) 
A(t + τ )〉. (A1)

Considering only the upper left submatrix of the superoperator
L Eq. (2), we find

d

dτ

C =

(− γ

2 −ω

ω − γ

2

)

C(τ ), (A2)

where the correlation vector 
C(τ ) is defined as


C(τ ) =
(〈σx(t)σx(t + τ )〉

〈σx(t)σy(t + τ )〉
)

. (A3)

The solution to Eq. (A2) is given by


C(τ ) =
(

e−(γ τ/2) cos(ωτ ) −e−(γ t/2) sin(ωτ )

e−(γ τ/2) sin(ωτ ) e−(γ t/2) cos(ωτ )

)

C(0), (A4)

with the initial condition,


C(0) =
(〈σxσx〉(t)

〈σxσy〉(t)
)

=
(

1

i〈σz〉(t)
)

. (A5)

The last equality is a result of the algebraic properties of the
Pauli operators. The time-symmetrized correlation function
C(τ ) = 〈{σx(t),σx(t + τ )}〉/2 is equal to the real part of the
above correlation function and reads

C(τ ) = exp

(
−γ

2
τ

)
cos(ωτ ). (A6)

APPENDIX B: CALCULATION OF
THE QUANTUM WITNESS

In this appendix, we evaluate the quantum witness Wq

Eq. (16). In order to first compute the propagator 	, it is
convenient to express the Liouville superoperator L in a basis
consisting of the projectors 
± onto the σx eigenstates |±〉 and
the Pauli operators σx and σy (instead of the basis σx, σy, σz,
and I used previously). In that basis, the master equation (1)
takes the form

d

dt

⎛
⎜⎜⎜⎝


+

−
σy

σz

⎞
⎟⎟⎟⎠ = L

⎛
⎜⎜⎜⎝


+

−
σy

σz

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

− γ

4
γ

4 −ω
2 0

γ

4 − γ

4
ω
2 0

ω −ω − γ

2 0

−γ0 −γ0 0 −γ

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝


+

−
σy

σz

⎞
⎟⎟⎟⎠.

(B1)

The formal solution of Eq. (B1) is

eLt =

⎛
⎜⎜⎜⎜⎝

1
2 [1 + e−(γ t/2) cos(ωt)] 1

2 [1 − e−(γ t/2) cos(ωt)] − 1
2e−(γ t/2) sin(ωt) 0

1
2 [1 − e−(γ t/2) cos(ωt)] 1

2 [1 + e−(γ t/2) cos(ωt)] 1
2e−(γ t/2) sin(ωt) 0

e−(γ t/2) sin(ωt) −e−(γ t/2) sin(ωt) e−(γ t/2) cos(ωt) 0
(−1+e−γ t )γ0

γ

(−1+e−γ t )γ0

γ
0 e−γ t

⎞
⎟⎟⎟⎟⎠. (B2)

Assuming that the system is initially at t = 0 in state |+〉, the
time evolution of the 
+ operator follows as:


+(t) = 1
2 [1 + e−(γ t/2) cos(ωt)]. (B3)

The (quantum) probability p+(τ ) is then simply the expecta-
tion 〈
+(τ )〉. On the other hand, the propagator 	mn(τ,τ/2)
with (m,n) = (+,−) is described by the upper left 2 × 2 matrix

of the full propagator Eq. (B2),

	

(
τ,

τ

2

)

= 1

2

(
1 + e−(γ τ/4) cos

(
ωτ

2

)
1 − e−(γ τ/4) cos

(
ωτ

2

)
1 − e−(γ τ/4) cos

(
ωτ

2

)
1 + e−(γ τ/4) cos

(
ωτ

2

)
)

.

(B4)
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The (classical) probabilities to find the two-level system in
states |±〉 is at t = τ/2 are further given by(

p′
+

p′
−

)(
τ

2

)
= 	

(
τ

2
,0

)(
p′

+
p′

−

)
(0). (B5)

Combining these two expressions, the classical probability to
find the system in state |+〉 at t = τ is

p′
+(τ ) = 1

2

[
1 + e−(γ t/2) cos2

(
ωt

2

)]
. (B6)

Equations (B3) and (B6) finally lead to the witness,

Wq = |〈
+(τ )〉 − p′
+(τ )| = 1

2
e(−γ /2)τ sin2

(
ω

2
τ

)
. (B7)

APPENDIX C: MAXIMAL MEASUREMENT
DISTURBANCE

For an isolated two-level system (γ = 0), the quantum
witness Wq Eq. (16) reaches it maximal value when ωτ = nπ

with n ∈ N [64]. This condition corresponds to a Larmor
precession of the system from the initial σx eigenstate to (a
mixture of) eigenstates of σy prior to the first measurement.
It is intuitively clear that measuring σx while the system is
in a σy eigenstate will lead to a strong disturbance. We will
here show that the disturbance is maximal by evaluating the
Hilbert-Schmidt norm of the commutator of these observables.
We consider two normed operators A,B of a two-level system,

A = 1√
2

(
α0I +

3∑
i=1

αiσi

)
, B = 1√

2

⎛
⎝β0I +

3∑
j=1

βjσj

⎞
⎠.

(C1)

The Hilbert-Schmidt norm ‖A‖2
2 is then simply [3]

‖A‖2
2 = Tr(A†A) =

3∑
i=0

|αi |2. (C2)

On the other hand, the commutator of A,B reads

[A,B] =
3∑

i,j=1

αiβj [σi,σj ], (C3)

with [σi,σj ] = ∑
k 2iεijkσk , where εijk is the Levi-Civita

symbol. We have here used the bilinearity of the commu-
tator. By further introducing a new set of coefficients λk =
2i

∑3
i,j=1 αiβj εijk , we may write Eq. (C3) as

[A,B] =
3∑

k=1

λkσk. (C4)

K−( /2)−1 K+( /2)−1 Wq( )

0 2 4 6 8 10 12
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FIG. 6. Comparison among the quantum witness Wq (orange
solid line) Eq. (14), the Leggett-Garg functions K+ (red dotted line),
and K− (black dashed line) Eqs. (10) and (11) for an isolated two-level
system (γ = 0). Maximal measurement disturbance coincides with
maxima of the witness and the quantum to classical boundary K± = 1
of the Leggett-Garg functions.

The Hilbert-Schmidt norm of the commutator follows as

‖[A,B]‖2
2 =

3∑
k=1

|λk|2. (C5)

This expression is proportional to the squared modulus of the
cross product of A,B if we interpret the operators as vectors
with components Ai = αi, Bi = βi . For fixed norms of the
operators A,B, the maximum value is obtained by choosing
orthogonal operators, corresponding to a vanishing Hilbert-
Schmidt product 〈A,B〉 = Tr(A†B) = 0. For the normed oper-
ators σx/

√
2 and σy/

√
2, we find 〈σx,σy〉/2 = Tr(σxσy)/2 = 0

and ‖[σx/
√

2,σy/
√

2]‖2
2 = 2. The operators σx and σy are thus

maximally incompatible.
We additionally observe that the maxima of the witness

correspond to Leggett-Garg functions K±(τ ) = 1, that is, to the
quantum to classical boundary (see Fig. 6). The Leggett-Garg
inequality indeed quantifies measurement-induced correla-
tions, whereas the quantum witness quantifies measurement
disturbance. Measurement disturbability is a prerequisite
to induce correlations by a measurement. However, the
maximally disturbing measurement, which corresponds to
measuring σx in a σy eigenstate, does not lead to correlations
between measurements. Any such measurement will yield
either eigenvalue of σx with equally probability, independent
of the state preparation or initial measurement. This point
thus corresponds to the quantum to classical boundary of the
Leggett-Garg functions. We finally note that the Leggett-Garg
inequality and the quantum witness here identify the same
nonclassical domain.
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