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Stern-Gerlach-like approach to electron orbital angular momentum measurement
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Many methods now exist to prepare free electrons into orbital-angular-momentum states, and the predicted
applications of these electron states as probes of materials and scattering processes are numerous. The
development of electron orbital-angular-momentum measurement techniques has lagged behind. We show
that coupling between electron orbital angular momentum and a spatially varying magnetic field produces
an angular-momentum-dependent focusing effect. We propose a design for an orbital-angular-momentum
measurement device built on this principle. As the method of measurement is noninterferometric, the device
works equally well for mixed, superposed, and pure final orbital-angular-momentum states. The energy and
orbital-angular-momentum distributions of inelastically scattered electrons may be simultaneously measurable
with this technique.
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(a) Introduction. How does one measure the orbital angular
momentum (OAM) of the quantum state of an unbound,
massive, charged particle after interaction with another particle
or a material? Free electrons with OAM, also called electron
vortices, are now routinely prepared in electron microscopes
[1–11] and control of this new degree of freedom is widely
recognized as a useful tool in the both the study of materials and
basic physical processes [2,12–14]. A variety of impressive
techniques now exist to prepare an electron in an OAM
state. Full control of free electron orbital angular momentum,
though, demands good measurement tools.

One of the most promising potential applications of electron
OAM—measurement of magnetization at atomic resolution
via helical dichroism spectroscopy—serves as an excellent
example of the importance of both preparation and postselec-
tion in applications of electron OAM. Magnetic dichroism has,
surprisingly, not yet been realized with electrons prepared in
OAM states. This application is analogous to x-ray magnetic
circular dichroism (XMCD), a widely used technique for
magnetization measurement based on the ratios of core-
transition peaks in left- and right-circularly polarized x-ray
absorption spectra. There exists a crucial difference, though,
between circular dichroism, which involves controlled transfer
of photon spin angular momentum, and helical dichroism,
which involves controlled transfer of electron OAM [14].
Photons are massless and can be absorbed by materials, so
the final state of a photon in a circular dichroism measurement
is just the vacuum state. Electrons are massive, and carry away
nonzero energy and angular momentum from an interaction.
If we seek to gain the most information about a material in an
electron spectroscopy experiment, we ought to measure both
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the final electron energy and OAM [15]. Helical dichroism
can be made far more efficient with careful postselection of
electron OAM states. This insight, in fact, applies to many
applications of electron OAM.

There are a wide range of applications of good OAM post-
selection. Theoretical predictions and simulation suggest that
electron impact ionization [16,17], photoionization [18,19],
electron-atom scattering [20], material investigation with
angle-resolved photoelectron spectroscopy [21] and electron
energy loss spectroscopy [22], production of spin-polarized
electrons [23], and even high-energy elementary particle
collisions [24] can produce nontrivial final OAM states and
could therefore benefit from OAM postselection.

Several techniques have so far been developed for electron
OAM measurement; they work well as quality-assurance
tests for new OAM state preparation techniques. All have
limitations that prohibit their application to postselection of
a single final state of an inelastic interaction. Indeed, two
recent theoretical proposals that demand perfect postselection
of OAM final states for application of electron OAM to the
study of materials recognized that existing techniques are not
sufficient [13,25]. Self-interferometric techniques [5,26–28]
depend on analysis of the spatial distribution of an electron
after a transformation. In general, inelastic interaction of
an electron and a material produces mixed electron final
states thanks to entanglement with the material. Mixed and
superposed OAM states are extremely difficult to quanti-
tatively measure with self-interferometric techniques [29].
Furthermore, energy-filtered TEM is necessary to isolate and
analyze the spatial distribution of the states scattered to a given
energy. Holographic phase-flattening [30,31] can partially
spatially isolate a single component of a mix of inelastically
scattered final OAM states, but is currently fairly inefficient.

We propose a technique for OAM postselection based on
coupling of OAM to a spatially varying magnetic field. The
effect is analogous to the coupling between spin and a spatially
varying magnetic field that Stern and Gerlach employed in
their demonstration of the quantization of spin [32]. In the
Stern-Gerlach device, spins aligned (antialigned) with the
magnetic field are pulled by the Zeeman interaction toward
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the side of the device with higher (lower) field strength.
Unlike the Stern-Gerlach device for measurement of spin, we
consider a cylindrically symmetric design for measurement
of OAM. Cylindrical symmetry guarantees conserve electron
OAM through the measurement device [33] and control the
Lorentz force [34,35]. Fortunately, cylindrically symmetric,
spatially varying magnetic fields find great use as electron
round lenses [36]. We show that the coupling of OAM to
the field of a magnetic round lens produces a shift in the
focal length of a magnetic round lens. In this proposed device,
electrons with orbital dipole moments aligned (antialigned)
with the magnetic field are pulled inward toward (pushed
outward away from) the strong magnetic field along the optic
axis.

(b) OAM-dependent focusing effect. An ideal measurement
device introduces a unitary interaction that entangles a state
of interest with a measurement apparatus state that lies in a
separate Hilbert space [37]. In the case of electron orbital-
angular-momentum measurement, we consider entangling
orbital-angular-momentum states (the states of interest) with
radial states (the measurement apparatus state). In other
words, we seek to encode information about orbital angular
momentum in the radial wave function of the electron and then
measure the position of the electron. The simplest realization of
such a measurement device is an orbital-angular-momentum-
dependent lensing effect.

For a state propagating along the z axis, the transfer function
of a lens with focal length f on an electron with wavelength
λ is

Ulens = e−iπρ2/λf , (1)

where ρ is the distance from the z axis in cylindrical
coordinates (z,ρ,φ).

If, instead, we want an OAM-dependent focal length, we
will want to construct a transfer function

U = exp

(
−i

Lzρ
2

h̄b2

)
. (2)

This transfer function produces a quantum nondemolition
measurement of orbital angular momentum: OAM is an
eigenstate of both this transfer function and the free-space
Hamiltonian, and OAM is encoded in the radial distribution of
the electron wave function. The effect of this transfer function
on an OAM state is visualized in Fig. 1.

For quick insights into the potentials necessary to produce
an OAM-dependent lensing effect, we notice that, in the
short-time limit, the time evolution operator applies a phase
modulation that is proportional to the Hamiltonian. (See Sec.
I of the Supplemental Material [38] for an explanation of a
magnetic round lens in these terms.) So, we need to find
a potential that will produce an Lzρ

2 term in the electron
Hamiltonian.

Counting powers of momentum and position, we see that
only the A · p term can produce this term. In particular, we can
see that we will produce a transfer function like (2) with the
vector potential

A =
(

B1(z)
ρ

2
− B3(z)

ρ3

8b2
+ . . . O(ρ5)

)
φ̂, (3)

FIG. 1. Illustration of the effect of the orbital-angular-
momentum-dependent lensing effect. Propagation of a wave with, in
this case, ±3h̄ OAM, and therefore an azimuthal phase (first column),
in a Hamiltonian with the OAM-dependent lensing term in Eq. (4)
produces a parabolic phase (second column) in proportion to the
OAM. The result is a spiraling phase with a winding magnitude and
direction that depends on OAM (third column).

where B1 and B3 describe the longitudinal profile of the field,
i.e., Bz = B1(z) − B3(z) ρ2

2b2 . This vector potential corresponds
to a magnetic field that points along the ±ẑ direction at the
origin and curves outward away from the origin over a length
scale b. We will call b the dispersion length. The corresponding
Hamiltonian for an electron in this vector potential includes
two lensing terms,

Hlens = 1

8me

(
e2B2

1 − eB3Lz

b2

)
ρ2, (4)

where e = |e| is the magnitude of the electron charge. The
latter term produces an OAM dependence in the focal length
of the lensing effect. Figure 2 illustrates this lensing effect with
multislice-simulated [39] propagation of superposed OAM
states in this Hamiltonian [40] and ray trajectories calculated
by numerical integration of the radial equation of motion.
Filled intervals represent a range of classical trajectories that
correspond to a single wave function.

The intuitive explanation in terms of the Zeeman potential
UZ = −μ · B shows us that a magnetic dipole μ aligned with
a magnetic field B is pulled toward regions of higher field
strength by a force Fρ = − ∂UZ

∂ρ
. An orbital magnetic dipole

μ = − e
2me

L is therefore pulled inward in a field when the
longitudinal strength Bz(z,ρ) decreases away from the optic
axis (i.e., B3 is nonzero) and the orbital dipole moment is
aligned with the field. Although we treat only spin-unpolarized
electrons here, it may be interesting in the future to examine
the analogous effect on spin-polarized electrons. We expect
that the OAM-dependent lensing effect, a spin-dependent
lensing effect, and spin-to-orbital conversion via spin preces-
sion [23,41] should all be independently observable in the
nonrelativistic limit.

The vector potential (3) above is an approximation to
the vector potential of any cylindrically symmetric current
distribution with azimuthal current flow. The dispersion length
is related to the radial extent of the current distribution. In the
case of a single loop of wire of radius R, b is just R and B3 is
on the same order as B0, the magnetic field at the center of the
loop. So, in fact, there exists a small OAM dependence in the
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FIG. 2. Top: Multislice-simulated intensities of a superposition of
m = ±8 Laguerre-Gaussian orbital-angular-momentum states with
E = 80 keV in a Glaser-model, i.e., Eq. (50) in the Supplemental
Material [38], field with maximum field strength B0 = 2 T, longitu-
dinal extent a = 1 mm, and an OAM dispersion length b = 79 nm,
sampled at (a) −2.0 mm, (b) −1.5 mm, (c) −1.0 mm, (d) −0.5 mm,
(e) 0.0 mm, and (f) 0.5 mm from the center of the lens. Bottom: Ray
trajectories for m = −8, m = 0, and m = +8 modes calculated by
numerical integration of the radial equation of motion corresponding
to the full Hamiltonian in Eq. (16) in the Supplemental Material [38]
with a Glaser-model field.

focal length of any standard magnetic round lens. The key to
designing an orbital-angular-momentum measurement device
is to isolate or maximize the OAM dependence.

To do anything with an OAM-dependent lensing effect,
we need to know the focal length of the lens. The focal
length can be calculated analytically with two reasonable
approximations: the paraxial approximation and the thin lens
approximation. The thin lens-paraxial Schrödinger equation
[42] for an electron in our model vector potential (3) is a
separable first-order differential equation,

2ikz

∂χ

∂z
= e

h̄

(
B1(z) − B3(z)

ρ2

4b2

)
mχ + e2B2

1 (z)

4h̄2 ρ2χ (5)

for a transverse wave function χ (ρ,φ) with Lzχ = mh̄χ . kz is
the longitudinal wave vector of the full wave function. Upon

integration, we see that

Ulens = exp

(
−i

e2

8h̄2kz

∫ ∞

−∞
dz

[
B2

1 (z) − mh̄

eb2
B3(z)

]
ρ2

)
.

(6)
Comparing this with (1), we see that an initially collimated
eigenstate of Lz with quantum number m that passes through
the vector potential (3) will be focused at a distance fm from
the center of the potential, where

1

fm

= e2

8meE

∫ ∞

−∞
B2

1 (z) − mh̄

eb2
B3(z)dz, (7)

where E is the kinetic energy of the electron.
We can more simply rewrite this as

fm = f0

1 − �m
, (8)

where f0 is the focal length of the m = 0 eigenstate and
the OAM dispersion coefficient � = β0h̄

eB0b2 is a dimensionless
constant that depends only on the peak field strength B0, the
dispersion length b, fundamental constants, and a dimension-
less O(1) number β0 that depends on the shape of the current
distribution (Fig. 3). We calculate this focal length for several
current distributions in Sec. III of the Supplemental Material
[38]. For small OAM dispersion �, therefore, focal length is
approximately linear with OAM.

fm ≈ f0(1 + �m). (9)

(c) Physical realization of device. When the current source
for the vector potential in (3) is a superconducting ring, there
is an easy physical interpretation of the OAM dispersion
coefficient �. A superconducting ring of radius b encloses
an area πb2 and has an OAM dispersion coefficient inversely
proportional to the number n of flux quanta in the ring, as
n ∝ B0πb2


0
and the flux quantum 
0 = h

2e
. We can therefore

write the focal length of a lens made of a superconducting ring
as

fm ≈ f0

(
1 + β1

m

n

)
, (10)

where β1 is another O(1) number.

FIG. 3. Ray diagrams for a lens (blue disk) with a strongly OAM-
dependent focal length fm as given in (9). Red, dense dots: rays for
m = +1 electrons; green dashes: rays for m = 0 electrons; blue, loose
dots: rays for m = −1 electrons.
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FIG. 4. Schematic ray diagrams for a dichroism experiment based
on the OAM-dependent lensing effect. Interaction with a specimen
(brown) produces a mix of outgoing m = +1 (red, dense dots), m = 0
(green dashes), and m = −1 (blue, loose dots) OAM eigenstates.
Left: An aperture (black) preferentially admits the m = +1 OAM
eigenstate. The m = +1 state has a longer focal length in the positive-
polarity lens (blue disk). Right: The aperture preferentially admits the
m = −1 OAM state when the lens polarity is flipped.

If a lens can be constructed with a large OAM dispersion
coefficient � ∼ 1, the simplest application of this lensing
effect to OAM measurement needs only a small aperture to
select out one focused mode in the appropriate plane, as shown
in Fig. 4. In fact, preferential admission of individual modes
into an aperture might be used to perform a simple helical
dichroism experiment without incident OAM. One can see
that the focal length (7) has an OAM-independent part that
depends just on the magnitude of the lensing magnetic field and
an OAM-dependent part that depends on both the magnitude
and direction of the magnetic field. In other words, one can
control OAM dispersion via the direction of the lensing field.
With an aperture set to preferentially admit the m = +1 mode,
one can flip the polarity of the lens and therefore flip the sign of
OAM dispersion, and consequentially admit the m = −1 mode
without physically moving anything. This experiment likely
will require an exceptionally stable microscope and careful
alignment to ensure that no other beam properties change upon
a lens polarity flip.

Several physical sources could produce a magnetic field
with a significant OAM dispersion. The most obvious, but
perhaps the most difficult to build, is a nanoscale solenoid. A
solenoid with a radius on the order of 100 nm and a peak
magnetic field on the order of 1 Tesla produces an OAM
dispersion coefficient on the order of 0.1. The bound current
density on the surface of a hole in an out-of-plane-polarized
ferromagnetic thin film looks identical to the current density
of a solenoid and could produce the same dispersion; such
a hole would be far more easily nanofabricated and has the
advantage over a loop of wire that the normal lensing effect
will be partially canceled in the hole. A pulsed laser with a
radially polarized magnetic field has the appropriate symmetry.
The laser used in a recent experiment to prepare well-defined

electron momentum states [43], with a peak magnetic field of
0.334 T and a spot size of 50 μm, would produce an OAM
dispersion coefficient on the order of 10−6. This might be
improved by several orders of magnitude with plasmonic field
enhancement.

It is also likely that a more detailed analysis of nontrivial
current distributions and electron propagation through them,
including thick lens effects, could reveal other ways to
maximize B3(z)/b2. In particular, for slower electrons, where
adiabatic invariance of the magnetic moment can be assumed
[44], it may be possible to analytically derive OAM-dependent
effects in the propagation of electrons through a magnetic
bottle or magnetic mirror.

A completely orthogonal approach to the realization of an
OAM measurement device of this kind might involve stacking
many lenses with a small OAM dispersion coefficient in a
manner that magnifies the OAM-dependent effect. We discuss
two possible designs for a stacked lens OAM measurement de-
vice below: an afocal system with spacing 2f0 between lenses
with opposite OAM dispersion, which produces exponentially
increasing OAM-dependent magnification with number of
lenses, as shown in Fig. 5; and a system with variable spacing
between the lenses. Both designs produce strongly OAM-
dependent magnification but only weakly OAM-dependent
image plane locations.

(d) Device design 1: Afocal system, or fixed separation
between lenses. If the OAM dispersion coefficient � = 2h̄

eB0b2

is small, then the focal length is approximately

fm = f0(1 + �m). (11)

If we set two lenses back-to-back with a distance 2f0 in
between them with opposite OAM dispersion in each (�1 =
−|�|; �2 = |�|) we produce an afocal system with

Mm = −(1 + 2�m). (12)

Since an afocal system produces no convergence or
divergence—the effective focal length is infinite [45]—any
combination of afocal systems is also an afocal system; this
afocal system is thus easy to stack. In particular, for a stack
of N such afocal systems, in the limit of large N , the total

FIG. 5. Ray trajectories of m = −100 (blue), m = 0 (green),
and m = +100 (red) OAM modes propagating in a set of ten
stacked afocal systems (13) of Glaser-model lenses (Eq. (50) in the
Supplemental Material [38]) with longitudinal extent a = 100 μm,
OAM dispersion length b = 1 μm, and maximum field strength
B0 = 2 T. The magnification of OAM goes exponentially with the
number of lens sets.
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FIG. 6. Ray diagram for a combination of two lenses (blue disks)
with variable spacing in between and opposite OAM dispersion which
combine to produce a strongly OAM-dependent magnification, as
given by (14) and a weakly OAM-dependent image position.

magnification approaches

MN
m = (−1)N exp (2�mN). (13)

This set of N afocal systems has one clear advantage: even with
arbitrarily small OAM dispersion �, we can easily distinguish
between any two OAM orders with a sufficiently long
stack N .

A 20-element (N = 20) set of identical afocal systems with
a = 10 μm, b = 100 nm, B0 = 2 T, and a resultant f0 ≈
60 mm has an OAM dispersion coefficient |�| = 0.066 and
a produces a magnification of an m = +1, 80 keV electron
beam of |M20

+1| = 3.73; on the other hand, an m = −1 beam
sees a magnification of |M20

−1| = 0.27. A superposition of
two otherwise-identical m = +1 and m = −1 modes passed
through this device leave with a 14× difference in magnifica-
tion. The total length of this device is on the order of a couple
of meters.

(e) Device design 2: Variable spacing between lenses. If we
place two lenses with opposite OAM dispersion back-to-back
(Fig. 6) with a distance 2 s+1

s
f0 between them, and place an

object at a distance (s + 1)f0 in front of the first lens, we will
see a focused image at a distance (s + 1)f0 behind the second
lens with a magnification

Mm = 1

1 − 2(s + 1)�m
. (14)

The result is similar to that for an afocal system with two
major differences: the advantage of this system is that larger
magnification is produced by a larger spacing, rather than

more lenses; the disadvantage is that only one mode can be
fully separated from the rest at a time, as if 2(s + 1)�m ≈ 1
so as to maximize magnification of the m-OAM components
of the beam, then 2(s + 1)�(m + 1) cannot also be close to 1
unless m is very large.

(f) Conclusion. If the measurement device can produce a
sufficiently strong OAM-dependent magnification and the ini-
tial transverse spread of a state is small, the OAM distribution
is mapped onto magnification. The orbital-angular-momentum
spectrum can be quantitatively measured as the radial profile of
the probability density after the electron is passed through the
device. This OAM measurement is fully quantitative, parallel,
and effective for inelastically scattered states.

As the orbital-angular-momentum-dependent lensing effect
we study is a nondestructive measurement of OAM, it may
also be possible to employ it for preparation of a pure OAM
state. Pratical preparation of OAM states inevitably involves
small errors in the definition of the correct amplitude and
phase for a desired state. These small errors introduce extra
OAM states in superposition with the desired state [11]. The
combination of a single lens with a strong OAM-dependent
lensing effect with a small aperture placed at the focal point of
the desired OAM state is ideally suited to prepare pure OAM
states.

We have demonstrated a Stern-Gerlach-like effect for
measurement of electron orbital angular momentum. The
measurement technique is applicable to the mixed states
produced by inelastic scattering, which are otherwise difficult
to measure. We outlined several strategies for practical imple-
mentation of this measurement device. If the device can be
successfully built and integrated into electron spectrometers,
simultaneous measurement of electron energy and orbital-
angular-momentum distributions may be possible.
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[22] M. Schüler, J. Berakdar, and Y. Pavlyukh, Phys. Rev. A 92,
021403 (2015).

[23] E. Karimi, L. Marrucci, V. Grillo, and E. Santamato, Phys. Rev.
Lett. 108, 044801 (2012).

[24] I. P. Ivanov, Phys. Rev. D 85, 076001 (2012).
[25] J. Yuan, S. M. Lloyd, and M. Babiker, Phys. Rev. A 88, 031801

(2013).
[26] G. Guzzinati, L. Clark, A. Béché, and J. Verbeeck, Phys. Rev.
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