
RAPID COMMUNICATIONS

PHYSICAL REVIEW A 95, 021601(R) (2017)

Many-body localization due to random interactions
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The possibility of observing many-body localization of ultracold atoms in a one-dimensional optical lattice is
discussed for random interactions. In the noninteracting limit, such a system reduces to single-particle physics in
the absence of disorder, i.e., to extended states. In effect, the observed localization is inherently due to interactions
and is thus a genuine many-body effect. In the system studied, many-body localization manifests itself in a lack
of thermalization visible in temporal propagation of a specially prepared initial state, in transport properties, in
the logarithmic growth of entanglement entropy, and in statistical properties of energy levels.
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Almost 60 years ago Anderson [1] showed that disorder
has dramatic effects on properties of noninteracting particles.
For one-dimensional (1D) systems, even the smallest disorder
generically leads to exponential localization of eigenfunctions
killing any long-range transport. This is in striking contrast
with orderly periodic structures supporting Bloch waves as
eigenfunctions. Interestingly, the original idea of Anderson
was to consider the effect of disorder on interacting particles.
This more difficult problem has not been fully understood up
until now. Anderson localization is often described as the result
of quantum-mechanical interference of different multiple-
scattering paths. This interpretation sheds some light on the
interacting-particle problem. In this Rapid Communication,
we discuss the physics of ultracold atoms in a 1D optical lattice,
in conditions where decoherence is negligible on the time scale
of the (numerical) experiment. For weak interactions and small
disorder, an effective-mean-field description of the system is
possible, leading to the Gross-Pitaevskii equation. The latter,
however, is a nonlinear equation, for which no superposition
principle works; the concept of interference cannot be easily
applied [2]. Even for just two interacting particles it was shown
that the localization length rapidly grows with the strength of
the interactions [3]. This makes it extremely difficult to observe
Anderson localization in the presence of interactions [4–6].
This was the primary reason why the cold-atom observations
of Anderson localization were carried out in the noninteracting
regime [7,8].

A novel path in the investigation of localization was
initiated in the paper of Basko et al. [9] where, using a
perturbative approach, it was shown that there may exist a
transition to localized states for a sufficiently strong disorder.
In such a situation, the mean-field approach is not applicable
and the full many-body quantum theory has to be used. The
latter is linear and the superposition principle holds: The
picture of interfering paths is restored. There is, however,
another conceptual problem: in what sense one may speak
of localization. A possible answer is that one should no longer
consider the configuration space but rather think in terms of
localization in Hilbert space [10].
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Many-body localization (MBL) has recently become a
popular topic (a search in arXiv for “many-body localization”
in the title or abstract yields more than 150 papers in the past
12 months). Many-body localization is very often connected
with a lack of thermalization in the system. While the whole
isolated system evolves in a fully coherent way, one may ask
whether a small subsystem shows signs of thermalization,
i.e., whether the system evolves in such a way that memory
about the initial state is eventually lost [11]. Often a lack of
thermalization (in the sense of averages of observables) is
assumed as a very definition of MBL [10].

Some phenomenological understanding of MBL can be
obtained using an effective integrability approach [12,13] or
using renormalization-group approaches [14,15]. Most of the
treatments, however, are numerical, primarily related to spin-
1/2 chains, e.g., the Heisenberg model with a random magnetic
field [16] or the XX model (see, e.g., [17]). This is due to the
complexity of many-body problems: Spin-1/2 chains may be
efficiently treated numerically using time-dependent density-
matrix renormalization-group (tDMRG) methods [18]. Much
less often one can find simulations for cold-atomic systems
(see [19] and references therein).

An attempt to observe MBL in a 1D system has been re-
ported in [20], where a system of interacting fermions in an op-
tical lattice potential (effectively one dimensional) is studied.
The initial state is carefully prepared in such a way that a single
fermion occupies every second site, other sites being empty.
During the temporal evolution in the absence of disorder, the
occupations of different sites equalize on average: The system
thermalizes. The addition of a sufficiently strong quasirandom
disorder (adding a second lattice with a period incommensurate
with the primary lattice) allows one to observe a different
behavior: A partial asymmetry of occupations of odd and
even sites survives for intermediate times, pointing towards
a lack of thermalization. This is taken as a signature of MBL.
The study is supplemented with simulations using tDMRG
that reveal a logarithmic in time increase of the entropy of
entanglement during the course of evolution; this is another
possible signature of MBL [12,16,17,21]. However, the tran-
sition between localization and delocalization takes place at a
disorder strength very close to the threshold for single-particle
localization in the Aubry-André model [22] and additionally
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only weakly depends on the interaction strength. The MBL
observed thus has a predominantly single-particle character
and it is a perturbation of the single-particle physics [9].

The aim of this Rapid Communication is to show that
ultracold atoms allow us to study models with genuine nonper-
turbative MBL. One possible way is to consider a system that
does not show localization in the absence of interactions. This
rules out single-particle localization mechanisms. Consider
bosons or fermions in a regular optical lattice in the absence
of interactions. This is a perfectly regular system described by
Bloch waves as eigenstates. Now we turn on, in a controlled
way, interactions that randomly depend on position. Such a
situation may be realized close to a Feshbach resonance when
the scattering length strongly depends on the magnetic-field
value. If the latter fluctuates in space, a system with the
desired properties is created. Various phases of this model
were studied in [23]. In particular, it was shown that the
bosonic Mott insulator entirely disappears for sufficiently
large occupations in the system. While the ground state was
considered in [23], we analyze here the properties of excited
states of the system inspecting their localization properties.
We will study eigenvalue statistics for systems of small size
(allowing a partial comparison with [19,24,25]) as well as the
time propagation (using tDMRG methods) of appropriately
prepared initial states (as in [20]).

The Bose-Hubbard Hamiltonian describing a 1D system in
an optical lattice within the tight-binding approximation reads,
assuming random on-site interactions,

Ĥ = −J

L−1∑

i

(â†
i+1âi + H.c.) + 1

2

∑

i

Ui n̂i(n̂i − 1),

(1)
[âi ,â

†
j ] = δij , [âi ,âj ] = 0, n̂i = â

†
i âi ,

with the first term describing the tunneling while the second
term corresponds to interactions. Here, following [23], we
assume the interaction strength to depend on the site taking
the value Ui = Uxi , with xi being randomly and uniformly
distributed in [0,1]. We fix the energy (and time) scale by
setting J = 1.

Could this system reveal MBL? To check this, let us use an
experimental approach [20] and study the temporal dynamics
and possible thermalization of some specially prepared state at
fixed particle density N/L = 1.5. We prepare the system in a
density wave (DW) state with odd sites being singly and even
sites doubly occupied. We define the magnetization as M =
3(Ne − No)/(Ne + No), where Ne (No) corresponds to global
populations of even (odd) sites. The thermalization hypothesis
suggests that the magnetization, originally equal to unity,
would decay to zero in time (after disorder averaging). Yet the
numerical results obtained using a homemade implementation
of the tDMRG algorithm [18,26–28]) suggest otherwise: In
Fig. 1(a), at long times t , the magnetization M fluctuates about
a nonzero mean value that depends on U . Thus the system,
despite strong interactions, remembers the initial state, i.e.,
it does not thermalize. This shows that random interactions
partially inhibit transport between neighboring sites.

A characteristic feature predicted for the MBL is the
logarithmic in time growth of the entanglement entropy.
To be specific, consider S = −∑

λi ln λi , where λi are the

FIG. 1. Many-body localization for a 1D Bose-Hubbard model
with random interaction strength. An initial state with a density
wave profile is temporally propagated using a tDMRG algorithm.
(a) The magnetization M (initially unity) rapidly decays to a
nonzero quasistationary value, a clear-cut proof of the absence of
thermalization, i.e., of MBL. (b) The corresponding entropy of
entanglement S grows logarithmically with time t after the initial
transient. The magnetization increases with the disorder strength
U correlating with a slower increase of the entanglement entropy.
Results are averaged over ten disorder realizations, for system size
L = 60 and N = 90 bosons. The additional curve, labeled “U = 40
Spin model,” is for the spin model discussed in the text. This
simplified model exhibits Anderson localization and gives rise to
a magnetization comparable to the one of the full model at large
U (see Fig. 2), but the entanglement entropy saturates at long time,
emphasizing the difference between single-particle and many-body
localization.

Schmidt decomposition coefficients when tracing out a part
of the system (since we can arbitrarily split the 1D chain
into two parts such different splittings allow for an additional
averaging). Indeed, our results display such a logarithmic
growth of S as shown in Fig. 1(b).

Figure 2 shows the quasistationary long-time magnetization
M as a function of the disorder strength U . The nonzero mag-
netization, a characteristic feature of the lack of thermalization,
depends on the system size L and can be seen to occur already
for small U . With increasing L, the magnetization shifts to the
right, converging in the large L limit. Unfortunately, reliable
tDMRG calculations for small U cannot be performed for
sufficiently long times due to the growth of the entanglement.
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FIG. 2. Quasistationary magnetization M versus U for different
system sizes L indicated in the figure. Data are averaged over
time for long times t ∈ [10,40] to remove the oscillatory behavior
visible in Fig. 1(a). Data for small system sizes, obtained from
exact diagonalization, are averaged over several hundred realizations
of disorder. Results for L = 60 (L = 1000) are obtained using
the tDMRG algorithm and are averaged over 20 (4) realizations.
For readability, the error bars (one standard deviation) are shown
for a single U value, but are very similar for all U values. The
quasicoalescence of the L = 60 and L = 1000 results indicates the
absence of finite-size effects. The simplified spin model (dashed
curve), discussed in the text, slightly overestimates the magnetization,
but catches correctly the asymptotic behavior at large U . The two-site
model, with its analytic prediction M ≈ 1 − 8π/U (see the text),
reproduces quantitatively the results at large U . The black bar in the
range U ∈ [25,35] indicates the region where the transition to MBL
occurs; see the discussion in the text.

This indicates a lack of localization for small U . On the
localized side, the logarithmic in time growth of the entropy
is observed for U larger than ∼30 only. In the intermediate
range U ∈ [20,30] the numerical results tend to indicate a
nonzero magnetization at long time, accompanied by a rapid
powerlike growth of the entropy of entanglement, resembling
the observations of [29,30] for the XXZ model in the
delocalized phase. The lack of reliable numerical results for
long times and small U unfortunately prevented us from
determining whether the transition is a smooth crossover or a
phase transition in the thermodynamic limit; such information
would be a very important characteristic property of MBL.
The numerical range where the transition occurs is denoted by
the black bar in Fig. 2.

While the observed MBL arises solely due to random
interactions and seems to have a nonperturbative character, its
main properties can be understood from a simple microscopic
model. For large U , the energy region where the initial state
|1,2,1,2,1, . . .〉 exists is dominated by states having the same
number of single and double occupations in random order (and
additionally preserving the total number of atoms). Indeed,
moving from a 1,2 configuration to a 2,1 configuration costs
no energy on average, while moving to a 0,3 configuration
costs about U . We thus consider a simplified model, where
the occupation numbers of all sites are either 1 or 2 only. This
problem maps to a spin model (the XX Heisenberg model
for a spin-1/2 chain) in a random magnetic field [see the
Hamiltonian (1) in [17] or the Hamiltonian (2) with � = 0 in

[16]]. A Wigner-Jordan transformation maps the latter system
onto noninteracting fermions with random diagonal disorder
that exhibit Anderson localization. Restricting occupations
accordingly, we obtain in our tDMRG calculations a long-time
magnetization comparable to the one of the full model (see Fig.
2) as well as a rapid saturation of the entropy of entanglement
[see Fig. 1(b)].

For very large U , a simpler two-site model can be built.
On-site energies typically differ by much more than J ,
inhibiting transport. It is only when two neighboring sites
have an accidentally on-site energy difference of the order
of J that a significant transfer can take place. This happens
with probability proportional to J/U . Consider two states on
nearby sites having, respectively, occupations |2,1〉 and |1,2〉
and random interaction energies U1 and U2. Averaging over
the random disorder as well as over time oscillations, one
can compute the magnetization M ≈ 1 − 8πJ/U for large U ,
which reproduces well the numerical observations.

In view of these results, it is also interesting to analyze the
statistical properties of the energy spectrum. Indeed, in the de-
localized and ergodic phase, one expects the Gaussian orthog-
onal ensemble (GOE) of random-matrix theory to be relevant,
especially with linear repulsion between neighboring levels,
corresponding to complete delocalization in the Hilbert space.
In contrast, the MBL phase is expected to lead to the absence of
level repulsion and Poisson level statistics. A simple indicator
is the average ratio r̄ between the smallest and the largest
adjacent energy gaps: rn = min[δE

n ,δE
n−1]/max[δE

n ,δE
n−1], with

δE
n = En − En−1, and En is the ordered list of energy levels

[31]. In the ergodic (MBL) phase, one expects r̄ to be close to
the GOE value r̄GOE ≈ 0.5307 (r̄Poisson = 2 ln 2 − 1 ≈ 0.386)
[32].

The localized or ergodic dynamics depends on energy [33].
For example, we have checked that an initial state |0,3,0,3, . . .〉
with the same 1.5 particle density leads similarly to a decay
of the magnetization with time, but displays MBL for a
significantly smaller U value. The statistical properties of
the energy levels are also likely to depend on energy, so it
is important to specify the energy range. While [19,34] used
arbitrarily the central part of the spectra in their study of r̄ , we
choose the vicinity of the energy of our DW initial state. This
is also the region of significant overlaps between eigenstates
and the initial state. The results for different system sizes
are presented in Fig. 3, providing additional evidence for the
transition to MBL for sufficiently large U . Crossings of data
for numerically accessible system sizes do not allow us to
precisely pin down the transition or crossover point, which lies
probably around U ≈ 30, slightly larger than, but compatible
with, the magnetization data.

An intriguing possibility [29,30,35] is the possible exis-
tence of a delocalized but nonergodic phase below the critical
point. Although the numerical simulations are very difficult in
this region because of the rapid increase of the entanglement
entropy, the data shown in Fig. 2 for large system size tend
to show that there is a nonzero magnetization at long time in
the U ∈ [20,30] range, while the statistical properties in Fig. 3
tend to show that this takes place in the delocalized regime. We
thus conclude that our results are in favor of the existence of a
nonergodic delocalized phase, although we admit that further
work is required to confirm this observation.
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FIG. 3. Average ratio of adjacent energy gaps r̄ as a function of
the interaction strength amplitude U for different system sizes L and
number of bosons N with a fixed density 3/2. Data are averaged over
many disorder realizations. Only the energy range where eigenstates
significantly overlap with the initial state is taken into account to
facilitate a relevant comparison of time and spectral information. The
dashed horizontal lines are the GOE and Poisson predictions.

The analysis of level statistics can be carried further.
This requires us to perform the standard unfolding (using
a polynomial fit) of the energy spectrum, obtaining level
sequences of unit mean spacing (in contrast, the r̄ statistics
does not require such an unfolding [32]). This allows us to
study spacing distributions for different U values and probe
the crossover region more carefully [24,25]. For small U , very
good agreement with the GOE prediction is observed in accord
with the r̄ value (compare with Fig. 4). With increasing U we
observe a transition of spacing distributions towards a typical
shape expected for localized distributions. The study of the so-
called intermediate statistics has proved useful in the context of
single-particle localization [36]. Around the critical point, the
data are well described by the semi-Poisson family describing
the spacing distribution P (s) ∝ sβ exp[−(β + 1)s] (with β a
real parameter), as shown in Fig. 4 for U = 15, and tend to
the Poisson distribution (with β = 0) for very large U . On the
delocalized side, for U = 7 and 10 in Fig. 4, the situation is a bit
more complicated, with an intermediate regime well described
by the distribution P (s) ∝ sβ exp(−Cs2−γ ) proposed in [24]
in the context of the XXZ spin chain (a similar behavior is

FIG. 4. Level-spacing distributions for N = 9 particles on L = 6
sites with open boundary conditions after averaging over several real-
izations of disorder with strength U . The U = 15 data are accurately
described by the semi-Poisson distribution P (s) ∝ sβ exp[−(1 +
β)s] with β ≈ 0.508, as expected in the critical region. At lower
U (7 and 10) there is a transition towards the GOE distribution,
where the data are well reproduced by a P (s) ∝ sβ exp(−C2s

2−γ )
distribution proposed in [24]. The inset shows two limiting cases:
The small (large) U distribution is well reproduced by the GOE
(Poisson) prediction.

observed in [25]). We speculate that it could be related to the
transition from a nonergodic delocalized phase to an ergodic
one.

In conclusion, we have shown that many-body localization
may be observed in one-dimensional systems in optical
lattices, under realistic experimental conditions when the
disorder is due to random interactions (with no disorder in
the chemical potential). The virtue of our model is that it
does not show localization without interactions: The MBL
effect observed is inherently and solely due to interactions
and is not a small perturbation of single-particle physics. We
believe that this supports the idea that MBL is robust (as
suggested by many-body strongly coupled systems without
disorder [37–41]).
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[18] U. Schollwöck, Ann. Phys. (NY) 326, 96 (2011).
[19] B. Tang, D. Iyer, and M. Rigol, Phys. Rev. B 91, 161109

(2015).
[20] M. Schreiber, S. S. Hodgman, P. Bordia, H. P. Lüschen, M. H.
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