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It is shown that the single-particle spin-orbit coupling terms, which—in the cold atom context—are associated
with synthetic gauge fields, can significantly and nontrivially modify the phase accumulation at small interparticle
distances even if the length scale (kso)−1 associated with the spin-orbit coupling term is significantly larger than
the van der Waals length rvdW that characterizes the two-body interaction potential. A theoretical framework,
which utilizes a generalized local frame transformation and accounts for the phase accumulation analytically, is
developed. Comparison with numerical coupled-channel calculations demonstrates that the phase accumulation
can, to a very good approximation, be described over a wide range of energies by the free-space scattering phase
shifts—evaluated at a scattering energy that depends on kso—and the spin-orbit coupling strength kso.
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The tunability of low-energy scattering parameters such as
the s-wave scattering length as and p-wave scattering volume
Vp by means of application of an external magnetic field in the
vicinity of a Feshbach resonance [1] has transformed the field
of ultracold atom physics, providing experimentalists with a
knob to “dial in” the desired Hamiltonian. This tunability
has afforded the investigation of a host of new phenomena
including the BEC-BCS crossover [2,3]. Most theoretical
treatments of these phenomena are formulated in terms of
a few scattering quantities such as as and Vp, which properly
describe the low-energy behavior of the two-body system.

The recent realization of spin-orbit-coupled cold atom
systems [4] is considered another milestone, opening the door
for the observation of topological properties and providing
a new platform with which to study scenarios typically
encountered in condensed matter systems with unprecedented
control [5–7]. An assumption that underlies most theoretical
treatments of cold atom systems with synthetic gauge fields
is that the spin-orbit coupling term, i.e., the Raman laser
that couples the different internal states or the shaking of
the lattice that couples different bands, leaves the atom-
atom interactions “untouched.” More specifically, mean-field
treatments “simply” add the single-particle spin-orbit coupling
term to the mean-field Hamiltonian and parametrize the
atom-atom interactions via contact potentials with coupling
strengths that are calculated for the two-body van der Waals
potential without the spin-orbit coupling terms [7,8].

Consistent with such mean-field approaches, most
two-body scattering studies derive observables based on
the assumption that the two-body Bethe-Peierls boundary
condition, derived in the absence of single-particle spin-orbit
coupling terms, remains unaffected by the spin-orbit coupling
terms, provided an appropriate “basis transformation” is
accounted for [9–16]. The underlying premise of these two-
body and mean-field treatments is rooted in scale separation,
which suggests that the free-space scattering length as and
scattering volume Vp remain good quantities provided (kso)−1

is larger than the two-body van der Waals length rvdW. Indeed,
model calculations for a square-well potential in the presence
of three-dimensional isotropic spin-orbit coupling suggest
that the above reasoning holds, provided 1/as and Vp are
small [17].

This work revisits the question of how to obtain and
parametrize two-body scattering observables in the presence
of three-dimensional isotropic spin-orbit coupling. Contrary
to what has been reported in the literature, our calculations for
Lennard-Jones and square-well potentials show that the three-
dimensional isotropic spin-orbit coupling terms can impact
the phase accumulation in the small interparticle distance
region where the two-body interaction potential cannot be
neglected even if (kso)−1 is notably larger than rvdW. We
observe nonperturbative changes of the scattering observables
when kso changes by a small amount. An analytical treatment,
which reproduces the full coupled-channel results such as the
energy-dependent two-body cross sections for the finite-range
potentials with high accuracy, is developed. Our analytical
treatment relies, as do previous treatments [9–13,15–17],
on separating the short- and large-distance regions. The
short-distance Hamiltonian is treated by applying a gauge
transformation, followed by a rotation, that “replaces” the p-
dependent spin-orbit coupling term by an r- and p-independent
diagonal matrix (r and p denote the relative position and
momentum vectors, respectively). The diagonal terms, which
can be interpreted as shifting the scattering energy in each
channel, can introduce nonperturbative changes in the scat-
tering observables for small changes in kso, especially when
Vp is large. We note that our derivation of the short-distance
Hamiltonian, although similar in spirit, differs in subtle but
important ways from what is presented in Refs. [10,12].

Our analytical framework also paves the way for design-
ing energy-dependent zero-range or δ-shell pseudopotentials
applicable to systems with spin-orbit coupling. While energy-
dependent pseudopotentials have proven useful in describing
systems without spin-orbit coupling [18,19], generalizations to
systems with spin-orbit coupling are nontrivial due to the more
intricate nature of the dispersion curves. Our results suggest a
paradigm shift in thinking about spin-orbit-coupled systems
with nonvanishing two-body interactions. While the usual
approach is to assume that the short-distance behavior or the
effective coupling strengths are not impacted by the spin-orbit
coupling terms, our results suggest that they can be for specific
parameter combinations. Even though our analysis is carried
out for the case of three-dimensional isotropic spin-orbit
coupling, our results point toward a more general conclusion,
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namely, that spin-orbit coupling terms may, in general, notably
modify the phase accumulation in the short-distance region.

We consider two particles with position vectors rj and
masses mj (j = 1 and 2) interacting through a spherically
symmetric two-body potential Vint(r) (r = |r1 − r2|). Both
particles feel the isotropic spin-orbit coupling term with
strength kso, V

(j )
so = h̄ksopj · σσσ (j )/mj , where pj denotes the

canonical momentum operator of the j th particle and σσσ (j )

the vector that contains the three Pauli matrices σσσ
(j )
x , σσσ

(j )
y ,

and σσσ
(j )
z for the j th particle. Throughout, we assume that

the expectation value of the total momentum operator P of
the two-body system vanishes. In this case, the total angular
momentum operator J, J = l + S, of the two-particle system
commutes with the system Hamiltonian and the scattering
solutions can be labeled by the quantum numbers J and MJ ;
MJ denotes the projection quantum number, l is the relative
orbital angular momentum operator, and S = h̄(σσσ (1) + σσσ (2))/2.

Separating off the center-of-mass degrees of freedom, the
relative Hamiltonian H for the reduced mass μ particle with
relative momentum operator p can be written as a sum of the
free-space Hamiltonian Hfs and the spin-orbit coupling term
Vso, H = Hfs + Vso, where

Hfs =
[

p2

2μ
+ Vint(r)

]
I1 ⊗ I2 (1)

and Vso = h̄kso��� · p/μ with � = (m2σσσ
(1) ⊗ I2 − m1I1 ⊗

σσσ (2))/M . Here, Ij denotes the 2 × 2 identity matrix that spans
the spin degrees of freedom of the j th particle and M the
total mass, M = m1 + m2. For each (J,MJ ) channel, the r-
dependent eigenfunctions �(J,MJ ) are expanded as [13,15,16]

�(J,MJ )(r) =
∑
l,S

r−1u
(J )
l,S (k,r)|J,MJ ; l,S〉, (2)

where the sum goes over (l,S) = (0,0) and (1,1) for (J,MJ ) =
(0,0) and over (l,S) = (J,0), (J,1), (J − 1,1), and (J + 1,1)
for J > 0. In the |J,MJ ; l,S〉 basis (using the order of the
states just given), the scaled radial set of differential equations
for fixed J and MJ reads h(J )u(J ) = Eu(J ), where h(J ) [20]
denotes the scaled radial Hamiltonian for a given J (note that
the Hamiltonian is independent of the MJ quantum number).
For r > rmax, the interaction potential Vint can be neglected
and u(J ) is matched to the analytic asymptotic Vint = 0 solution
[13,15,16]

u(J ) −−−→
r>rmax

r(J (J ) − N (J ) K (J )), (3)

where J (J ) and N (J ) are matrices that contain the regular
and irregular solutions for finite kso (for J = 0 and 1, explicit
expressions are given in Ref. [16]). Defining the logarithmic
derivative matrix L(J )(r) through (u(J ))′(u(J ))−1, where the
prime denotes the partial derivative with respect to r , the K

matrix is given by

K (J ) = [(rN (J ))′ − L(J )(r)(rN (J ))′]

× [(rJ (J ))′ − L(J )(r)(rJ (J ))]|r=rmax , (4)

the S matrix by S(J ) = (I + iK (J ))(I − iK (J ))−1, where I

denotes the identity matrix, and the cross sections by σαβ =
2π |S(J )

βα − δαβ |2/k2
α , where α and β each take the values

1,2, . . . .

In general, the K matrix has to be determined numerically
via coupled-channel calculations. In what follows, we address
the question whether K can, at least approximately, be
described in terms of the logarithmic derivative matrix of the
free-space Hamiltonian Hfs. If the spin-orbit coupling term Vso

vanished in the small r limit, one could straightforwardly apply
a projection or frame transformation approach [21–24] that
would project the inner small r solution, calculated assuming
that Vso vanishes in the inner region, onto the outer large r

solution, calculated assuming that Vint vanishes in the outer
region [25]. The fact that Vso does not vanish in the small r

limit requires, as we show below, a generalization of the frame
transformation approach.

We start with the Hamiltonian H and define a new
Hamiltonian H̃ through T −1HT , where T is an operator to
be determined. The solution �̃ of the new Hamiltonian is
related to the solution � of H through �̃ = T −1�; here and
in what follows we drop the superscripts “(J,MJ )” and “(J )”
for notational convenience. The operator T reads RU , where
R = exp(−ıkso� · r); the form of U is introduced later. To
calculate HR = R−1HR, we use

R−1HfsR = Hfs − Vso − Eso[� · r,� · ∇] + O(r) (5)

and

R−1VsoR = Vso + 2Eso[� · r,� · ∇] + O(r), (6)

where −ih̄∇ = p and Eso = h̄2k2
so/(2μ) and where the no-

tation O(r) indicates that terms of order r and higher are
neglected (r “counts” as being of order r and p as being of
order r−1). Adding Eqs. (5) and (6) and neglecting the O(r)
terms, we find that the spin-orbit coupling term Vso is replaced
by a commutator that arises from the fact that the operator
� · p does not commute with the exponent of R,

H sr
R = Hfs + Eso[� · r,� · ∇]. (7)

Here, the superscript “sr” indicates that this Hamiltonian is
only valid for small r [26].

Our goal is now to evaluate the second term on the
right-hand side of Eq. (7). Defining the scaled short-distance
Hamiltonian hsr

R through rH sr
R r−1 and expressing hsr

R in the
|J,MJ ; l,S〉 basis, we find

hsr
R =

(−h̄2

2μ

∂2

∂r2
+ Vint(r)

)
I1 ⊗ I2 + V + ε, (8)

where V is a diagonal matrix with diagonal elements h̄2l(l +
1)/(2μr2). For J = 0, the matrix ε is diagonal with diagonal
elements −3Eso and Eso. For J > 0, in contrast, the 11 and 22
elements are, in general, coupled:

ε = Eso

⎛
⎜⎜⎜⎝

−3 c/M2 0 0

c/M2 −(�M/M)2 0 0

0 0 d1/M
2 0

0 0 0 d2/M
2

⎞
⎟⎟⎟⎠, (9)

where �M = m1 − m2, c = 2
√

J (J + 1)(m2
2 − m2

1), d1 =
−JM2 − (J + 1)�M2, and d2 = 4m1m2 − d1. Since the
r-dependent 11 and 22 elements of V are identical (recall
l = J for these two elements), the matrix U , which is defined
such that U−1εU is diagonal, also diagonalizes hsr

R , i.e., the
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short-range Hamiltonian h̃
sr
T = U−1hsr

RU is diagonal. This
implies that the scaled radial short-distance Schrödinger
equation h̃

sr
T v = Ev can be solved using standard propagation

schemes such as the Johnson algorithm [27]. This Schrödinger
equation differs from the “normal” free-space Schrödinger
equation by channel-specific energy shifts. These shifts
introduce a nontrivial modification of the phase accumulation
in the short-distance region and—if a zero-range or δ-shell
pseudopotential description was used—of the boundary
condition. While the energy shifts do, in many cases, have
a negligible effect, our analysis below shows that they can
introduce nonperturbative corrections in experimentally
relevant parameter regimes. The channel-specific energy
shifts are not taken into account in Ref. [12].

To relate the logarithmic derivative matrix L̃sr
(r) = v′v−1

of the scaled short-distance Hamiltonian h̃
sr
T to the logarithmic

derivative matrixL(r), the “T operation” needs to be “undone.”
Assuming that the short-distance Hamiltonian provides a

faithful description, i.e., assuming that the higher-order cor-
rection terms can, indeed, be neglected for r < rmax, we obtain

L(rmax) ≈ {T L̃sr
(r)T −1 − T (T −1)′}|r=rmax . (10)

To illustrate the results, we focus on the J = 0 subspace.
Denoting the usual free-space phase shifts at scattering energy
h̄2k2/(2μ) for the interaction potential Vint for the s-wave and
p-wave channels by δs(k) and δp(k), respectively, the short-
range K matrix K̃

sr
for the Hamiltonian h̃

sr
T has the diagonal

elements tan[δs(ks)] and tan[δp(kp)], where h̄2k2
s /(2μ) = E +

3Eso and h̄2k2
p/(2μ) = E − Eso. If we now, motivated by the

concept of scale separation, make the assumption that the phase
shifts tan[δs(ks)] and tan[δp(kp)] are accumulated at r = 0
and correspondingly take the rmax → 0 limit of Eq. (4) with
L(J ) given by the right-hand side of Eq. (10), we obtain the
following zero-range K matrix,

Kzr = − as(ks)

k+ − k−

[
k2
+ k+k−

k+k− k2
−

]
− Vp(kp)

k+ − k−

[
k2
+(k− − kso)2 k+k−(k+ − kso)(k− − kso)

k+k−(k+ − kso)(k− − kso) k2
−(k+ − kso)2

]
, (11)

where h̄k± = ±√
2μ(E + Eso) − h̄kso.

To validate our analytical results, we perform numerical
coupled-channel calculations. Since the wave function in the
J = 0 subspace is antisymmetric under the simultaneous
exchange of the spatial and spin degrees of freedom of the
two particles, the solutions apply to two identical fermions.
The Schrödinger equation for the Lennard-Jones potential
VLJ(r) = C12/r12 − C6/r6, with C6 and C12 denoting positive
coefficients, is solved numerically [28]. The solid lines in
Figs. 1 and 2 show the partial cross section σ22 and the
K-matrix element K22 as a function of kso for vanishing
scattering energy E for a two-body potential with large
as(0) and large Vp(0), respectively. The dashed lines show
the results predicted by our zero-range model that accounts
for the spin-orbit-coupling-induced energy shifts. This model
provides an excellent description of the numerical results
for the Lennard-Jones potential, provided the length (kso)−1

associated with the spin-orbit coupling term is not too small
compared to the van der Waals length rvdW, where rvdW is
given by (2μC6/h̄

2)1/4 (in Figs. 1 and 2, the largest ksorvdW

considered corresponds to 0.4913 and 0.4171, respectively).
The dash-dotted lines in Figs. 1 and 2 show σ22 and K22 for

the zero-range model when we set the spin-orbit-coupling-
induced energy shifts artificially to zero. In this case, the
divergence in the K22 matrix element at finite kso is not
reproduced. For large as(0) [see Fig. 1(a)], the model without
energy shifts introduces deviations at the few percent level in
the cross section σ22. For large Vp(0) [see Fig. 2(a)], in contrast,
the model without the energy shifts provides a quantitatively
and qualitatively poor description of the cross section σ22

even for relatively small kso [ksoas(0) � 0.05]. Figures 1(c)
and 2(c) demonstrate that the divergence of the K22 matrix
element occurs when the free-space scattering length as(ks),
calculated at energy 3Eso, or the free-space scattering volume
Vp(kp), calculated at energy −Eso, diverge. We find that this

occurs roughly when as(0)kso ≈ 10 and [Vp(0)]1/3kso ≈ 0.21;
we checked that this holds quite generally, i.e., not only for
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FIG. 1. Large as(0) case. The black solid line shows (a) the scaled
partial cross section σ22(kso)2/(2π ) and (b) the K-matrix element
K22 for E = 0 as a function of ksoas(0) for the Lennard-Jones
potential with as(0)/rvdW = 24.42 and Vp(0)/(rvdW)3 = −0.2380
(this potential supports two s-wave bound states in free space). The
red dashed line shows the result for the zero-range model developed in
this work [see Eq. (11)]; the numerical results for the Lennard-Jones
potential and the model are indistinguishable on the scale shown. To
illustrate the importance of the energy shifts, the blue dash-dotted line
shows the results for the zero-range model that artificially neglects the
energy shifts. The solid line in (c) shows the scaled energy-dependent
s-wave scattering length as(ks)/as(0), where h̄2k2

s = 6μEso.
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FIG. 2. Large Vp(0) case. The black solid line shows (a) the scaled
partial cross section σ22(kso)2/(2π ) and (b) the K-matrix element K22

for E = 0 as a function of ksoas(0) for the Lennard-Jones potential
with as(0)/rvdW = 0.9591 and Vp(0)/(rvdW)3 = 26.61, corresponding
to as(0)/[Vp(0)]1/3 = 0.3213 (this potential supports four s-wave
bound states in free space). The red dashed line shows the result for
the zero-range model developed in this work [see Eq. (11)]; the model
reproduces the numerical results excellently for ksoas(0) � 0.3. The
blue dash-dotted line shows the results for the zero-range model that
artificially neglects the energy shifts. The solid line in (c) shows the
scaled energy-dependent p-wave scattering volume Vp(kp)/Vp(0),
where h̄2k2

p = −2μEso. The green circles mark three of the four
ksoas(0) values considered in Fig. 4.

the parameters considered in the figures. In Figs. 1(c) and
2(c), the “critical” kso values correspond to ksorvdW = 0.1423
and ksorvdW = 0.1462, respectively. For comparison, using
the kso value for the one-dimensional realization of Ref. [4]
and assuming rvdW = 100a0, one finds ksorvdW ≈ 0.03. This
suggests that the phenomena discussed in the context of
Figs. 1 and 2 should be relevant to future realizations of
three-dimensional isotropic spin-orbit coupling experiments.

To further explore the two-particle scattering properties in
the presence of spin-orbit coupling for short-range potentials
with large free-space scattering volume Vp(0), Figs. 3(a)
and 3(b) show the partial cross section σ22 as a function of
the scattering energy −Eso � E � 0 and 0 � E � 400Eso,
respectively, for as(0)/[Vp(0)]1/3 = 0.3213 and as(0)kso =
0.076 73. The results for the Lennard-Jones potential (dashed
line) and square-well potential (solid line) are essentially
indistinguishable on the scale shown. To assess the accuracy
of our zero-range model, we focus on the Lennard-Jones
potential and compare the numerically determined partial
cross section (σ22)exact with the partial cross section (σ22)zr

predicted using Eq. (11). Solid lines in Figs. 3(c) and 3(d)
show the normalized difference �, defined through � =
|(σ22)zr − (σ22)exact|/(σ22)exact. The deviations are smaller than
1.3% for the scattering energies considered. Neglecting the
spin-orbit-coupling-induced energy shifts in our zero-range
model and calculating the normalized difference, we obtain
the dashed lines in Figs. 3(c) and 3(d). Clearly, the zero-range
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FIG. 3. Large Vp(0) case. (a) and (b) The red dashed and black
solid lines show the scaled partial cross section σ22(kso)2/(2π )
for the Lennard-Jones and square-well potential, respectively, as a
function of the scattering energy E. For both potentials, we have
as(0)/[Vp(0)]1/3 = 0.3213 [Vp(0) > 0] and ksoas(0) = 0.076 73. The
length scale associated with the spin-orbit coupling is notably larger
than the range of the potential (ksorvdW = 0.08 for the Lennard-Jones
potential and ksorsw = 0.076 76 for the square-well potential). (c) and
(d) The solid and dashed lines show the normalized difference �

(see text) between the cross section for the Lennard-Jones potential
and the zero-range model, obtained using Eq. (11), and between
that for the Lennard-Jones potential and the zero-range model that
neglects the spin-orbit-coupling-induced energy shifts, respectively.
The zero-range model derived in this work (solid line) provides an
excellent description (the deviations are smaller than 1.3% for the
data shown) over the entire energy regime. Panels (a) and (c) cover
negative E (linear scale) while panels (b) and (d) cover positive E

(logarithmic scale).

model provides a faithful description of the full coupled-
channel data for the Lennard-Jones potential only if the
spin-orbit-coupling-induced energy shifts are included.

Figure 4 demonstrates that the nonquadratic single-particle
dispersion relations have a profound impact on the low-energy
scattering observables for a large free-space scattering volume.
Specifically, the lines in Fig. 4 show the numerically obtained
partial cross section σ22 as a function of the scattering energy
for the same Lennard-Jones potential as that used in Figs. 2
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FIG. 4. Scaled partial cross section σ22(kso)2/(2π ) for the
Lennard-Jones potential with as(0)/[Vp(0)]1/3 = 0.3213 [Vp(0) > 0]
and as(0)/rvdW = 0.9591 for four different kso [the green dotted,
blue dash-dotted, black solid, and red dashed lines correspond to
ksorvdW = 0.1, ksorvdW = 0.12, ksorvdW = 0.14, and ksorvdW = 0.146,
respectively] as a function of the scattering energy E [panel (a)
covers negative E (linear scale) while panel (b) covers positive E

(logarithmic scale)].
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and 3 for four different spin-orbit coupling strengths, namely,
ksorvdW = 0.1, 0.12, 0.14, and 0.146 [Fig. 3 used ksorvdW =
0.08; three of the four kso values considered in Fig. 4 are
marked by circles in Fig. 2(c)]. Figure 4 shows that the partial
cross section depends sensitively on the spin-orbit coupling
strength kso. This can be understood by realizing that a change
in the spin-orbit coupling strength leads to a significant change
of the kso-dependent scattering volume Vp(kp).

This Rapid Communication revisited two-body scattering
in the presence of single-particle interaction terms that lead,
in the absence of two-body interactions, to nonquadratic dis-
persion relations. Restricting ourselves to three-dimensional
isotropic spin-orbit coupling terms and spin-independent
central two-body interactions, we developed an analytical
coupled-channel theory that connects the short- and large-
distance eigenfunctions using a generalized frame transforma-
tion. A key, previously overlooked result of our treatment is
that the gauge transformation that converts the short-distance
Hamiltonian to the “usual form” (i.e., a form without linear mo-
mentum dependence) introduces channel-dependent energy

shifts. These energy shifts were then shown to appreciably alter
the low-energy scattering observables, especially in the regime
where the free-space scattering volume is large. To illustrate
this, the (J,MJ ) = (0,0) channel was considered. Our frame-
work provides the first complete analytical description that
consistently accounts for all partial wave channels. Moreover,
the first numerical coupled-channel results for a two-particle
Hamiltonian with realistic Lennard-Jones potentials in the
presence of spin-orbit coupling terms were presented. The
influence of the revised zero-range formulation put forward in
this Rapid Communication on two- and few-body bound states
and on mean-field and beyond mean-field studies will be the
topic of future publications.
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[4] Y.-J. Lin, K. Jiménez-Garcı́a, and I. B. Spielman, Spin-orbit-
coupled Bose-Einstein condensates, Nature (London) 471, 83
(2011).

[5] J. Dalibard, F. Gerbier, G. Juzeliūnas, and P. Öhberg, Collo-
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