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Algorithmic quantum simulation of memory effects

U. Alvarez-Rodriguez,1,* R. Di Candia,1,2 J. Casanova,3 M. Sanz,1,† and E. Solano1,4

1Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, 48080 Bilbao, Spain
2Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin, Germany

3Institut für Theoretische Physik, Albert-Einstein-Allee 11, Universität Ulm, D-89069 Ulm, Germany
4IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain

(Received 9 May 2016; published 1 February 2017)

We propose a method for the algorithmic quantum simulation of memory effects described by integrodifferential
evolution equations. It consists in the systematic use of perturbation theory techniques and a Markovian quantum
simulator. Our method aims to efficiently simulate both completely positive and nonpositive dynamics without
the requirement of engineering non-Markovian environments. Finally, we find that small error bounds can be
reached with polynomially scaling resources, evaluated as the time required for the simulation.
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Introduction. Fundamental interactions in nature are de-
scribed by mathematical models that frequently overcome
our analytical and numerical capacities. This problem is
especially challenging in the quantum realm, due to the
exponential growth of the Hilbert space with the number
of particles involved. Richard Feynman proposed [1] that
the desired calculations may be experimentally realized by
codifying the model of interest into the degrees of freedom
of another more controllable quantum system. Along these
lines, in the last decade, this approach has been employed
to simulate the dynamics of many-body quantum systems.
A machine performing this task is called quantum simulator,
and it has been studied with increasing interest, theoretically
and experimentally, in controlled quantum systems [2,3].
It is expected that quantum simulators will solve relevant
problems unreachable for classical computers. Among them,
we could mention complex spin, bosonic, and fermionic
many-body systems [3,4], entanglement dynamics [5–7], and
fluid dynamics [8], among others.

In quantum mechanics, realistic situations in which the
quantum system is coupled to an environment are modeled in
the framework of open quantum systems. In this description,
an effective evolution equation for the system of interest
is obtained by disregarding the environmental degrees of
freedom [9]. The resulting dynamics can be classified as
Markovian or non-Markovian [10–15]. In the former, the
time evolution depends solely on the current state of the
system, and there are several results concerning its quantum
simulation [16–19]. On the contrary, the non-Markovian
evolution depends on the history of the system, and it is more
challenging to treat both analytically and numerically [19].
In this sense, despite some recent results [20–30], including
a work on the sufficient conditions for a completely positive
and trace preserving (CPTP) non-Markovian dynamics [31],
a general non-Markovian quantum simulator has not been
fully developed yet. A paradigmatic feature of non-Markovian
dynamics is the existence of quantum memory effects as an
extension of the classical history-dependent dynamics to the
quantum domain. Moreover, a number of key applications
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in the quantum domain can be envisioned, such as quantum
machine learning [32,33], neuromorphic quantum comput-
ing [34,35], and quantum artificial life [36,37]. These can
be implemented by mirroring the already existing results
in memcomputing devices [38], intelligent materials [39],
and population dynamics [40]. Therefore, the simulation of
quantum memory effects would be a significant step forward
to understand open quantum systems and, consequently, to
employ them in the development of the aforementioned
research fields.

In this Rapid Communication, we provide an efficient
and general framework for an algorithmic quantum simula-
tion [41] of memory effects modeled by integrodifferential
evolution equations. The protocol algorithmically combines
a Markovian quantum simulator with perturbation theory
techniques in order to retrieve the time evolution of an arbitrary
initial state. Our method does not require the engineering of
any additional environment, avoiding the challenging task of
developing first-principle non-Markovian quantum simulators.
Moreover, the protocol works even when the evolution does
not correspond to a CPTP map, which is the case of most
time-delayed Lindblad master equations. Indeed, although the
CPTP character is not guaranteed, our approach circumvents
this issue by splitting the simulation into two CPTP parts.
Finally, we prove polynomial scaling error bounds for the
proposed method.

Integrodifferential equations with memory. The model
describing the memory effects we aim to simulate is based
on the integrodifferential equation

∂tρ(t) =
∫ t

0
ds K(t,s)Lρ(s). (1)

Here, K(t,s) is a memory kernel modeling how the evolution
of the state at a certain time is affected by its history, and L
is a general time-independent Lindblad operator. Notice that
K(t,s) = 2δ(t − s) corresponds to the standard Markovian
master equation written in the Lindblad form. As noticed,
for instance, in Refs. [19,22], it is not conceivable to simulate
a general non-Markovian dynamics efficiently. The reason is
that one could then imagine simulating a highly inefficient
calculation in the environment, retrieving this information af-
terwards into the system due to the non-Markovian information
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backflow, in an efficient manner. However, Eq. (1) includes in
the kernel K(t,s) the non-Markovian aspects of the evolution,
which gives only an effective description of the environment
contribution.

In order to simulate Eq. (1), we use as a tool the quantum
simulation of the equation

∂tρ(t) =
∫ t

0
ds H (t,s)[E − I]ρ(s), (2)

where H (t,s) is a memory kernel, E is a general CPTP map,
and I is the identity map. Equation (2) describes the dynamics
of a semi-Markovian process [42]. It is noteworthy to mention
that while Eqs. (1) and (2) preserve the trace of the density
matrix, they do not generally preserve positivity. However,
sufficient conditions for Eq. (2) to determine a CPTP map
have been studied when H (t,s) = H (t − s). Indeed, if the
Laplace transform of the memory kernel H (τ ) satisfies the
relation H̃ (u) = uw̃(u)

1−w̃(u) for some waiting distribution w(t),
then Eq. (2) corresponds to a CPTP process [43]. Moreover,
if this condition is fulfilled, then the solution of Eq. (2) can
be written as ρ(t) = ∑∞

i=0 pi(t)E iρ(0), where 0 � pi(t) � 1
[43]. In this case, by truncating the series, we can simulate
Eq. (2) assuming that an efficient quantum simulator of E
and its powers is available. In the following, we will consider
processes E corresponding to Markovian evolutions, whose
efficient quantum simulator has been already designed, e.g.,
k-local Lindblad equations [19]. We will show how to simulate
a general kernel H (t,s), including the case in which Eq. (2)
does not correspond to a CPTP process. Finally, we illustrate
how to employ this result to simulate Eq. (1).

Algorithmic quantum simulator. Let us consider the Volterra
version of Eq. (2),

ρ(t) = ρ(0) +
∫ t

0
ds h(t,s)[E − I]ρ(s), (3)

where h(t,s) ≡ ∫ t

s
dτ H (τ,s). We assume that H (t,s) � 0

and h(t,s) � c, for a given constant c, for all t � s � 0.
Moreover, we quantify the results in terms of the trace norm
for matrices, defined as the sum of their singular values
‖σ‖1 ≡ ∑

i σi , and the respective induced superoperator norm
‖A‖ ≡ maxσ

‖Aσ‖1
‖σ‖1

. Then, Eq. (3) can be solved iteratively, via
the series ρ(t) = ∑∞

i=0 ρi(t), where

ρ0 = ρ(0), ρi�1 =
∫ t

0
ds h(t,s)[E − I]ρi−1(s). (4)

This expansion can be truncated at order n, ρ̃n(t) =∑n
i=0 ρi(t), with a small truncation error given by the following

estimation.
Proposition 1 (Truncation error). ‖ρ(t) − ρ̃M (t)‖1 � ε

provided that M � at + log 1/ε − 1, with a =
(e + 1)c‖E − I‖.

The proof of Proposition 1 is provided in Appendix A.
This truncation allows us to write the approximated solution
of Eq. (2) by a finite sum, with a number of terms growing
linearly with the simulated time. Indeed, we have that

ρ̃n(t) =
n∑

i=0

di(t)[E − I]iρ(0), (5)

with the corresponding parameter values d0(t) = 1 and
di�1(t) = ∫ s0≡t

0 · · · ∫ si−1

0 ds1 · · · dsi h(t,s1) · · · h(si−1,si). This
truncated sum can be rewritten as ρ̃n(t) = ∑n

i=0 ci(t)E iρ(0),
with ci(t) = ∑n

k=i

(
k

i

)
(−1)k−idk(t). Proposition 1 tells us that

we can directly simulate a semi-Markovian dynamics by
just implementing powers of the process E , and numerically
integrating the memory kernel. As we need a number of
terms which increases linearly with the simulated time, we
have that this step is efficient if the implementation of the
E is efficient. Notice that, by construction, ρ̃n has trace
1, but it is not necessarily a density matrix, since it can
have negative eigenvalues. However, we can write ρ̃n(t) as
a weighted sum of two density matrices and introduce the
quantities c+

i (t) ≡ max{ci(t),0} and c−
i (t) ≡ min{ci(t),0}. In

consequence, we have that

ρ̃n(t) = C+
n (t)ρ+

n (t) + C−
n (t)ρ−

n (t), (6)

where the parameter values C±
n (t) = ∑n

i=0 c±
i (t) and ρ±

n (t) =
1

C±
n (t)

∑n
i=0 c±

i (t)E iρ(0), while C−
n (t) = 1 − C+

n (t) holds due

to trace preservation. Notice that ρ±
n (t) are two den-

sity matrices, as their trace is 1 and they are, by con-
struction, positive. Indeed, we have approximated the dy-
namics, denoted by �(t) [ρ(t) = �(t)ρ(0)], correspond-
ing to Eq. (2), as a weighted sum of two CPTP maps:
�(t) � �n(t) = C+

n (t)�+
n (t) + C−

n (t)�−
n (t), with �±

n (t) =
1

C±
n (t)

∑n
i=0 c±

i (t)E i . The form of the resulting CPTP maps
allows us to simulate Eq. (2) by making use of a Markovian
quantum simulator and numerical techniques. In fact, all ci(t),
and thus also c±

i (t), can be classically computed, and the states
ρ±

n (t) can be prepared assuming that the Markovian operations
E i (0 � i � n) are available.

Proposition 2 (Simulation of semi-Markovian processes).
Let us consider the simulating dynamics �sim(t) =
C+

M (t)�̃+
M (t) + C−

M (t)�̃−
M (t), where �̃±

M (t)= 1
C±

M (t)

∑M
i=0 c±

i (t)

Ẽ i , Ẽ denotes an efficient quantum simulation of E , and M �
at + log 1/ε̃. If ‖E i − Ẽ i‖ � δ requires a simulation time
t̄ = O(poly(i,1/δ)), then we can simulate the semi-Markovian
process in Eq. (2) within an error ‖�(t) − �sim(t)‖1 � ε̃ by
using a simulation time t̃ = O(poly(t,C+

M (t)/ε̃)).
Proof. We have that ‖�(t) − �sim(t)‖ � ‖�(t) −

�M (t)‖ + ‖�M (t) − �sim(t)‖. The first term is bounded
by ε̃/2, as M � at + log 1/ε̃. The second term can be
bounded by ‖�M (t) −�sim(t)‖� C+

M (t)‖�+
M (t) − �̃+

M (t)‖−
C−

M (t)‖�−
M (t) − �̃−

M (t)‖. We have that ‖�±
M (t) − �̃±

M (t)‖ �
ε̃/4|C±

M (t)|, assuming ‖E i − Ẽ i‖ � ε̃/4|C±
M (t)|. This requires

a simulation time t̄ = O(poly(t,C+
M (t)/ε̃), where we have

used that C−
M (t) = 1 − C+

M (t). �
Proposition 2 allows us to compute approximately the

evolution of expectation values of observables under the dy-
namics of Eq. (2). It is noteworthy to mention that our method
does not require the engineering of any bath corresponding
to a semi-Markovian dynamics. Instead, we have written the
formal solution of Eq. (2), and exploit the availability of a
Markovian quantum simulator generating E and its powers.
This is possible due to the fast convergence of the exponential
series, which limits the number of terms to be classically
computed. Moreover, the truncation provided in Proposition 1
implies also that an efficient Markovian simulation is sufficient
to approximatively generate the solution of Eq. (2).
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While in the CPTP semi-Markovian case we can directly
sample from the probability distribution of a given observable,
since we are directly implementing the solution, for more
general non-Markovian equations we only have access to
expectation values, as this time the process is split into two
parts. A consequent question is whether we can compute
interesting quantities beyond mere observables with our
algorithmic quantum simulator. In the following, we study
the example of the two-time correlation function of unitary
operators, i.e., D

�(t)
ρ,U = Tr[U (t)U (0)ρ]. In the last expression,

U (t) ≡ �∗(t)U , where �∗(t) is the dual of �(t), defined as
Tr{A[�(t)σ ]} ≡ Tr{[�∗(t)A]σ } for arbitrary A and σ . First,

let us notice that D
�(t)
ρ,U � C+

n (t)D
�+

n (t)
ρ,U + C−

n (t)D
�−

n (t)
ρ,U for a

sufficiently large n. Each resulting term can be computed with
an extension to unitary dynamics of the protocol for the two-
time correlation function proposed in Ref. [44]. Indeed, we
add a two-dimensional ancilla and initialize the joint system in
the state ρ̃ = 1

2 (|0〉 + |1〉)(〈0| + 〈1|) ⊗ ρ. First, we implement
a controlled operation Uc = |0〉〈0| ⊗ U + |1〉〈1| ⊗ 1, then the
evolution �±

n (t) on the original system, and finally Uc again.

In the end, D
�±

n (t)
ρ,U is retrieved by measuring the operator

〈σx〉 + i〈σy〉 in the ancilla. Notice that this protocol shows
the same efficiency as the one in Proposition 2. Moreover,
the method can be straightforwardly extended to multitime
correlation functions of unitary operators by iterating the
aforementioned steps. Lastly, the multitime correlation
functions of observables O can be computed by decomposing
it into O = Ua + γUb, with γ ∈ R and Ua,b unitary matrices
(see Appendix C and Ref. [8]).

Now, we are ready to show how to use the quantum
simulation of Eq. (2) to simulate Eq. (1). Let us consider
E = eλL, where λ ∈ R+ is a control parameter and L an
arbitrary Lindblad operator, as in Eq. (1). In the following, we
prove that the solution of Eq. (2), describing a semi-Markovian
process, approximates the solution of the memory process in
Eq. (1) provided that λ is small.

Proposition 3 (Simulation of memory effects). Let ρ1(t)
and ρ2(t) be the solutions of Eq. (1) and Eq. (2), re-
spectively, with E ≡ Eλ = eλL (λ ∈ R+), H (t,s) = K(t,s)/λ
with

∫ t

s
dτ K(τ,s) � c, and ρ1(0) = ρ2(0). Then, ‖ρ1(t) −

ρ2(t)‖1 � ε holds if λ � e−[2+o(ε)]c‖L‖t

c‖L‖2t
ε, when c‖L‖t > 1/e,

and if λ � log ( 1
c‖L‖t ) ε

‖L‖ , when c‖L‖t � 1/e, provided that
ε � 1/2.

The bounds of Proposition 3 are rigorously found in
Appendix B. The result of Proposition 3 provides the error
bound for a general simulation of a complex environment
described by Eq. (1), and it is rather general as it holds for
any L. The algorithm consists in implementing the states
defining the solution of the approximated semi-Markovian
process, together with the numerical integration of the memory
kernel, as schematically depicted in Fig. 1. The method can be
generalized to even more complicated dynamical equations.
For instance, the case of higher-order derivatives, as

∂tρ(t) =
∫ t

0

∫ s1

0
ds2 ds1K(s1,s2)L ρ(s2). (7)

The solution of Eq. (7) can be approximated analogously to
Eq. (1), and Proposition 3 extended in order to find similar

Approximated equation
Memory effects 

equation

Sampling on the quantum states

ρ±n (t) =
1

C±
n (t)

n

i=0

c±i (t)E iρ(0)

Reconstruction of the 
complete dynamics

ρn(t) = C+
n (t)ρ+

n (t) + C−
n (t)ρ−n (t)

ρ̇(t) =
t

0

dsH(t, s)[E − I]ρ(s)ρ̇(t) =
t

0

dsK(t, s)Lρ(s) ≈

FIG. 1. Scheme of our algorithmic quantum simulator. We ap-
proximate the equation underlining the memory effects with a semi-
Markovian equation. We then split the solution of the semi-Markovian
process into two CPTP parts, implementing each part separately. This
process is accompanied by the integration of products of the memory
kernel in a number which increases linearly with the simulated
time.

bounds. A further generalization consists in introducing
additional terms, increasing the versatility of the proposed
algorithmic quantum simulator. For instance, let us consider
the equation

∂tρ(t) = σ +
∫ t

0
ds K(t,s)L ρ(s), (8)

where σ can be an arbitrary matrix. Then, Eq. (8) can be
simulated by approximating it with the equation ∂tρ(t) =
σ + ∫ t

0 ds K(t,s)[eλL − I]/λ ρ(s), which can be rewritten and
simulated similarly to Eq. (2).

Conclusions. We have developed a flexible and efficient
quantum algorithm for the solution of integrodifferential
evolution equations describing quantum memory effects,
including the case of non-Markovian dynamics. The proposed
algorithmic quantum simulation is useful for mimicking
the effective action of complex environments. Alternative
situations that our approach may cover include quantum feed-
back, quantum machine learning, and neuromorphic quantum
computation. Lastly, the results in this Rapid Communication
can be exploited for the classical simulation of memory effect
equations. In fact, if the Markovian process used as a tool
is decomposed efficiently by gates with a positive Wigner
function, then expected values of observables can be estimated
by using Monte Carlo techniques [45,46].
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APPENDIX A: PROOF OF PROPOSITION 1

In this section, we provide in more detail the proof of
Proposition 1, which gives us an upper bound for the truncation
error. In order to quantify the error, we use the trace norm of a
matrix, defined as the sum of the singular values of the matrix:
‖σ‖1 ≡ ∑

i σi . The following recursion relation holds:

‖ρ(t) − ρ̃n(t)‖1 �
∫ t

0
ds h(t,s)‖E − I‖‖ρ(t) − ρ̃n−1(t)‖1

� yc

∫ t

0
ds ‖ρ(s) − ρ̃n−1(s)‖1, (A1)

where ρ(t) is the ideal solution at time t, ρ̃n(t) is nth order
truncation at time t, h(t,s) � c, and y ≡ ‖E − I‖, in which
the superoperator norm is induced by the trace norm, i.e.,
‖A‖ ≡ supσ

‖Aσ‖1

‖σ‖1
. The truncation error can be thus evaluated

by induction, by considering the zeroth-order truncation error,

‖ρ(t) − ρ̃0(t)‖1 � y

∫ t

0
ds h(t,s)‖ρ(s)‖1. (A2)

A bound on ‖ρ(s)‖1 can be found by using a Grönwall’s
inequality.

Theorem 1 (Grönwall’s inequality [47]). Let u be a contin-
uous function defined on J = [α,β] and let the function g(t,s)
be continuous and non-negative on the triangle 
 : α � s �
t � β and nondecreasing in t for each s ∈ J . Let n(t) be a
positive continuous and nondecreasing function for t ∈ J . If

u(t) � n(t) +
∫ t

α

ds g(t,s)u(s), t ∈ J, (A3)

then

u(t) � n(t)e
∫ t

α
ds g(t,s), t ∈ J. (A4)

One can prove from the Volterra equation that ‖ρ(t)‖1 �
‖ρ(0)‖1 + y

∫ t

0 ds h(t,s)‖ρ(s)‖1. Theorem 1 implies that

‖ρ(t)‖1 � ey
∫ t

0 ds h(t,s), (A5)

where we have set ‖ρ(0)‖1 = 1. Here, we have assumed
that H (t,s) � 0, to satisfy the hypothesis on h(t,s) =∫ t

s
dτ H (τ,s), in order to apply Theorem 1. By plugging

Eq. (A5) into Eq. (A2), we find that

‖ρ(t) − ρ̃0(t)‖1 � y

∫ t

0
ds h(t,s)ey

∫ s

0 dτ h(s,τ ) � ecyt − 1,

(A6)

where in the second inequality, we have used that h(s,τ ) �
h(t,τ ) for s � t , allowing us to perform the integration. In
the third inequality we have made use of the bound on
h(t,s), h(t,s) � c.

We can now prove by induction that

‖ρ(t) − ρ̃M (t)‖1 �
∞∑

i=M+1

(cyt)i

i!
, (A7)

for any natural M . The case M = 0 is just the inequality found
in Eq. (A6). Let us assume that Eq. (A7) holds for M = n − 1.

Then,

‖ρ(t) − ρ̃n(t)‖1 � yc

∫ t

0
ds ‖ρ(s) − ρ̃n−1(s)‖1

� yc

∫ t

0
ds

∞∑
i=n

(cys)i

i!
=

∞∑
i=n+1

(cyt)i

i!
,

which concludes the proof of Eq. (A7).
In the following, we will prove that

∑∞
i=M+1 xi/i! � ε

holds, provided that M � (e + 1)x + log(1/ε) − 1. Indeed,
we have that

∞∑
i=M+1

xi

i!
� ex xM+1

(M + 1)!
� ex

(
ex

M + 1

)M+1

= ex

(
1 + ex − (M + 1)

M + 1

)M+1

� exeex−(M+1) � ε.

In the first inequality, we have used the Lagrange error formula
for the Taylor expansion of the exponential series. In the second
inequality, we have used the Stirling inequality n! � ( n

e
)n. In

the third inequality, we have used that (1 + a
b
)b � ea . Finally,

in the last inequality of Eq. (9), we have used the lower bound
on M . By applying the last result to x = cyt , we finish the
proof of Proposition 1.

APPENDIX B: PROOF OF PROPOSITION 3

In Proposition 3, we estimate the error made when approx-
imating the equation

∂tρ(t) =
∫ t

0
ds K(t,s)Lρ(s) (B1)

by the equation which corresponds to the semi-Markovian
process

∂tρ(t) =
∫ t

0
ds H (t,s)[Eλ − I]ρ(s), (B2)

where H (t,s) = K(t,s)/λ and Eλ = eλL, with the same initial
condition for both equations. Let us denote by ρ1(t) and ρ2(t)
the solutions to Eqs. (B1) and (B2), respectively. Considering
the corresponding Volterra equations, we can upper bound the
distance between ρ1(t) and ρ2(t),

‖ρ1(t) − ρ2(t)‖1

=
∥∥∥∥

∫ t

0
ds k(t,s)

(
Lρ1(s) − [eλL − I]

λ
ρ2(s)

)∥∥∥∥
1

=
∥∥∥∥

∫ t

0
ds k(t,s)

(
L[ρ1(s) − ρ2(s)] − 1

λ

∞∑
i=2

(λL)i

i!
ρ2

)∥∥∥∥
1

�
∫ t

0
ds k(t,s)‖L‖‖ρ1(s) − ρ2(s)‖1

+ λ2‖L‖2eλ‖L‖

2

∫ t

0
ds h(t,s)‖ρ2(s)‖1, (B3)

where we have used the definitions h(t,s) ≡ ∫ t

s
dτ H (τ,s) and

k(t,s) ≡ ∫ t

s
dτ K(τ,s). In Eq. (B3), we have used the triangle

inequality and, then, the Lagrange bound for the Taylor series
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truncation on the last term, i.e.,
∑∞

i=2
λi‖L‖i

i! � λ2‖L‖2

2 eλ‖L‖.
As in Proposition 1, we can now bound ‖ρ2(s)‖1 by us-
ing the Grönwall’s inequality from Theorem 1: ‖ρ2(s)‖1 �
e
∫ s

0 dτ h(s,τ )‖Eλ−I‖, with ‖ρ(0)‖1 = 1. At this point, we can
bound the second term in Eq. (B3), obtaining

‖ρ1(t) − ρ2(t)‖ �
∫ t

0
ds k(t,s)‖L‖‖ρ1(s) − ρ2(s)‖1

+ λ2‖L‖2eλ‖L‖

2‖Eλ − I‖ (e
∫ t

0 ds h(t,s)‖Eλ−I‖ − 1).

(B4)

Here, we have used that h(s,τ ) � h(t,τ ), for s � t , and
performed the integration. The second term in Eq. (B4) is
positive and nondecreasing in time, so we can apply the
Grönwall’s inequality from Theorem 1,

‖ρ1(t) − ρ2(t)‖1 � λ2‖L‖2eλ‖L‖

2‖Eλ − I‖ (e
∫ t

0 ds h(t,s)‖Eλ−I‖ − 1)

×e
∫ t

0 ds k(t,s)‖L‖ � λ‖L‖2eλ‖L‖

2‖Eλ − I‖/λ (ect‖Eλ−I‖/λ − 1)ect‖L‖,

(B5)

where we have set h(t,s) = k(t,s)/λ and we have assumed
k(t,s) � c.

Finally, let us consider two parameter regimes:
(1) First regime. For c‖L‖t � 1/e, the expression in

Eq. (B5) is bounded by ε, provided that λ � log( 1
c‖L‖t ) ε

‖L‖ ,

λ‖L‖2eλ‖L‖

2

ect‖Eλ−I‖/λ − 1

‖Eλ − I‖/λ ect‖L‖ � e

2
λ‖L‖c‖L‖teλ‖L‖

� e

2
log

(
1

c‖L‖t
)

(c‖L‖t)1−εε � ε,

where we have used in the first inequality that z ≡
ct‖Eλ−I‖/λ�ct(eλ‖L‖−1)/λ � ct‖L‖eλ‖L‖�(ct‖L‖)1−ε<

e−1/2, in order to apply the inequality (ez − 1)/z <

e1/2ee−1/2 − 1 < e1/2 (0 � z < e−1/2), and the last inequality
holds for ε < 1/2.

(2) Second regime. For c‖L‖t > 1/e, the expression in
Eq. (B5) is bounded by ε, provided that λ � e−(1+eε )c‖L‖t

c‖L‖2t
ε.

In fact, for this parameter choice, we have that λ‖L‖ < ε,
which implies ‖Eλ − I‖/λ � (eλ‖L‖ − 1)/λ � eε‖L‖. Hence,
the relation

λ‖L‖2eλ‖L‖

2

ect‖Eλ−I‖/λ − 1

‖Eλ − I‖/λ ect‖L‖ � λ(c‖L‖2t)eλ‖L‖

2

× ect(‖Eλ−I‖/λ+‖L‖) � eε

2
ε � ε

holds. Here, we have used in the first inequality that (ez −
1)/z < ez, applying it to z ≡ ct‖Eλ − I‖/λ, and the last
inequality holds for ε < 1/2.

APPENDIX C: OBSERVABLE DECOMPOSITION IN SUM
OF UNITARY MATRICES

Any observable O can be decomposed as a sum of two
unitary matrices Ua and Ub, as O = Ua + γUb, with γ > 0
and ‖O‖ � 1 + γ [8]. The first step is the diagonalization
of O, O = V DV †, and obtain the equations for ai and bi ,
the eigenvalues of Ua and Ub, as a function of γ and di , the
eigenvalues of O, as follows:

di = ai + γ bi, |ai | = 1, |bi | = 1. (C1)

The eigenvalues are decomposed into real and imaginary parts,

Re(ai) = d2
i − γ−
2di

, Im(ai) =
√

−d4
i + 2d2

i γ+ − γ 2−
2di

,

Re(bi) = d2
i + γ−
2diγ

, Im(bi) =
√

−d4
i + 2d2

i γ+ − γ 2−
2diγ

,

with γ± = γ 2 ± 1, and the unitary matrices obtained,

(Ua(b))ij = V
†
inan(bn)Vnj . (C2)

There is a restriction imposed by the fact that the imaginary
parts of a and b have to be real numbers, which translates into
the condition

|−1 + di | � γ � 1 + di. (C3)
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