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Unpredictability, or randomness, of the outcomes of measurements made on an entangled state can be certified
provided that the statistics violate a Bell inequality. In the standard Bell scenario where each party performs a
single measurement on its share of the system, only a finite amount of randomness, of at most 4 log2 d bits, can be
certified from a pair of entangled particles of dimension d . Our work shows that this fundamental limitation can
be overcome using sequences of (nonprojective) measurements on the same system. More precisely, we prove
that one can certify any amount of random bits from a pair of qubits in a pure state as the resource, even if it is
arbitrarily weakly entangled. In addition, this certification is achieved by near-maximal violation of a particular
Bell inequality for each measurement in the sequence.
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Introduction. Bell’s theorem [1] has shown that the predic-
tions of quantum mechanics demonstrate nonlocality. That
is, they cannot be described by a theory in which there
are objective properties of a system prior to measurement
that satisfy the no-signaling principle (sometimes referred to
as “local realism”). Thus, if one requires the no-signaling
principle to be satisfied at the operational level then the
outcomes of measurements demonstrating nonlocality must
be unpredictable [1–3]. This unpredictability, or randomness,
is not the result of ignorance about the system preparation but
is intrinsic to the theory.

Although the connection between quantum nonlocality (via
Bell’s theorem) and the existence of intrinsic randomness is
well known [1–4] it was analyzed in a quantitative way only
recently [5,6]. It was shown how to use nonlocality (probability
distributions that violate a Bell inequality) to certify the
unpredictability of the outcomes of certain physical processes.
This was termed device-independent randomness certification,
because the certification only relies on the statistical properties
of the outcomes and not on how they were produced. The
development of information protocols exploiting this certified
form of randomness, such as device-independent randomness
expansion [5–7] and amplification protocols [8,9], followed.

Entanglement is a necessary resource for quantum nonlo-
cality, which in turn is required for randomness certification.
It is thus crucial to understand qualitatively and quantitatively
how these three fundamental quantities relate to one another.
In our work, we focus on asking how much certifiable
randomness can be obtained from a single entangled state
as a resource. Progress has been made in this direction for
entangled states shared between two parties, Alice (A) and Bob
(B), in the standard scenario where each party makes a single
measurement on his share of the system and then discards it.
An argument adapted from Ref. [10] shows that either of the
two parties, (A) or (B), can certify at most 2 log2 d bits of

*florian.curchod@icfo.es
†markus.johansson@icfo.es

randomness [11], where d is the dimension of the local Hilbert
space the state lives in, which in turn implies a bound of 4 log2 d

bits when the two outputs are combined. This demonstrates
a fundamental limitation for device-independent randomness
certification in the standard scenario. The main goal of our
work is to show that this limitation on the amount of certifiable
random bits from one quantum state can be lifted. To do this
we will consider the sequential scenario, where sequences of
measurements can be applied to each local system. Our main
result is to prove that an unbounded amount of random bits
can be certified in this scenario.

To gain intuition, consider the following setup where,
contrary to the device-independent approach followed here,
the functioning of a device can be entirely trusted. The device
consists of a quantum state prepared in the Pauli-Z or σz

eigenstate |0〉 followed by a measurement in the Pauli-X
or σx basis {|±〉 = (|0〉 ± |1〉)/√2}. The outcome of this
measurement is random and if the device then makes another
measurement on the output state, this time in the Pauli-Z
basis, it gives yet another random outcome. In this fashion
of alternating between the two orthogonal bases, one can
potentially obtain an unbounded number of random bits from
one qubit. The limitation of this procedure for producing
random numbers is that one cannot distinguish this device from
a classical one with preprogrammed outcomes—a local model
for the outcomes—if one does not fully trust the functioning
of the device.

Clearly we cannot certify any randomness from a single
system (in a device-independent manner) as in the above
example, since one needs nonlocality for this purpose. But is it
possible to build a scheme that exploits nonlocality and makes
use of this idea of measuring the state repeatedly to overcome
the bound on the amount of certifiable randomness that one
can obtain from a single entangled quantum system? To do
so, the main obstacle comes from the fact that the local mea-
surements needed to generate the random outcomes destroy
the entanglement present in the state (and nonlocality in the
correlations). Thus, one of the challenges is to come up with
nondestructive measurements that still produce nonlocality but
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retain some entanglement in the postmeasurement state. In this
way, the state can still be used as a resource for subsequent
measurements.

Bell tests with sequences of measurements have received
less attention than the standard ones with a single measurement
round in the literature despite the novel features in this
scenario [12], as for example the phenomenon known as
hidden nonlocality [13]. In our work we show that they prove
useful in the task of randomness certification, which also
provides another example [11] where general measurements
can overcome limitations of projective ones. More precisely,
we describe a scheme where any number m of random bits are
certified using a sequence of n > m consecutive measurements
on the same system. This work thus shows that the bound of
4 log2 d random bits in the standard scenario can be overcome
in the sequential scenario, where it is impossible to establish
any bound. The unbounded randomness is certified by a
near-maximal violation of a particular Bell inequality for each
measurement in the sequence. Moreover, for any finite amount
of certified randomness, our protocol has a finite (yet very
small) noise robustness.

Sequential measurements scenario. Before presenting our
results, let us introduce the scenario we work in. We carry over
many of the features from the standard scenario except now we
allow party B to make multiple measurements in a sequence
on his share of the state. One can visualize this as in Fig. 1
where B is split up into several Bs, each one corresponding
to a measurement made on the state and labeled by Bi, i ∈
{1,2, . . . ,n}, where n is the total number of measurements
made in the sequence. Each Bi makes one measurement
and the postmeasurement state is sent to Bi+1. We organize
the Bobs such that Bi is doing his measurement before Bj

for i < j . Thus in principle Bj can receive the information
about the inputs and outputs of previous measurements Bi for
all i < j .

To quantify the randomness produced in the setup, we
put the above scenario in the setting of nonlocal guessing
games (e.g., Refs. [11,14–16]). Let us consider an additional
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FIG. 1. The standard scenario where parties A and B make a
single quantum measurement on their share of the state and discard
it versus the sequential scenario where the second party B makes
multiple measurements on his share.

adversary Eve (E) who is in possession of a quantum system
potentially correlated to the one of A and B. The global
state is denoted ρABE . We assume that at each round of
the experiment, E is the one preparing the state ρABE and
distributes ρAB = TrEρABE to A and B. This state will
be used to make the measurements in the sequence and
the aim of E is to try to guess B’s outcomes by using
measurements on her share of the state ρABE . The parties
A and Bi , having no knowledge about the state or the real
measurements made on it, see their respective devices as
black boxes that receive some classical input x ∈ {0,1} and
yi ∈ {0,1}, y1,y2, . . . ,yn ≡ �y, respectively, and that generate a
classical output a ∈ {±1} and bi ∈ {±1}, (b1,b2, . . . ,bn) ≡ �b,
respectively (see Fig. 1). They generate statistics from multiple
runs of the experiment to obtain the observed probability
distribution Pobs with elements pobs(a,�b|x,�y). This distribution
Pobs lives inside the set of quantum correlations Q obtained
from measurements on quantum states in a sequence as we
described. This set is convex and thus can be described in
terms of its extreme points, denoted Pext, and any Pobs can be
written as Pobs = ∑

ext qextPext, where
∑

ext qext = 1 and every
qext � 0.

From studying the outcome statistics only we can bound E’s
predictive power by allowing her to have complete knowledge
of how Pobs is decomposed into extreme points, i.e., she
knows the probability distribution qext over extreme points Pext.
This predictive power is quantified via the device-independent
guessing probability (DIGP) [14] where we fix the particular
input string y0

1 ,y0
2 , . . . ,y0

n ≡ �y0 for which E has to guess
the outputs �b. The DIGP, denoted by G(�y0,Pobs), is then
calculated as the optimal solution to the following optimization
problem [15,16]:

G(�y0,Pobs) = max
{qext,Pext}

∑

ext

qext max
�b

pext(�b|�y0),

subject to

pext(�b|�y0) =
∑

a

pext(a,�b|x,�y0), ∀ x, (1)

Pobs =
∑

ext

qextPext, Pext ∈ Q. (2)

The operational meaning of this quantity is clear: Eve has a
complete description of the observed correlations in terms of
extreme points. She then guesses the most probable outcome
for each extreme point. The standard scenario with a single
measurement round can also be represented in this formalism
by simply considering that �b = b and �y(0) = y(0). To quantify
the amount of bits of randomness that is certified, we use the
min entropy H (�y0,Pobs) = − log2 G(�y0,Pobs) which returns m

bits of randomness if G(�y0,Pobs) = 2−m. The amount of bits
of randomness quantified in this way is the figure of merit in
this work and our goal is to obtain as many bits as possible
from a single system.

In what follows, problem (2) is relaxed to an optimization
where instead of insisting on Pobs = ∑

ext qextPext (2), we only
impose that the observed statistics Pobs give a particular Bell
inequality violation [5]. The optimal solution to this new
problem is an upper bound to the optimal solution of Eq. (2).
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Crucially, this relaxation still gives good bounds as shown
below.

Before presenting our results, it is worth explaining why the
causal constraints imposed by the sequential scenario make it
stronger than standard Bell tests. At first sight, one could be
tempted to group all the measurements in the sequence into a
single box receiving an input string �yn to output another string
�bn, as in a standard Bell test. However, in general a sequence of
measurements cannot be represented as a single measurement.
To understand this, note that in the sequential scenario the
outcome bi can depend only on variables produced in its
past, namely, the input choices y1,y2, . . . ,yi and the outcomes
b1,b2, . . . ,bi−1 that were previously obtained. However, in the
single measurement scenario, the measurement box receives
all inputs and produces all outputs at once. In particular,
outcome bi can now be a function of input choices yj>i and
outcomes bj>i that are produced in the future. That is, such a
big box may violate the physical constraints coming from the
sequential arrangement and the assumption that signaling from
the future to the past is impossible. These additional causality
constraints further limit Eve’s predictability with respect to a
standard Bell test and are responsible of the unbounded amount
of certified randomness.

Ingredients. Alice and Bob share the pure two-qubit state

|ψ(θ )〉 = cos(θ )|00〉 + sin(θ )|11〉 (3)

that for all θ ∈]0,π/2[ is entangled. In Ref. [14], a family of
Bell inequalities was introduced:

Iθ = β〈B0〉 + 〈A0B0〉 + 〈A1B0〉 + 〈A0B1〉 − 〈A1B1〉, (4)

where β=2 cos(2θ )/[1 + sin2(2θ )]1/2, 〈By〉=p(b= + 1|y) −
p(b = −1|y) and 〈AxBy〉 = p(a = b|xy) − p(a 	= b|xy) for
x, y ∈ {0,1}. This family of inequalities has the following
two useful properties: First, its maximal quantum violation,
Imax
θ = 2

√
2
√

1 + β2/4, is obtained by measuring the state (3)
with the measurements

A0 = cos μσz + sin μσx, B0 = σz,

A1 = cos μσz − sin μσx, B1 = σx, (5)

where tan μ = sin(2θ ). Second, when maximally violated, the
inequality certifies one bit of local randomness on Bob’s
side for his second measurement choice y0 = 1: G(y0 =
1,P max

obs ) = 1/2 [14]. These observations are possible because
the maximal violation is uniquely achieved by the probability
distribution P max

obs that arises from the previously described
state and measurements (3) and (5). Therefore, for the maximal
violation, P max

obs = Pext in (2) and the guessing probability for
input choice y0 = 1 is equal to 1/2.

However, in general we may not get correlations that
maximally violate our Bell inequality but give a violation
that is only close to maximal. In Secs. 1, 2, and 3 (found
in the Supplemental Material [17]) we show how to make
conclusions about the guessing probability for nonmaximal
violations. In particular, we show that for any Bell inequality
with a unique point of maximal violation, the guessing
probability is a continuous function of the value of the
inequality close to the maximal violation. This implies in the

particular case we are studying that

Iθ → Imax
θ ⇒ G(y0 = 1,Pobs) → 1

2 . (6)

In Sec. 6 in the Supplemental Material, we also provide a
numerical upper bound on the guessing probability G(y0 =
1,Pobs) by a concave function of the value of Iθ .

Bell inequalities (4) are the first main ingredient in our
sequential construction below. The second one is the use of
general, nonprojective measurements. Indeed, if B1 performs
a projective measurement on the shared entangled state,
the resulting postmeasurement state, now shared between
Alice and B2, is separable and thus useless for randomness
production. Consequently, one needs to consider nonprojective
measurements to retain some entanglement in the system
for the subsequent measurements. For this purpose, let us
introduce the following two-outcome quantum measurement
(written in the formalism of Kraus operators):

M±1(ξ ) = cos ξ |±〉〈±| + sin ξ |∓〉〈∓| (7)

corresponding to the two outcomes {±1}. This measurement
σ̂x(ξ ) ≡ {M†

+1M+1,M
†
−1M−1} can be understood as a general-

ization of the projective measurement σx . It varies from being
projective (for ξ = 0) to being noninteracting (for ξ = π/4).
One can verify that measuring an entangled state (3) for ξ ∈
]0,π/4] (nonprojective measurement) the post-measurement
state still retains some entanglement, irrespective of the
outcome. Therefore, by tuning the parameter ξ we are able
to vary the destruction of the entanglement of the state at the
gain of extracting information from it (cf. Ref. [18]): the closer
to being a projective measurement, the lower the entanglement
in the postmeasurement state, but the bigger the violation of
the initial Bell inequality.

Scheme for unbounded randomness certification. We now
combine the previous observations to demonstrate our main
result. First, let us recall that, as shown in [14], one can
obtain one bit of randomness from any pure entangled two
qubit state, irrespective of the amount of entanglement in it.
Moreover, one can verify that approximately one random bit
can be certified if the measurements are close to the ones in
Eq. (5) [in the sense that σ̂x(ξ ) is close to a measurement
of σx for B1 in Eq. (5)] since Iθ is then close to Imax

θ in
Eq. (6). Second, the measurement in Eq. (7) is only close
to projective for ξ close to zero and leaves entanglement
in the postmeasurement state between Alice and Bob which
is thus still useful for randomness certification. By repeated
use of these two properties we can certify the production of
an unbounded amount of random bits from a single pair of
entangled qubits. We now formally describe this process in
which Alice makes a single measurement on her share of the
state, whereas Bob makes a sequence of n measurements on
his.

Each Bi chooses between measurements of σz and σ̂x(ξi)
for inputs yi = 0 and yi = 1, respectively, with outcomes bi ∈
{±1}. The parameter ξi is fixed before the beginning of the
experiment. The initial entangled state shared between Alice
and Bob, before B1’s measurement, is |ψ (1)(θ1)〉 [see Eq. (3)
with θ = θ1]. If the first nonprojective measurement of the
operator σ̂x(ξ1) is made by B1 on the initial state |ψ (1)(θ1)〉,
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the postmeasurement state is of the form
∣∣ψ (2)

b1
(θ1,ξ1)

〉 = U
b1
A (θ1,ξ1) ⊗ V

b1
B (θ1,ξ1)(c|00〉 + s|11〉), (8)

where c = cos[θb1 (θ1,ξ1)] and s = sin[θb1 (θ1,ξ1)] and the two
unitaries, U

b1
A (θ1,ξ1) and V

b1
B (θ1,ξ1), and angle θb1 (θ1,ξi) ∈

]0,π/4] depend on the first outcome b1 and the angles θ1

and ξ1.
After his measurement, B1 applies the unitary (V b1

B )†,
conditioned on his outcome b1, on the postmeasurement state
going to B2. This allows B2 to use the same two measurements
σ̂ (ξ2) and σz independently of the outcome b1 since the
unitary (V b1

B ) is canceled in Eq. (8). This last procedure
will be applied by each Bi after his measurement, before
sending the postmeasurement state to the next Bi+1. If the
system passed through only the nonprojective measurements,
the state received by Bi can be one of 2i−1 potential states,
depending on all of the previous Bj ’s (j < i) outcomes [one
for each combination �bi−1 ≡ (b1,b2, . . . ,bi−1) of outcomes
obtained by the previous Bj , these can be computed before
the beginning of the experiment]. Any of these states can be
written as

∣∣ψ (i)
�bi−1

〉 = U
�bi−1
A ⊗ 1B

[
cos

(
θ�bi−1

)|00〉 + sin(θ�bi−1
)|11〉], (9)

where the angles θ�bi−1
and the matrix U

�bi−1
A both depend on the

outcomes �bi−1, on the initial angle θ1 and the angles ξj of the
previous Bj ’s with j < i. In the notation, we will always omit
the dependence on the angles θ1 and ξ1,ξ2, . . . ,ξj since these
are fixed before the beginning of the experiment. For each of
these different potential states with angle θ�bi−1

, Alice adds two
measurements to her input choices, where for k ∈ {0,1}, these

are measurements of the observables A
�bi−1
k which are defined

as

U
�bi−1
A

[
cos

(
μ�bi−1

)
σz + (−1)k sin

(
μ�bi−1

)
σx

](
U

�bi−1
A

)†
, (10)

where tan(μ�bi−1
) = sin(2θ�bi−1

), depending on the specific state

|ψ (i)
�bi−1

〉 in Eq. (9).
We are now ready to describe how the scheme certifies

randomness. The measurement operator σ̂x(ξi) can be made
arbitrarily close to σx by choosing ξi sufficiently small. This
brings the outcome statistics for measurements σ̂x(ξi),σz on

Bob’s side and A
�bi−1
0 ,A

�bi−1
1 on Alice’s side on the state in

Eq. (9), arbitrarily close to the statistics for the measurements
in Eq. (5) and a state of the form in Eq. (3), for θ = θ�bi−1

.
Therefore, the inequality Iθ�bi−1

for Alice and Bi as defined
in Eq. (4) can be made arbitrarily close to its maximal
violation. This in turn guarantees that the guessing probability
G(y0

i = 1,Pobs) can be made arbitrarily close to 1/2. Note
that this guessing probability does not only describe the

instances when Alice chooses the measurements A
�bi−1
j . Since

Eve does not know Alice’s measurement choices in advance
she cannot use a strategy that gives higher predictive power
for the instances when Alice chooses other measurements.
Finally, by making G(y0

i = 1,Pobs) sufficiently close to 1/2
for each i (by choosing each ξi sufficiently close to 0)
the DIGP G(y0

1 ,y
0
2 , . . . ,y0

n,Pobs) can be made arbitrarily

close to 2−n (see Sec. 5 in the Supplemental Material for
a proof).

At the end, Bob can produce m random bits by a
suitably chosen sequence σ̂x(ξi), i ∈ {1,2, . . . ,n}, of n > m

measurements. The certification only requires that each Bi

occasionally chooses the projective measurement σz so that
the whole statistics can be obtained. Note that Bob can choose
σz with probability γi and σ̂x(ξi) with probability 1 − γi for
γi as close to zero as he wants. Finally, note that the value of
each inequality Iθ�bi−1

between each Bi and A can be made as
close as wanted to the maximal value Imax

θ�bi−1
. Therefore, we can

certify randomness for each measurement Bi in the sequence
at the expense of increasing the number of measurements that
Alice chooses from.

This protocol can also be used to certify any finite amount
of randomness with some small but strictly nonzero noise
robustness. Indeed, assume the goal is to certify m random bits.
One can then run the protocol for m′ > m bits. By continuity,
when adding a small but finite amount of noise the protocol
will certify m random bits.

Conclusion. We have presented a scheme for certifying
an unbounded amount of random bits from a single pair
of entangled qubits in the scenario where one of the qubits
is subjected to a sequence of measurements. Our work
is in many respects a proof-of-principle result: First, it
requires an exponentially increasing number of measurements
on Alice’s side, namely,

∑n
i=1 2i = 2(2n − 1) measurement

choices for n measurements in the sequence. Second, the
result is based on a continuity argument and there is no
control on the noise robustness. All these issues deserve
further investigation. Finally, it is worth exploring how to
design device-independent randomness generation protocols
involving sequences of measurements. However, the sequen-
tial scenario is much more demanding from an implementation
point of view, because it requires quantum nondemolition
measurements. It is then unclear whether with present or
near future technology, sequential protocols will provide a
significant practical advantage over simpler protocols based
on standard Bell tests. However, the first experimental works
observing nonlocal correlations in the sequential scenario
have recently been reported [19,20]. In any case, the main
implications of our work are fundamental: It shows that a
single pair of pure entangled qubits is a potentially unbounded
source of certifiable random bits when performing sequences
of measurements on it.
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