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Exact non-Markovian master equation for the spin-boson and Jaynes-Cummings models
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We provide the exact non-Markovian master equation for a two-level system interacting with a thermal
bosonic bath, and we write the solution of such a master equation in terms of the Bloch vector. We show that
previous approximated results are particular limits of our exact master equation. We generalize these results to
more complex systems involving an arbitrary number of two-level systems coupled to different thermal baths,
providing the exact master equations also for these systems. As an example of this general case we derive the

master equation for the Jaynes-Cummings model.
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Understanding the dynamics of a two-level system (TLS)
coupled to an external environment is a ubiquitous problem
in physics, chemistry, and biology: Quantum optics, charge-
transfer processes, tunneling phenomena, and light harvesting
in photosynthetic systems are only a few fields where the
dissipative TLS covers a crucial role [1,2]. The spin-boson
model, i.e., a TLS interacting with a bosonic bath, is the
paradigm for the description of these open systems [3,4]. The
first step in the understanding of the spin-boson model is given
by the master equation in the Markovian approximation. The
validity of this master equation is restricted to those systems
for which the environment can be assumed as static (i.e.,
the environment time scale is much shorter than that of the
TLS). However, there are many processes where a Markov
description is not sufficient [5]. In order to describe these
systems one needs to consider a nonstatic bath, i.e., a bath that
keeps track of the interaction with the TLS. Accordingly, some
memory effects build up, and the dynamics is non-Markovian.
Several tentatives have been made to provide a non-Markovian
master equation for the spin-boson model, exploiting, e.g.,
the noninteracting-blip approximation [3], the time convolu-
tionless technique (TCL) [1,6], or the stochastic approach [7].
However, only approximated results were obtained. The lack of
an exact analytical description leads to investigate the problem
by means of numerical techniques, among which we mention
hierarchical equations of motion [8], a quasiadiabatic path
integral [9], effective modes [10], real-time renormalization
group (RG) in frequency space [11,12], real-time functional
RG [12,13], time-dependent density-matrix RG [14], and
time-dependent numerical RG [15,16].

Another paradigmatic model is the (multimode) Jaynes-
Cummings model [17], which differs from the spin-boson
model only for the type of coupling between the TLS and
the environment. This model is widely used in quantum optics
and cavity QED [18]. Also the derivation of a non-Markovian
master equation for the Jaynes-Cummings model proved very
difficult: An exact result has been obtained only for a bath in
the ground state [1,19], whereas for a general thermal bath
only approximated master equations are known.

In this Rapid Communication, we provide the solution for
this long-standing problem by deriving the exact (analytical)
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non-Markovian master equation for the spin-boson model
and by solving it in terms of the Bloch vector. Moreover,
we provide the non-Markovian master equation for the
Jaynes-Cummings model, and we extend our results to more
complicated systems, such as the Tavis-Cummings model [20]
and the Jaynes-Cummings-Hubbard model [21].

The Hamiltonian of the spin-boson model can be writ-
ten as follows [3): H = Hy + H; + Hg, where Hjp is the
Hamiltonian of the bath-independent bosons and I:IO and ﬁl,
respectively, are system and interaction Hamiltonians:

A

H0=——Aha~*+ 6° (D

l\)|>—‘

H = %a%'ai, 2
where 6’s are Pauli matrices, §;’s are the positions of the bath
oscillators, and ko,c’ are arbitrary real coupling constants. A
and €, respectively, are the detuning and dephasing constants
(our result still holds if these are time-dependent functions).
For this reason, when A =0 the model is called “pure
dephasing,” and when € = 0 is said to be “pure detuning.”
The Einstein sum rule is understood. We assume the initial
state of the open system to be factorized and the bosonic
bath to be in a thermal state at temperature 7. This can fully
be characterized either by the environment spectral density
J(w) or by its Hermitian two-point correlation function D(z,s),
which are linked by well-known expressions [1],

DRt )—h/ood J(@) th(hw> t —s)
,8) = A w J(w)co k5T COS w s),
3)
D™(t,s) = —h /ooda) J(w)sin w(t — s), 4)
0

where DR® and D™, respectively, are real symmetric and
imaginary antisymmetric parts of D and kp is the Boltzmann
constant. We introduce the left-right (LR) formalism [22,23],
denoting by a subscript L (R) the operators acting on p from
the left (right), e.g., A Bgp = ApB. In a recent paper [23]
the most general trace preserving completely positive non-
Markovian map M, has been derived such that 5, = M 190-
For a bilinear system-bath interaction of the type H,
Aig; (with A’ as the Hermitian system operators and & as
the Hermitian linear combinations of the bath modes), in the
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interaction picture such a map reads

t t
M, =T exp{/ dr/ ds Dji(t,s)
0 0

x [A% (5) A% (T)—0:s A) (1) AR (5) 0, Al () A (D)] }

®)

where 0, denotes the step function that is 1 for t > s and the
two-point correlation function is D;; = Trg [é)iqs iopl. In the
spin-boson interaction Hamiltonian (2), the TLS is coupled
to the environment via %koﬁz. Hence, one just needs to
define ¢, = c¢'g; and perform the substitution A — %koéz
(there is only one A) to obtain the correct map. After some
manipulation, one finds that the completely positive map
describing the spin-boson model reads

M =T exp{ —/ de[61(7) — 6x(D)]
0

x /rds D(r,s)&L(s)—D*(r,s)éR(s)}, (6)
0

where the asterisk denotes complex conjugation. In order
to simplify the notation, we have dropped the index z, and
we have absorbed the factor %ko in 6. We observe that, by
choosing a local correlation function D(t,s) = D(7)8(t — s),
one obtains the Markovian map [1],

M,=Texp{ / dt D(r)[aL<r>aR<r>—i]}, (7)
0

where I denotes the identity operator. Differentiation of Eq. (7)
provides the well-known Lindbald equation. In order to obtain
the non-Markovian master equation we need to differentiate
the general M; of Eq. (6) and express M, in terms M,.
This goal is hard to achieve because the double integral in the
exponent of M, is such that M, displays the time ordering of
nonlocal arguments. This problem is overcome by exploiting
Wick’s theorem [24]. We expand the map M, (6) in the Dyson
series,
o0

M=) E e, ®)

n!

n=0

where M' = T[[]/_, ¢;] and
t
O; =/ dt;[610(t;) — 6r(1:)]
0

X /idsi[D(ti’Si)a'L(si)_D*(ti»si)a—R(Si)L &)
0

By differentiating M;' one finds
M} = nl[61.(t) = 6r(1)]

x T[ / ds\[D(1,51)81.(51) — D*(1,51)8r(s1)] Hoi}.
0

i=2
(10)

The main difference between M and M is that the former
are the time-ordered products (7" products) of an even number
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of &, whereas the latter display odd-T products. Here is where
Wick’s theorem enters the calculations, allowing us to rewrite
each Mt" as a sum of even-7 products that are eventually
rewritten in terms of M;'. We note that different 6’s acting
on the same side of p (;,gr) anticommute with each other,

whereas mixed contributions (; g) commute
[61,6r] = 0. (11)

{61,610} = {6r,6r} =0,

Accordingly, a Wick contraction is defined as follows [24]:

61(s1)8L(52) = 6r(51)FR(52)

= —{6(51),6(52)}05,.5, 12)
61(s51)6r(s2) = 0. 13)

Since Hy of Eq. (1) gives linear Heisenberg equations for 67,
these contractions are ¢ functions. This is a crucial feature
because it implies that contractions commute with the T
ordering. Moreover, according to Egs. (12) and (13) the
contraction of two &’s separated by a product of né between
them is

6L(s1)( - )6L(s2) = (=1)" 61(51)61(52)(- - -), (14)

where m < n is the number of G6;’s contained in (---)
(similarly for R contractions). These prescriptions allow us
to rearrange the odd-T product of Eq. (10) exploiting Wick’s
theorem. Precisely, this is decomposed in an even-7 product
(that can be linked to M;) plus another odd-T product of
lower order with the same structure as the second line of
Eg. (10). This procedure provides us with a rule that we can
apply recursively to M}, allowing us to decompose it in terms
of even-T products. The calculations are rather involved and
require some delicate manipulation. We report the details of the
derivation in the Supplemental Material [25]. The final result
is the following integral master equation (the full notation has
been restored):

2

. k
b= —f[frz(t) —65)]

X |:[ ds D, (t,5)67(s) — DZ(I,S)&R(S)},@,, (15)
0

where
[o¢]
Dee =Y (=)' Do), (16)
n=1

The explicit expressions of the D, ’s are reported in
Ref. [25]. The last step of our derivation is to provide a master
equation that displays only operators at time . We do so by
solving the Heisenberg equations for Hy: Since these are linear
we can write

&6'(s) = bli(s — &' (1), (17)

where the indices i, j run over the components x,y,z of the
TLS and b is a real matrix (for explicit expressions of its
entries see Ref. [25]). Substituting this expression in Eq. (15)
one obtains

pr = —[67() — 65(O][Bi(1)6] (1) — B (1)6%(1)]fr, (18)
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with
2
B;(1) = %
It is interesting to observe that the operators displayed by this
master equation are as follows: the coupling operator (6°) and
the operators which are involved in the free evolution of the
coupling operator [6' through Eq. (17)]. We further stress that
Eq. (18) has the same structure as the bosonic case [26]: The
difference between the two cases is encoded in the structure
of the functions B. Moreover, in the weak-coupling limit,
these functions for the TLS and the bosonic case coincide as
expected [1]. Resorting to the Schrodinger picture and writing
all the terms explicitly one eventually obtains

b = —ilHi(0O)p — p A ()] — BR@)67,167, 111
+ By (1)6” 67 + BE,(1)67 5,67
+ B, (1) p,67 + B: ()67 6",

/ ds D, (t,9)bi(s —1). (19)
0

(20)

where H,(t) = Hy + B, ()67 — B.,(t)6*. This is the exact
non-Markovian master equation for the spin-boson model. We
stress that all the functions displayed by this master equation
are analytical. Moreover, if one chooses time-dependent
dephasing or detuning in Hy, Eq. (17) still holds and so
does this master equation. The first line of Eq. (20) displays
a Lamb-shifted Hamiltonian and a dephasing term which
changes only the nondiagonal entries of p;. The tunneling
dynamics is driven by the second and third lines of Eq. (20):
These terms modify the populations of excited and ground
states of the TLS. This master equation recovers, in the
appropriate limits, the results known in the literature. For the
full Hamiltonian (1) the master equation for the spin-boson
model is known in the weak-coupling limit [27]: In this same
limit (i.e., D = D), our exact master equation recovers that.
The only exact master equation known in the literature is the
one for the pure dephasing model, described by Eq. (1) with
A = 0. The master equation for this model is quite easy to
derive because I:Io and ﬁ; commute. One can easily check
that under this restriction b =05 =0, b:=1,and D = D,
that substituted in Eq. (20) lead to

2 1
b= —iS16%5] — k—O(/ D(r,s)ds>[az,[6iﬁfn, 1)
2 4\ Jo
which recovers the known master equation for this model
[1,28]. Another interesting special case is the pure detuning
model, i.e., Eq. (1) with € = 0. The master equation for this
model is obtained simply by setting B,, = 0 in Eq. (20). Such
an exact master equation was not known, but if we restrict
ourselves to the weak-coupling limit we recover previously
known approximated results [29,30]. We further stress that
Eq. (20) also provides the master equation for the Rabi model
[1,31]: One simply needs to consider a “one-oscillator bath”
by taking a §-correlated spectral density in Egs. (3) and (4).
In order to solve Eq. (20) it is convenient to introduce the
following identity:

pr = AT+ (0;(1))6'],

where the vector with components (o;) is known as a Bloch
vector. Substituting this equation in Eq. (20), after some

(22)
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FIG. 1. Evolution of BZRZe for an increasing number of terms in
the series (16) for D. The dotted line is n = 1, and the dashed line
is n = 2. The solid lines, respectively, are as follows (bottom to
top): n = 3 (purple), n = 4 (blue), n = 5 (red), and n = 6 (green).
Bath with ohmic spectral density and Gaussian cutoff: J(w) =
27w exp[—w?A~%]. Other parameters are as follows: € = 10, A =
€, k3 = 0.04¢, kT = 0.1¢, and A = 2e.

calculation, one finds that the Bloch vector evolves according
to the following equation:

d i,
E“’f(’” = BY(t){0;(1)) + Zi(1), (23)
withi,j = x,y,z, & = (—4B§T,4B;‘1,O), and
—4BY ¢ 4BRe
B= € —4BR*  4BX +hA (24)
0 —hA 0

This matrix recovers known results for the pure dephasing and
pure detuning models [6]. However, unlike these special cases,
the solution of the set of equations (23) with (24) is nontrivial.
In general, the dynamics of g, strongly depends on the bath
spectral density and on the other parameters of the model. This
important issue will be investigated in a dedicated forthcoming
paper. Figure 1 shows the time evolution of Bf;(t) for an
increasing number of terms in the series (16) for D (fromn = 1
to n = 6). The black lines denote previously known results:
The dotted line is for the weak-coupling limit (or second-order
TCL), and the dashed line is for the fourth-order TCL (known
for the pure detuning model only [6]). The colored (solid)
lines are the original result of this Rapid Communication:
The distance between the dashed line (n = 2) and the green
one (top solid line, n = 6) clearly shows how previous results
are improved. Moreover, besides small numerical errors, red
(n =5) and green (two top solid) lines coincide, showing
quite fast convergence of the series (16). The evolution of
the other coefficients of the master equation (20) display a
similar convergence [25].

The method we presented can be exploited to obtain more
general master equations. Indeed, the map (5) provides the
evolution for an interaction Hamiltonian of the type,

Hy =6'¢; 25)
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[of which Eq. (2) is a special case]. The superscript i can
be intended as running over different TLSs or as different
components (x, y,z) of the same system (or both these options).
One can then repeat the calculations previously described in
the spirit of Ref. [26] and obtain the following master equation
in the interaction picture:

pr = —[61(1) — 6k [Bi ()6} (1) — Bj;()65(D)] 1, (26)

where we have to keep in mind that the correlation function
has been promoted to a matrix D;;, which implies

B,j(t):/ ds Dy (t,5)b(s — 1). 27)
0

This exact non-Markovian master equation allows describing
many models of which only approximate master equations
(or none) are known. Interesting examples falling in this
category are the Tavis-Cummings model [20] and the Jaynes-
Cummings-Hubbard model [21]. We however stress that a cru-
cial requirement is that the free Hamiltonian Hy must provide
linear Heisenberg equations, otherwise Wick’s contractions
would not be ¢ functions (and the formalism would fail).
Accordingly, spin chains are excluded from our treatment
[25]. We exploit this general result to attain the dynamics
for the Jaynes-Cummings model which covers a fundamental
role in the theories of quantum optics and cavity QED [18].
The interaction Hamiltonian for this model is obtained by
applying the rotating-wave approximation to Eq. (2), and it
reads

—hg( Za,+a ZA*) 28)

where 6+ = 6* +i6”. The free Hamiltonian for this model
is Hy = wy6+6~ [our formalism also allows treating the
more general ﬁo of Eq. (1)]. Since our formalism works with
Hermitian operators, we rewrite this Hamiltonian as follows:

A h : R At ny A n
HI=;[6A2(aj+a})+g}zl(aj_a}):|' 29)
j J

One observes that, although the Jaynes-Cummings coupling is
an approximation of the standard spin-boson interaction (2), it

is of the general form (25). We define ¢, = Zj(&j + &}) and
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by=i> ;- &T), and we exploit (26) to obtain

/,).\z = _l(w() + B )[ ,,6]
(BRe Blm)( ,(35‘+ %{5‘_'_6'_,,6})
+(BX +BY)(6Fp6~ —316767.5}).  (30)

The new functions B are defined by Eq. (27), and their
expressions are analytical. One can check that, if the bath is
in its ground state (i.e., its temperature is zero), the following
identity holds: BYY = —B|, and Eq. (30) recovers the known
master equation in this limit [1,19,32]. In Refs. [32,33] the
authors provided an approximated master equation up to
the fourth-order TCL for a larger class of initial bath states
(namely, those commuting with the number operator). Their
master equation differs from ours by a dephasing contribution
of the type 6°p6°. Equation (30) proves that such a contribu-
tion is null for thermal states. Precisely, a coupling of the type
(28) will never display a contribution, such as 6°p6%, because
one of the two operators multiplying § must always be the
coupling operator [as explained after Eq. (19)]. If one considers
a more general Hy, such as that of Eq. (1), one obtains contri-
butions of the type 6567, i.e., displaying at most one &°.

In this Rapid Communication, we provided the solution
of a long-standing problem, i.e., the exact non-Markovian
master equation for the spin-boson model. We solved such a
master equation, and we showed that our exact result recovers
all known approximated results. Furthermore, we proved that
the powerful formalism we developed allows for investigating
more complicated systems that possibly involve more TLSs.
As an example we provided the master equation for the
Jaynes-Cummings model. Since the models investigated are
the cornerstones for the analysis of more complicated systems,
the results of this Rapid Communication will pave the way for
research on such systems, both under the analytical and under
the numerical points of view.
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