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Characterization of the quantum phase transition in a two-mode Dicke model
for different cooperation numbers
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We show how the use of variational states to approximate the ground state of a system can be employed to
study a multimode Dicke model. One of the main contributions of this work is the introduction of a not very
commonly used quantity, the cooperation number, and the study of its influence on the behavior of the system,
paying particular attention to the quantum phase transitions and the accuracy of the used approximations. We
also show how these phase transitions affect the dependence of the expectation values of some of the observables
relevant to the system and the entropy of entanglement with respect to the energy difference between atomic
states and the coupling strength between matter and radiation, thus characterizing the transitions in different
ways.
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I. INTRODUCTION

Quantum phase transitions (QPTs) are informally seen as
sudden, drastic changes in the physical properties of the ground
state of a system at zero temperature due to the variation of
some parameter involved in the modeling Hamiltonian. One
model of particular interest for the study of such phenomena
is the Dicke model [1], as it describes, in a simplified way
(electric dipole approximation), the interaction between matter
and electromagnetic radiation. In 1973, Hepp and Lieb [2,3],
and Wang and Hioe [4] first theoretically proved the existence
of a second-order QPT in the Dicke model. To date, this
QPT has been experimentally observed in a Bose-Einstein
condensate coupled to an optical cavity [5,6] and it has been
shown to be relevant to quantum information and quantum
computing [7–10].

Even though the formal definition of a QPT requires us to
compute the ground state’s energy as a function of any desired
parameter in order to find its transition values, one of the main
contributions of this work is to show how the QPT in the Dicke
model influences the behavior of other quantities relevant to the
system, thus characterizing the transition in different, simpler
ways.

A. Quantum phase transitions

The formal definition of the concept of “quantum phase”
that we will be using throughout this paper is that of an
open region R ⊆ R� where the ground state’s energy E0,
as a function of � parameters involved in the modeling
Hamiltonian, is analytic. Thus a QPT is identified by the
boundary ∂R of the region at which ∂nE0

∂xn is discontinuous
for some n (known as the order of the transition).

Notice that in the previous definition, for the sake of
generality, we did not consider the thermodynamic limit, as
it has been shown that interesting phenomena regarding QPTs
occur even for a finite number of particles [11,12].
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B. Modeling Hamiltonian

The Hamiltonian (Dicke’s Hamiltonian) describing the
interaction, in a dipolar approximation, between N two-level
identical atoms (same energy difference between the two
levels) and one mode of an electromagnetic field in an ideal
cavity, has the expression (h̄ = 1),

HD = ωAJz + �a†a − γ√
N

(J− + J+)(a + a†). (1)

Here, ωA is the energy difference between the atomic levels,
� is the frequency of the field’s mode, γ is the dipolar coupling
constant, Jz, J−, J+ are the collective spin operators, and a,
a† are the annihilation and creation operators of the harmonic
oscillator. The multimode Hamiltonian is obtained summing
over the number k of modes [13], and has the expression,

H = ωAJz +
k∑

ı=1

�ıa
†
ı aı − 1√

N

k∑
ı=1

γı(J− + J+)(aı + a†
ı ).

(2)

The k modes of the electromagnetic field are described in
terms of annihilation and creation operators for each mode aı ,
a
†
ı , acting on the tensor product of k copies of the Fock space⊗k

ı=1 Fı and satisfying the commutation relations,

[aı,a
†
j ] = δıj , [aı,aj ] = [a†

ı ,a
†
j ] = 0. (3)

A two-level atom is described using the 1
2 -spin matrices

Sz = 1
2σz, S± = 1

2 (σx ± iσy) (σx , σy , and σz being the Pauli
matrices), which act on a two-dimensional complex Hilbert
space C2 and satisfy the commutation relations,

[S+,S−] = 2Sz, [Sz,S±] = ±S±. (4)

When considering a system of N two-level atoms, we use
the collective spin operators Jz, J−, J+ defined as

J� = S� ⊗ I
⊗(N−1)
2 + I2 ⊗ S� ⊗ I

⊗(N−2)
2

+ · · · + I
⊗(N−2)
2 ⊗ S� ⊗ I2 + I

⊗(N−1)
2 ⊗ S�, (5)

where I2 is the identity operator on C2 and � ∈ {z, − ,+}.
These collective spin operators satisfy the commutation
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FIG. 1. Energy of the ground state as a function of γ2 obtained using CS [dark gray dashed (red online)], SAS with CS’s minima [light gray
dashed (orange online)], SAS minimized numerically [dark gray (blue online)], and quantum solution [light gray (cyan online)]. Vertical lines
show the transition according to the quantum solution via fidelity’s minimum [light gray (cyan online)], SAS minimized numerically [dark gray
(blue online)], and SAS with CS’s minima [light gray dashed (orange online)]. Left, j = 1; center, j = 5; right, j = 9. Assuming k = 2 and
using N = 18, ωA = �1 = �2 = 2(arb. units), γ1 = 1

2 (arb. units). Units are arbitrary but the same for all nondimensionless quantities (h̄ = 1).

relations,

[J+,J−] = 2Jz, [Jz,J±] = ±J±, (6)

and act, in principle, on the complex Hilbert space (C2)
⊗N

;
however, working with this space is physically equivalent to
studying a system of N fully distinguishable atoms, which we
don’t usually have in the experimental setups used in the study
of the QPT in the Dicke model. To overcome this issue, we
must use the common set of eigenvectors {|j,m〉} of the two
commuting observables Jz and J 2 = 1

2 (J+J− + J−J+) + J 2
z ,

where the label j is limited to the values j ∈ {r,r + 1, . . . ,N
2 }

(r = 0 for even N and r = 1
2 for odd N) and the label m ∈ Z

is constricted by |m| � j . These vectors do not form a basis
of (C2)

⊗N
for N > 2, as the dimension of their linear span is

dim
{
span

{{|j,m〉}j=r,..., N
2

|m|�j

}} =
N
2∑

j=r

(2j + 1) � 2N .

We will denote by HA the subspace of (C2)
⊗N

generated

by the states {|j,m〉}j=r,..., N
2

|m|�j .
There are two main results concerning the states

{|j,m〉}j=r,..., N
2

|m|�j and the space HA: The first comes from
noticing that [H,J 2] = 0, which means that the label j

of the eigenvalues of J 2 remains constant during the sys-
tem’s evolution; the second is the decomposition HA =

⊕ N
2
j=r Hj , where each Hj is the subspace of dimension

dim{Hj } = 2j + 1 generated by the states {|j,m〉}|m|�j with
a fixed j . In this treatment, in order to study indistin-
guishable atoms, we are ignoring the multiplicities g(j ) of
the irreducible representations of SU(2), i.e., the number
of times that each Hj appears in the full decomposition

(C2)
⊗N = ⊕ N

2
j=r g(j )Hj .

To make it clear that the space HA is the one we must
work with when indistinguishable atoms are considered we
should inquire into the physical interpretation of the labels j

and m. In order to give a physical interpretation to the label
j we must notice that the energy of the atomic system is
bounded by ±jω independently of the number of atoms N

(but with the restriction j � N
2 ), this leads us to interpret the

quantity 2j as the effective number of atoms in the system and
define it as the cooperation number. To make the notion of
the cooperation number more intuitive, Dicke, in his original
paper [1], compares a state with j = 0, which exists only for
an even number of atoms, with a classical system of an even
number of oscillators swinging in pairs oppositely phased. The
interpretation of the label m is clear from the definition of Jz:
m = 1

2 (ne − ng), where ne and ng are the number of atoms in
the excited and ground states, respectively.

In this paper we restrict our analysis to the space HA,
as it allows us to choose j as an initial condition (which
will remain constant) and work in Hj , where the atoms are
indistinguishable.

0.2 0.6 1
Ω A

0.8

0.5

0.2

Ej 1 arb. units arb. units arb. units

arb. unitsarb. unitsarb. units
1 2

Ω A

9

6.5

4

Ej 5

1.5 3
Ω A

25

20

15

Ej 9

FIG. 2. Energy of the ground state as a function of ωA obtained using CS [dark gray dashed (red online)], SAS with CS’s minima [light
gray dashed (orange online)], SAS minimized numerically [dark gray (blue online)], and quantum solution [light gray (cyan online)]. Vertical
lines show the transition according to the quantum solution via fidelity’s minimum [light gray (cyan online)], SAS minimized numerically [dark
gray (blue online)], and SAS with CS’s minima [light gray dashed (orange online)]. Left, j = 1; center, j = 5; right, j = 9. Assuming k = 2
and using N = 18, �1 = �2 = 2 (arb. units), γ1 = 1

2 (arb. units), γ2 = 1(arb. units). Units are arbitrary but the same for all nondimensionless
quantities (h̄ = 1).
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FIG. 3. Expectation value of Jz as a function of γ2 obtained using CS [dark gray dashed (red online)], SAS with CS’s minima [light gray
dashed (orange online)], SAS minimized numerically [dark gray (blue online)], and quantum solution [light gray (cyan online)]. Vertical lines
show the transition according to the quantum solution via fidelity’s minimum [light gray (cyan online)], SAS minimized numerically [dark
gray (blue online)], and SAS with CS’s minima [light gray dashed (orange online)]. Left, j = 1; center, j = 5; right, j = 9. Assuming k = 2
and using N = 18, ωA = �1 = �2 = 2 (arb. units), γ1 = 1

2 (arb. units). Units are arbitrary but the same for all nondimensionless quantities
(h̄ = 1).

II. METHODOLOGY

There have been various contributions to the study of the
phase transition in the Dicke model (and other two-level
models) [14–18] and different approaches such as Husimi
function analysis [19], entropic uncertainty relations [20], and
energy surface minimization [21–26], have been used for its
investigation.

In this work we use the energy surface minimization
method, which consists of minimizing the surface that is
obtained by taking the expectation value of the modeling
Hamiltonian with respect to some trial variational state. The
strength of this method lies on the choice of the trial state, as it
is the latter, after minimization, the one that will be modeling
the ground state of the system.

Here we take a variational approach for both matter and
radiation fields, and show how to calculate the QPT of the
system modeled by the Hamiltonian H given in Eq. (2) via
four means:

(1) Using a tensor product of Heisenberg-Weyl HW(1)
coherent states for each mode of the electromagnetic field
and SU(2) coherent states for the atomic field as trial states,
and analytically minimizing the obtained energy surface with
respect to its parameters.

(2) Using a projection operator on HW(1) coherent states
and SU(2) coherent states to obtain trial states that preserve the
parity symmetry of the Hamiltonian with respect to the total
excitation number of the system (symmetry adapted states),

and numerically minimize the obtained energy surface with
respect to its parameters.

(3) Using symmetry adapted states, as in (2) above,
to obtain the energy surface and “minimize” it with the
minimizing parameters obtained in (1) above, thus allowing
us to have analytic expressions for the ground state.

(4) Numerically diagonalizing the Hamiltonian, which
gives us the exact quantum solution.

A. Coherent states (CS)

For each mode of the electromagnetic field the annihilation
and creation operators aı and a

†
ı , appearing in the modeling

Hamiltonian H , satisfy the commutation relations (3) of the
Lie algebra generators of the Heisenberg-Weyl group HW(1);
hence, a natural choice of a trial state for the radiation field
is a tensor product of k (number of modes) coherent states of
HW(1),

|ᾱ〉 := |α1〉 ⊗ · · · ⊗ |αk〉, (7)

where each |αı〉 is defined as

|αı〉 := eαıa
†
ı −α∗

ı aı |0ı〉 = e− |αı |2
2

∞∑
νı=0

ανı
ı√
νı!

|νı〉. (8)

Furthermore, the commutation relations of the collective
spin operators J−, J+, and Jz (6) are the same as the ones of
the Lie algebra generators of the special unitary group SU(2).
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FIG. 4. Expectation value of Jz as a function of ωA obtained using CS [dark gray dashed (red online)], SAS with CS’s minima [light gray
dashed (orange online)], SAS minimized numerically [dark gray (blue online)], and quantum solution [light gray (cyan online)]. Vertical lines
show the transition according to the quantum solution via fidelity’s minimum [light gray (cyan online)], SAS minimized numerically [dark
gray (blue online)], and SAS with CS’s minima [light gray dashed (orange online)]. Left, j = 1; center, j = 5; right, j = 9. Assuming k = 2
and using N = 18, �1 = �2 = 2(arb. units), γ1 = 1

2 (arb. units), γ2 = 1 (arb. units). Units are arbitrary but the same for all nondimensionless
quantities (h̄ = 1).
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FIG. 5. Expectation value of ν2 = a
†
2a2 as a function of γ2 obtained using CS [dark gray dashed (red online)], SAS with CS’s minima [light

gray dashed (orange online)], SAS minimized numerically [dark gray (blue online)], and quantum solution [light gray (cyan online)]. Vertical
lines show the transition according to the quantum solution via fidelity’s minimum [light gray (cyan online)], SAS minimized numerically [dark
gray (blue online)], and SAS with CS’s minima [light gray dashed (orange online)]. Left, j = 1; center, j = 5; right, j = 9. Assuming k = 2
and using N = 18, ωA = �1 = �2 = 2 (arb. units), γ1 = 1

2 (arb. units). Units are arbitrary but the same for all nondimensionless quantities
(h̄ = 1).

Thus, analogously as for the radiation field, we use the coherent
states of SU(2),

|ξ 〉j :=
∣∣∣∣υ tan |υ|

|υ|
〉
j

:= eυJ+−υ∗J−|j,0〉

= 1

(1 + |ξ |2)j

2j∑
m=0

(
2j

m

) 1
2

ξm|j,m − j 〉, (9)

as trial states for the matter field.

B. Symmetry adapted states (SAS)

The modeling Hamiltonian we are considering has a parity

symmetry given by [eiπ�,H ] = 0, where � =
√

J 2 + 1
4 −

1
2 + Jz + ∑k

ı=1a
†
ı aı is the excitation number operator with

eigenvalues λ = j + m + ∑k
ı=1νı . This symmetry allows us

to classify the eigenstates of H in terms of the parity of the
eigenvalues λ; however, as states with opposite symmetry are
strongly mixed by the CS defined in the previous section, we
should then adapt this symmetry to the CS by projecting them
with the operator P± = 1

2 (I ± eiπ�), i.e.,

|ᾱ,ξj 〉± := N±P±|ᾱ〉 ⊗ |ξ 〉j
= N±(|ᾱ〉 ⊗ |ξ 〉j ± |−ᾱ〉 ⊗ |−ξ 〉j ), (10)

with N± = (2 ± 2E(− cos θ )2j )
− 1

2 the normalization fac-
tors for the even (+) and odd (−) states (where
E = exp {−2

∑k
ı=1|α2

ı |}).
As we are interested in the ground state of the system, which

has an even parity, we only focus on the state |ᾱ,ξj 〉+.

C. Entropy of entanglement (Sε)

Entropy of entanglement is defined for a bipartite system
as the Von Neumann entropy of either of its reduced states,
that is, if ρ is the density matrix of a system in a Hilbert space
H = H1 ⊗ H2, its entropy of entanglement is defined as

Sε := −Tr{ρ1 log ρ1} = −Tr{ρ2 log ρ2}, (11)

where ρ1 = Tr2{ρ} and ρ2 = Tr1{ρ}.
Our Hamiltonian H models a bipartite system formed

by matter and radiation subsystems, which means that their
entropy of entanglement can be used to see the influence of
the QPT on its behavior; this we do below.

D. Fidelity between neighboring states (F)

Fidelity is a measure of the “distance” between two
quantum states; given |φ〉 and |ϕ〉 it is defined as

F (φ,ϕ) := |〈φ|ϕ〉|2. (12)

Across a QPT the ground state of a system suffers a sudden,
drastic change, thus it is natural to expect a drop in the fidelity
between neighboring states near the transition. This drop has
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FIG. 6. Expectation value of ν2 = a
†
2a2 as a function of ωA obtained using CS [dark gray dashed (red online)], SAS with CS’s minima [light

gray dashed (orange online)], SAS minimized numerically [dark gray (blue online)], and quantum solution [light gray (cyan online)]. Vertical
lines show the transition according to the quantum solution via fidelity’s minimum [light gray (cyan online)], SAS minimized numerically [dark
gray (blue online)], and SAS with CS’s minima [light gray dashed (orange online)]. Left, j = 1; center, j = 5; right, j = 9. Assuming k = 2
and using N = 18, �1 = �2 = 2 (arb. units), γ1 = 1

2 (arb. units), γ2 = 1 (arb. units). Units are arbitrary but the same for all nondimensionless
quantities (h̄ = 1).
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†
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online)]. Left, j = 1; center, j = 5; right, j = 9. Assuming k = 2 and using N = 18, ωA = �1 = �2 = 2 (arb. units), γ1 = 1

2 (arb. units).
Units are arbitrary but the same for all nondimensionless quantities (h̄ = 1).

been, in fact, already shown to happen [15,25] for the case
2j = N . We study it here also, and its behavior with the
cooperation number.

III. RESULTS

Writing the complex labels αı and ξ as αı = qı + ipι and
ξ = tan ( θ

2 )eiφ , with qı,pı ∈ R, θ ∈ [0,π ), φ ∈ [0,2π ), the
CS’s energy surface is obtained by taking the expectation
value of the modeling Hamiltonian H with respect to the state
|ᾱ〉 ⊗ |ξ 〉j , and has the form,

Hj,CS(qı,pı,θ,φ) := 〈ᾱ| ⊗ 〈ξ |jH |ᾱ〉 ⊗ |ξ 〉j

= −jωA cos θ +
k∑

ı=1

�ı

(
q2

ı + p2
ı

)

− 4j√
N

sin θ cos φ

k∑
ı=1

γıqı . (13)

The critical points which minimize it are then found to be

θc = qıc = pıc = 0, for ωA � 8j

N

k∑
ı=1

γ 2
ı

�ı

,

cos θc = NωA

8j

(
k∑

ı=1

γ 2
ı

�ı

)−1

,

φc = 0,π,

qıc = 2jγı

�ı

√
N

cos φc sin θc,

pıc = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

for ωA <
8j

N

k∑
ı=1

γ 2
ı

�ı

.

Substituting these values into (13) we obtain the energy
of the coherent ground state as a function of the Hamiltonian
parameters,

ECS(ωA,γı) =
{ −jωA, for δ � 1

− jωA

2

(
1
δ

+ δ
)
, for δ < 1,

(14)

where we have defined δ = NωA

8jς
with ς = ∑k

ı=1
γ 2

ı

�ı
. Using the

information of this coherent ground state we also obtain the
expectation values of the atomic relative population operator
Jz and of the number of photons of mode ı operator νı := a

†
ı aı :

〈Jz〉CS(ωA,γı) =
{ −j, for δ � 1
−jδ, for δ < 1,

(15)

〈νı〉CS(ωA,γı,γj ) =
{

0, for δ � 1
γ 2

ı

�2
ı

jωA

2ς

(
1
δ

− δ
)
, for δ < 1.

(16)
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FIG. 8. Entropy of entanglement as a function of γ2 obtained SAS with CS’s minima [middle gray (magenta online)], SAS minimized
numerically [dark gray (blue online)], and quantum solution [light gray (cyan online)]. Vertical lines show the transition according to
the quantum solution via fidelity’s minimum [light gray (cyan online)], SAS minimized numerically [dark gray (blue online)], and SAS
with CS’s minima [middle gray dashed (magenta online)]. Left, j = 1; center, j = 5; right, j = 9. Assuming k = 2 and using N = 18,
ωA = �1 = �2 = 2(arb. units), γ1 = 1

2 (arb. units). Units are arbitrary but the same for all nondimensionless quantities (h̄ = 1).
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numerically [dark gray (blue online)], and quantum solution [light gray (cyan online)]. Vertical lines show the transition according to the quantum
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Analogously as for the CS’s energy surface, the SAS’s
energy surface is obtained by taking the expectation value of
the modeling Hamiltonian H with respect to the state |ᾱ,ξj 〉+,
and has the more complicated form,

Hj,SAS(qı,pı,θ,φ) := 〈ᾱ,ξj |+H |ᾱ,ξj 〉+

=
(

1 + E(− cos θ )2j−2

1 + E(− cos θ )2j

)
(−jωA cos θ )

+
(

1 − E(− cos θ )2j

1 + E(− cos θ )2j

) k∑
�=1

��

(
q2

� + p2
�

)

− 4j√
N

sin θ

k∑
�=1

{
cos φγ�q�+E(− cos θ )2j−1 sin φγ�p�

1+E(− cos θ )2j

}
.

(17)

As a first approximation, we may substitute the critical
values obtained for the CS’s energy surface into (17), we
obtain the trial state which approximates the lowest symmetry-
adapted energy state, and with respect to which we evaluate
the expectation values of the observables H , Jz, and νı :

ESAS(ωA,γı) =

⎧⎪⎨
⎪⎩

−jωA, for δ � 1

−jωA

[
δ
( 1+ε(−δ)2j−2

1+ε(−δ)2j

)
+ 1

2

(
1
δ

− δ
)]

, for δ < 1,

(18)

〈Jz〉SAS(ωA,γı) =
{ −j, for δ � 1

−jδ
( 1+ε(−δ)2j−2

1+ε(−δ)2j

)
, for δ < 1,

(19)

〈νı〉SAS(ωA,γı,γj )

=
{

0, for δ � 1
γ 2

ı

�2
ı

jωA

2ς

(
1
δ

− δ
)( 1−ε(−δ)2j

1+ε(−δ)2j

)
, for δ < 1,

(20)

where ε = exp {−jωAσ

ς
} with σ = ∑k

ı=1
γ 2

ı

�2
ı
.

Of course, we can minimize Eq. (17) numerically for the
SAS and obtain the expectation value of the relevant matter
and field observables.

In our numerical analysis we study the case with two
modes of the radiation field, as it is the maximum number
of orthogonal modes that can be present in a 3D cavity with
the restrictions that the modes interact with the electric dipole
moment of the atoms and to be in resonance with the frequency
associated with the energy difference between the two levels
of the atoms. This latter restriction is just considered to have
the maximum transition probability between states.

For the exact quantum solution we must resort to numer-
ical diagonalization of the Hamiltonian and use the lowest
eigenstate to compute the expectation values of the relevant
observables.

The results, properties of the ground state related to the
CS, those related to the SAS using the critical points of the
CS (which have the advantage of also providing analytical
solutions), those of the SAS minimized numerically, and those
of the quantum solution through numerical diagonalization,
are shown in Figs. 1–15 and are discussed below.

One advantage of having analytical solutions is, of course,
that the order of the transition may be easily found. Equa-
tions (14) and (18) show a second-order QPT at δ = NωA

8jς
= 1
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FIG. 10. Fidelity between neighboring quantum states as a function of γ2. Left, j = 1; center, j = 5; right, j = 9. Assuming k = 2 and
using N = 18, ωA = �1 = �2 = 2 (arb. units), γ1 = 1

2 (arb. units). Units are arbitrary but the same for all nondimensionless quantities (h̄ = 1).
Vertical black line shows the fidelity’s minimum (i.e., the quantum phase transition) for j = 5 and j = 9.
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FIG. 11. Fidelity between neighboring quantum states as a function of ωA. Left, j = 1, center, j = 5; right, j = 9. Assuming k = 2 and
using N = 18, �1 = �2 = 2 (arb. units), γ1 = 1

2 (arb. units), γ2 = 1 (arb. units). Units are arbitrary but the same for all nondimensionless
quantities (h̄ = 1). Vertical black line shows the fidelity’s minimum (i.e., the quantum phase transition) for j = 5 and j = 9.

with the CS and SAS using CS’s minima (SASc) approxima-
tions. In Fig. 1 it can be seen that the data of the SAS using
numerical minimization (SASn) has a small discontinuity (the
QPT) at γ2 ≈ 1.485 for j = 5 and γ2 ≈ 1.015 for j = 9, while
in Fig. 2 this discontinuity is at ωA ≈ 0.975 for j = 5 and
ωA ≈ 1.965 for j = 9. Note that the SASn solution always
approximate better the exact quantum result, as the cooperation
number increases this approximation gets better, in fact, for
2j = 18 = N the loci of the separatrix between the normal
and collective regions for the quantum and SASn solutions
are indistinguishable (except in the zoomed inset). The true
loci of the QPT may be found through the fidelity: Figs. 10
and 11 show the fidelity between neighboring states of the
quantum solution, where the exact QPT is characterized by
the minimum, which is localized at γ2 ≈ 1.550 for j = 5,
γ2 ≈ 1.031 for j = 9 in Fig. 10, and ωA ≈ 0.817 for j = 5,
ωA ≈ 1.870 for j = 9 in Fig. 11.

The discrepancies between the transition values of the
SASc approximation and the exact quantum solution become
obvious when looking at Figs. 12 and 13, where the fidelity
between SASc and the quantum solution drops (and oscillates)
in a vicinity of the separatrix. Therefore, we conclude that
SASc offer a good approximation (with an analytic expression)
to the exact quantum solution far from the QPT for low
cooperation numbers, but as j → ∞, the interval where
the SASc fail to reproduce the correct behavior, becomes
smaller.

8 4 4 8
Γ arb. units

arb. units

arb. units
0.9

0.95

1
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1
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1.2 0.6 0.6 1.2
Γ

0.78

0.89

1
F SASc ,Q

FIG. 12. Fidelity between SAS with CS’s minima and quantum
solution as a function of γ2. Up (left), j = 1; up (right), j = 5;
down, j = 9. Assuming k = 2 and using N = 18, ωA = �1 = �2 =
2 (arb. units), γ1 = 1

2 (arb. units). Units are arbitrary but the same for
all nondimensionless quantities (h̄ = 1).

Figures 14 and 15 show the fidelity drop at the separatrix
for the SASn. The resemblance to Figs. 10 and 11 is uncanny,
showing the benefits of restoring the Hamiltonian symmetry
into the trial variational states. This improvement comes with
the disadvantage of losing the analytic expression, but still has
an advantage over the quantum solution: the computational
time. SASn are obtained by numerically minimizing a real
function, which is far easier to do (computationally speaking)
than numerically diagonalizing the Hamiltonian matrix.

Figures 1–7 show the comparison between the different
approximations to the ground state: CS, SASc, SASn, and
quantum solution. We show the behavior of E := 〈H 〉, 〈Jz〉,
and 〈νı〉 as functions of the atomic frequency ωA and one of
the coupling constants γ2, for different cooperation numbers.
It can be noticed that the discontinuity in the second derivative
of the energy (as modeled with CS and SASc) translates into
a discontinuity in the first derivative of 〈Jz〉 and 〈νı〉, thus
characterizing the QPT by means of an abrupt change in the
expectation values of the observables. In general, it can be
observed that the four methods (CS, SASc, SASn, and quantum
solution) converge in the limit δ → 0, where the case j → ∞
is particularly interesting as the interval around the QPT, where
all the approximations fail to reproduce the correct behavior,
becomes smaller.

It is worth mentioning the significance and importance of
Figs. 7 and 16 as they show aspects of the multimode Dicke
model which are not present in the single-mode case. In Fig. 7
it is shown how the different modes of radiation (orthogonal
in principle) interact through the matter field, analogously as
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FIG. 13. Fidelity between SAS with CS’s minima and quantum
solution as a function of ωA. Up (left), j = 1; up (right), j = 5; down,
j = 9. Assuming k = 2 and using N = 18, �1 = �2 = 2 (arb. units),
γ1 = 1

2 (arb. units), γ2 = 1 (arb. units). Units are arbitrary but the
same for all nondimensionless quantities (h̄ = 1).
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FIG. 14. Fidelity between SAS minimized numerically and
quantum solution as a function of γ2. Up, j = 1; center, j = 5;
down, j = 9. Assuming k = 2 and using N = 18, ωA = �1 = �2 =
2 (arb. units), γ1 = 1

2 (arb. units). Units are arbitrary but the same for
all nondimensionless quantities (h̄ = 1).
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FIG. 15. Fidelity between SAS minimized numerically and quan-
tum solution as a function of ωA. Up, j = 1; center, j = 5; down,
j = 9. Assuming k = 2 and using N = 18, �1 = �2 = 2 (arb. units),
γ1 = 1

2 (arb. units), γ2 = 1 (arb. units). Units are arbitrary but the
same for all nondimensionless quantities (h̄ = 1).
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FIG. 16. Pictographic representation of the phase diagrams in
the plane (γ2,ωA) (up) and (γ1,γ2) (down) obtained using CS. The
normal region (white) is defined as the region where δ � 1 and the
super-radiant region [gray (light blue online)] is defined as the region
where δ < 1. Units are arbitrary but the same for all nondimensionless
quantities (h̄ = 1).

it occurs with different atoms interacting through the radiation
field. On the other hand, Fig. 16 shows (pictorially) the
phase diagrams of the two-mode system, in which it can
be observed that any two points in the super-radiant region
can be joined by a trajectory that does not cross the normal
region, a characteristic that the single-mode system does not
have.

Figures 8 and 9 show the comparison between SASc, SASn,
and the quantum solution for the entropy of entanglement
Sε as a function of the atomic frequency ωA and one of the
coupling constants γ2, using different cooperation numbers. A
characterization of the QPT can be made by observing that the
entropy of entanglement obtained using the quantum solution
shows a maximum at the transition, an attribute that SASc and
SASn approximations fail to reproduce.

IV. DISCUSSION AND CONCLUSIONS

From figures presented we conclude that SASc offer a
good approximation (with an analytic expression) to the exact
quantum solution far from the QPT for low cooperation
numbers, but as j → ∞, the interval where the SASc fail
to reproduce the correct behavior, becomes smaller.

On the other hand, the SASn provide a better approximation
to the quantum solution. This improvement comes with the
disadvantage of losing the analytic expression, but still has
the advantage over the quantum solution of the computational
time. SASn are obtained by numerically minimizing a real
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function, which is far easier to do (computationally speaking)
than numerically diagonalizing the Hamiltonian matrix.

A characterization of the QPT can be made by looking at
the entropy of entanglement; that obtained using the quantum
solution shows a maximum at the transition, an attribute that
SASc and SASn approximations fail to reproduce.

The behavior of the expectation values of the relevant
observables of the system 〈H 〉, 〈Jz〉, and 〈νı〉, is also affected
by the QPT (Figs. 1–7), thus allowing us to characterize the
QPT by means of its influence over the observables. In general,
it can be observed that the four methods (CS, SASc, SASn,
and quantum solution) converge in the limit δ → 0, where the
case j → ∞ is particularly interesting as the interval around
the QPT, where all the approximations are weaker, becomes
smaller.

In conclusion, we have shown how the use of variational
states to approximate the ground state of a system can be

useful to characterize the QPT in a multimode Dicke model
using the expectation value of the observables relevant to the
system and the entropy of entanglement between matter and
radiation. We have also introduced a not very commonly used
dependence: the cooperation number, showing its influence
over the behavior of the system, paying particular attention to
the QPT and the accuracy of the used approximations. Some
aspects of the multimode Dicke model which are not present
in the single-mode case were also briefly discussed.
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