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Quantized fluctuational electrodynamics for three-dimensional plasmonic structures
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We recently introduced a quantized fluctuational electrodynamics (QFED) formalism that provides a physically
insightful definition of an effective position-dependent photon-number operator and the associated ladder
operators. However, this far the formalism has been applicable only for the normal incidence of the electromagnetic
field in planar structures. In this work, we overcome the main limitation of the one-dimensional QFED formalism
by extending the model to three dimensions, allowing us to use the QFED method to study, e.g., plasmonic
structures. To demonstrate the benefits of the developed formalism, we apply it to study the local steady-state
photon numbers and field temperatures in a light-emitting near-surface InGaN quantum-well structure with a
metallic coating supporting surface plasmons.
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I. INTRODUCTION

The quantum optical processes in lossy and lossless
material systems have been widely studied during the last few
decades. This has led to advances, e.g., in nanoplasmonics
[1–4], near-field microscopy [5,6], thin-film light-emitting
diodes [7,8], photonic crystals [9,10], and metamaterials
[11,12]. For describing spatial field evolution in resonant struc-
tures, one of the most widely used quantization approaches
has been the input-output formalism of the photon creation
and annihilation operators. The formalism was originally
developed for describing lossless and dispersionless dielectrics
[13] and was later extended for lossy and dispersive media [14–
19]. The early studies clearly highlighted that the noise and
field operators in nonuniform systems are position dependent
and that the vector potential and electric-field operators obey
the well-known canonical commutation relation as expected
[17,18]. However, the canonical commutation relations did not
extend to the photon creation and annihilation operators, which
were found to exhibit anomalies in resonant structures [20–24].
It was first concluded that these anomalies have no physical
significance. Although the formalism was later successfully
used to study, e.g., amplifying media and spontaneous decay
in left-handed media [25–28], it was also recently shown that
the anomalous commutation relations should, e.g., lead to the
existence of a threshold for second-harmonic generation inside
microcavities [29,30]. The anomalous commutation relations
have also been found to prevent a systematic description of
local thermal balance between the field and interacting media
[31,32].

We recently solved the cavity commutation relation
anomaly and photon-number problem by introducing a quan-
tized fluctuational electrodynamics (QFED) model to describe
photon number and showed that the expectation values of
the properly normalized annihilation and creation operators
result in a meaningful photon-number model and thermal
balance conditions [31–34]. This far, our models have been
strictly one-dimensional and limited to normal incidence in
planar structures, which has provided an adequate framework
for describing the fundamental properties of cavity fields.
However, considering the associated transparent description

of the photon number and field temperature, it becomes
reasonable to ask how the description can be expanded to
more complex systems involving, e.g., plasmons that have
been of great topical interest [11,35–40] and whose description
could benefit from the new methodology clearly separating
the local density of states (LDOS) and the photon number.
Here we therefore present a generalized QFED model to
account for fully three-dimensional propagation as well as
the associated spectral expansion for planar structures. We
also demonstrate the benefits of the formalism by applying it
to study the local steady-state field properties and plasmonic
interactions in a light-emitting near-surface InGaN quantum-
well (QW) structure with a metallic coating supporting surface
plasmons (SPs).

This paper is organized as follows: The theory of the QFED
method is presented in Sec. II. As a background for QFED,
we first review the general three-dimensional noise operator
formalism and the use of Green’s functions to obtain the
solutions of the electromagnetic (EM) fields. This is followed
by a presentation of the new contribution to the theory: the
properly normalized position- and frequency-dependent pho-
ton ladder operators, the related photon-number presentation,
and the generalized forms of the densities of states in the QFED
method. After introducing the ladder and number operators,
we also briefly review how the operators can be used to present
the associated models for the field fluctuations, Poynting
vector, and absorption and emission operators. Note that the
expectation values of these macroscopic field quantities are
equivalent to the values obtained by using the conventional
fluctuational electrodynamics. In Sec. III, we demonstrate
the applicability and study the physical implications of the
introduced QFED method in an example InGaN QW geometry.

II. QUANTIZED FLUCTUATIONAL ELECTRODYNAMICS
METHOD

In this section, we outline the derivation of the three-
dimensional QFED theory. Detailed derivations are given in
the appendixes. We start by introducing the fundamental equa-
tions of the conventional fluctuational electrodynamics theory
and its quantization in Sec. II A and the solution of fields using
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the dyadic Green’s functions in Sec. II B. Then, in Sec. II C, we
present the properly normalized photon ladder operators and
the related photon-number and density-of-states concepts that
expand the classical and previously used quantized versions
of fluctuational electrodynamics to enable an unambiguous
photon-level description of the three-dimensional system. In
Secs. II D and II E, we focus on calculating the Poynting vector
operator and the thermal balance predicted by the quantized
theory using the newly established operators.

A. Noise operator formalism

Maxwell’s equations describe electric and magnetic fields
generated by currents and charges in matter. They relate the
electric field strength E, the magnetic field strength H, the
electric flux density D, and the magnetic flux density B to
the free electric charge density ρf and the free electric current
density Jf . In the frequency domain, Maxwell’s equations are
written for positive frequencies as [34]

∇ · D = ρf, (1)

∇ · B = 0, (2)

∇ × E = iωB = iωμ0(μH + δM), (3)

∇ × H = Jf − iωD = Jf − iω(ε0εE + δP). (4)

Here we have additionally used the constitutive relations D =
ε0εE + δP and B = μ0(μH + δM), where ε0 and μ0 are the
permittivity and permeability of vacuum, ε = εr + iεi and μ =
μr + iμi are the relative permittivity and permeability of the
medium with real and imaginary parts denoted by subscripts
r and i, and the polarization and magnetization fields δP and
δM denote the polarization and magnetization that are not
linearly proportional to the respective field strengths [41]. In
the context of the fluctuational electrodynamics and the present
work, δP and δM describe the small thermal fluctuations of
the linear polarization and magnetization fields [34]. For the
remainder of this work, the current density of free charges
Jf is also included in the electric permittivity for notational
simplicity.

From Maxwell’s equations in Eqs. (1)–(4) it follows that
the electric field obeys the well-known equation [34]

∇ ×
(∇ × E

μ0μ

)
− ω2ε0εE = iωJe − ∇ ×

(
Jm

μ0μ

)
, (5)

where the terms Je = −iωδP and Jm = −iωμ0δM represent
the polarization and magnetization currents that act as field
sources in the noise operator theory [34] and in the classical
fluctuational electrodynamics [42,43]. The electric term Je

includes contributions from both the electric currents due to
free charges and polarization terms associated with dipole
currents and thermal dipole fluctuations. For the magnetic
current term Jm, the only contribution arises from the magnetic
dipoles. Note that, after solving the electric field from Eq. (5),
the calculation of the magnetic field is straightforward using
Faraday’s law in Eq. (3).

In the previously known noise operator framework, we use
the canonical quantization of the above classical equations
where the classical field quantities are replaced by corre-

sponding quantum operators [18,25,31,34]. The electric and
magnetic noise current operators Ĵ+

e (r,ω) and Ĵ+
m(r,ω) are

written in terms of bosonic source field operators f̂e(r,ω) and
f̂m(r,ω) as Ĵ+

e (r,ω) = ∑
α j0,e(r,ω)êαf̂e(r,ω) and Ĵ+

m(r,ω) =∑
α j0,m(r,ω)êαf̂m(r,ω), where êα are unit vectors for the

three coordinate directions α ∈ {x,y,z} [31,34]. The operators
f̂e(r,ω) and f̂m(r,ω) obey the canonical commutation rela-
tion [f̂j (r,ω),f̂ †

k (r′,ω′)] = δjkδ(r − r′)δ(ω − ω′), with j,k ∈
{e,m}. The normalization factors j0,e(r,ω) and j0,m(r,ω) have
been determined to be j0,e(r,ω) =

√
4πh̄ω2ε0εi(r,ω) [26,31]

and j0,m(r,ω) =
√

4πh̄ω2μ0μi(r,ω) [25,34].

B. Green’s functions

In order to write the solution of Eq. (5) in a general form,
we apply the conventional dyadic Green’s function formalism
[44,45], where the field solutions are written as

Ê+(r,ω) = iωμ0

∫ ↔
Gee(r,ω,r′) · Ĵ+

e (r′,ω)d3r ′

+ k0

∫ ↔
Gem(r,ω,r′) · Ĵ+

m(r′,ω)d3r ′, (6)

Ĥ+(r,ω) = k0

∫ ↔
Gme(r,ω,r′) · Ĵ+

e (r′,ω)d3r ′

+ iωε0

∫ ↔
Gmm(r,ω,r′) · Ĵ+

m(r′,ω)d3r ′. (7)

Here
↔
Gee(r,ω,r′) is the electric Green’s function,

↔
Gmm(r,ω,r′)

is the magnetic Green’s function, and
↔
Gem(r,ω,r′) and

↔
Gme(r,ω,r′) are the exchange Green’s functions. For com-
pleteness, the relations between these Green’s functions are
shown in Appendix A, and the Green’s functions are explicitly
presented for stratified media in Appendix B.

C. Photon numbers and densities of states

In analogy with the one-dimensional QFED formalism [34],
we can define the position- and frequency-dependent effective
photon ladder operators âj (r,ω), which obey the canonical
commutation relation [âj (r,ω),â†

j (r,ω)] = δ(ω − ω′), for the
electric, magnetic, and total EM fields, j ∈ {e,m,tot}. These
operators and the corresponding effective photon-number
expectation values 〈n̂j(r,ω′)〉 are given by

âj (r,ω) = 1√∫
ρNL,j (r,ω,r′)d3r ′

×
∫

[
√

ρNL,j,e(r,ω,r′)f̂e(r′,ω)

+√
ρNL,j,m(r,ω,r′)f̂m(r′,ω)]d3r ′, (8)

〈n̂j (r,ω)〉 =
∫

ρNL,j (r,ω,r′)〈η̂(r′,ω)〉d3r ′∫
ρNL,j (r,ω,r′)d3r ′ , (9)

where 〈η̂(r′,ω)〉 is the source-field photon-number expectation
value related to the bosonic noise operators as 〈η̂(r,ω)〉 =∫ 〈f̂ †

e (r,ω)f̂e(r′,ω′)〉d3r ′dω′ = ∫ 〈f̂ †
m(r,ω)f̂m(r′,ω′)〉d3r ′dω′

and ρNL,j (r,ω,r′) are the nonlocal densities of states
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(NLDOSs) for the electric, magnetic, and total EM fields,
written as

ρNL,e(r,ω,r′)

= 2ω3

πc4
{εi(r′,ω)Tr[

↔
Gee(r,ω,r′) ·

↔
G

†

ee(r,ω,r′)]

+ μi(r′,ω)Tr[
↔
Gem(r,ω,r′) ·

↔
G

†

em(r,ω,r′)]}, (10)

ρNL,m(r,ω,r′)

= 2ω3

πc4
{εi(r′,ω)Tr[

↔
Gme(r,ω,r′) ·

↔
G

†

me(r,ω,r′)]

+ μi(r′,ω)Tr[
↔
Gmm(r,ω,r′) ·

↔
G

†

mm(r,ω,r′)]}, (11)

ρNL,tot(r,ω,r′)

= |ε(r,ω)|
2

ρNL,e(r,ω,r′) + |μ(r,ω)|
2

ρNL,m(r,ω,r′). (12)

The NLDOS components ρNL,j,e(r,ω,r′) and ρNL,j,m(r,ω,r′),
with j ∈ {e,m}, in Eq. (8) denote, respectively, the first and
the second terms of Eqs. (10) and (11). The total NLDOS
terms ρNL,tot,e(r,ω,r′) and ρNL,j,m(r,ω,r′) are calculated by
using Eq. (12) with the corresponding terms in the electric and
magnetic NLDOSs.

Note that the expressions for the photon ladder operators
and the photon numbers in Eqs. (8) and (9) are the same as
the expression in the one-dimensional formalism [34], but the
NLDOSs are different. The derivation of these NLDOSs is
presented in Appendix C, and for general stratified media, the
densities of states are presented in Appendix D. The LDOSs
ρj (r,ω) are given in terms of the NLDOSs by

ρj (r,ω) =
∫

ρNL,j (r,ω,r′)d3r ′. (13)

It is well-known that, in vacuum, the imaginary parts of
the traces of the dyadic Green’s functions give the electric and
magnetic LDOSs ρe(r,ω) and ρm(r,ω) as [46,47]

ρj (r,ω) = 2ω

πc2
Im{Tr[

↔
Gjj (r,ω,r)]}, (14)

where j ∈ {e,m}. A similar relation also applies for the normal
components of the Fourier-transformed quantities in layered
media [33,34], and typically, also, the spatially resolved form
in Eq. (14) is expected to be valid inside lossy media. However,
in lossy media, these LDOSs are generally known to become
infinite due to the contribution of evanescent waves [46,47].

In terms of the photon-number expectation values in Eq. (9)
and the LDOSs in Eq. (13), the spectral electric and magnetic
field fluctuations and the energy density are given by [33]

〈Ê(r,t)2〉ω = h̄ω

ε0
ρe(r,ω)

(〈n̂e(r,ω)〉 + 1
2

)
, (15)

〈Ĥ (r,t)2〉ω = h̄ω

μ0
ρm(r,ω)

(〈n̂m(r,ω)〉 + 1
2

)
, (16)

〈û(r,t)〉ω = h̄ωρtot(r,ω)
(〈n̂tot(r,ω)〉 + 1

2

)
. (17)

Here the subscript ω denotes the contribution of ω to the
total quantities which are obtained as integrals over positive
frequencies.

D. Quantized Poynting vector operator

To conform with our earlier works and to enable describing
energy flow in detail, we also find the three-dimensional
generalized expression for the Poynting vector. For an optical
mode, the quantum optical Poynting vector is defined as
a normal-ordered operator in terms of the positive- and
negative-frequency parts of the electric and magnetic field op-
erators as Ŝ(r,t) =: Ê(r,t) × Ĥ(r,t) := Ê−(r,t) × Ĥ+(r,t) −
Ĥ−(r,t) × Ê+(r,t) [48]. As detailed in Appendix C and in
analogy with the one-dimensional QFED formalism [31,34],
we obtain the Poynting-vector-related interference density of
states (IFDOS) as

ρIF(r,ω,r′)

= 2ω3nr(r,ω)

πc4

× (
μi(r′,ω)Im{Tr[

↔
Gmm(r,ω,r′) ×

↔
G

†

em(r,ω,r′)]}

− εi(r′,ω)Im{Tr[
↔
Gee(r,ω,r′) ×

↔
G

†

me(r,ω,r′)]}),
(18)

where nr(r,ω) is the real part of the refractive index and

we have used the shorthand notation Tr[
↔
G1(r,ω,r′) ×

↔
G

†

2(r,ω,r′)] = ∑
α[

↔
G1(r,ω,r′) · êα] × [

↔
G2(r,ω,r′) · êα]†,

which is a vector, in contrast to the conventional trace of a
matrix. Using the IFDOS, the Poynting vector is given by

〈Ŝ(r,t)〉ω = h̄ωv(r,ω)
∫

ρIF(r,ω,r′)〈η̂(r′,ω)〉d3r ′, (19)

where v(r,ω) = c/nr(r,ω) is the propagation velocity of the
field in the direction of the wave vector. The integral of the IF-
DOS with respect to r′ is always zero, i.e.,

∫
ρIF(r,ω,r′)d3r ′ =

0, which is required by the fact that, in a medium in thermal
equilibrium, there is no net energy flow. For stratified media,
the IFDOS is presented in Appendix D.

E. Field-matter interaction operators and thermal balance

A particularly insightful view of the effective photon num-
bers in the QFED framework is provided by their connection
to local thermal balance between the field and matter [31].
First, we define the normal-ordered emission and absorption
operators Q̂em(r,t) and Q̂abs(r,t) as

Q̂em(r,t)=− : Ĵe(r,t) · Ê(r,t) :− : Ĵm(r,t) · Ĥ(r,t) : , (20)

Q̂abs(r,t)= : Ĵe,abs(r,t) · Ê(r,t) :+ : Ĵm,abs(r,t) · Ĥ(r,t) : ,

(21)

where the electric and magnetic absorption current operators
Ĵe,abs(r,t) and Ĵm,abs(r,t) are written in the spectral domain
as Ĵ+

e,abs(r,ω) = −iωε0χe(r,ω)Ê+(r,ω) and Ĵ+
m,abs(r,ω) =

−iωμ0χm(r,ω)Ĥ+(r,ω), where χe(r,ω) = ε(r,ω) − 1 and
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χm(r,ω) = μ(r,ω) − 1 are the electric and magnetic suscepti-
bilities of the medium.

The net emission operator Q̂(r,t) = Q̂em(r,t) − Q̂abs(r,t),
which describes the energy transfer between the EM field and
the local medium, is given by

Q̂(r,t) = : Ĵe,tot(r,t) · Ê(r,t) : + : Ĵm,tot(r,t) · Ĥ(r,t) : , (22)

where Ĵe,tot(r,t) = Ĵe(r,t) + Ĵe,abs(r,t) and Ĵm,tot(r,t) =
Ĵm(r,t) + Ĵm,abs(r,t) correspond to the classical total current
densities, which are sums of free and bound current densities.
The spectral component of the expectation value of the
net emission operator in Eq. (22) can be written in terms
of the LDOSs and the electric- and magnetic-field photon
numbers as

〈Q̂(r,t)〉ω
= h̄ω2εi(r,ω)ρe(r,ω)[〈η̂(r,ω)〉 − 〈n̂e(r,ω)〉]

+ h̄ω2μi(r,ω)ρm(r,ω)[〈η̂(r,ω)〉 − 〈n̂m(r,ω)〉]. (23)

This shows that local thermal balance [〈Q̂(r,t)〉ω = 0] is
generally reached when the source-field photon numbers
coincide with the field photon numbers as defined in Eq. (23).
In addition, the net emission operator satisfies 〈Q̂(r,t)〉ω =
∇ · 〈Ŝ(r,t)〉ω. In resonant systems where the energy exchange
is dominated by a narrow frequency band, the condition
〈Q̂(r,t)〉ω = 0 can be used to approximately determine the
steady-state temperature of a weakly interacting resonant
particle [49].

III. RESULTS

We apply the QFED formalism presented in Sec. II to the
study of an example plasmonic multilayer structure, which has
recently been of experimental and theoretical interest [50,51].
In contrast to the previous QFED models, the generalized
model can, among other oblique-angle problems, describe the
optical properties of plasmonic devices. Here we study the con-
tribution of the evanescent SP modes to the position-dependent
LDOSs and the effective-field temperatures in the vicinity
of a light-emitting Ag/GaN/In0.15Ga0.85N/GaN/Al2O3 mul-
tilayer structure illustrated in Fig. 1. The 2-nm In0.15Ga0.85N
QW has a band gap of 2.76 eV (λ = 450 nm), and it acts as the
emitter layer. It is deposited 20 nm below the 20-nm silver layer
which supports SP modes. The refractive indices of GaN and
InN are taken from Refs. [52–57], and the refractive index of
In0.15Ga0.85N is deduced by using Vegard’s law; the refractive
index of silver is calculated by using the Drude model
plasma frequency ωp = 9.04 eV/h̄ and damping frequency
ωτ = 0.02125 eV/h̄ taken from Ref. [58], and the refractive
index of sapphire is taken from Ref. [59]. For example, in
the case of the photon energy h̄ω = 2.76 eV corresponding
to the QW band gap, the refractive indices of air, silver,
GaN, In0.15Ga0.85N, and sapphire are 1.00, 0.013 + 3.119i,
2.51 + 0.0029i, 2.51 + 0.094i, and 1.78, respectively.

The background temperature of the materials is T = 300 K.
We compare the emission of the structure in two cases: (1)
the QW is thermally excited to temperature Tex = 350 K,
and (2) the QW is electrically or optically excited to a
state corresponding to direct excitation by a U = 2.6 V

FIG. 1. The studied structure formed by a Ag/GaN/

In0.15Ga0.85N/GaN/Al2O3 heterostructure. The background temper-
ature is T = 300 K, the band gap of the light emitting In0.15Ga0.85N
QW is Eg = 2.76 eV, and the QW excitation corresponds to an applied
voltage of U = 2.6 V. Note that the figure is not to scale.

voltage source. In the first case, the QW source-field photon-
number expectation value is modeled using the Bose-Einstein
distribution 〈η̂QW〉 = 1/(eh̄ω/(kBTex) − 1). In other words, we
apply the local thermal equilibrium (LTE) approximation.
The LTE approximation is justified when the gradients in the
temperature are expected to be small compared to a material-
dependent current-current correlation length scale, which is of
the order of atomic scale or the phonon mean free path [43]. In
the second case, the source-field photon number of the QW is
modeled using 〈η̂QW〉 = 1/(e(h̄ω−eU )/(kBT ) − 1) for photon en-
ergies above the band gap h̄ω � Eg and the background value
〈η̂BG〉 = 1/(eh̄ω/(kBT ) − 1) for photon energies below the band
gap h̄ω � Eg corresponding to the interactions with the free
carriers. For example, in the case of the photon energy h̄ω =
Eg + kBT = 2.786 eV, the source-field photon number of the
electrically or optically excited QW is 〈η̂QW〉 = 7.51 × 10−4,
which is very large in comparison with the photon number
of the thermal 300 K background 〈η̂BG〉 = 1.57 × 10−47. As
the photon-number expectation values are relatively small
and depend strongly on the frequency, it is convenient to
illustrate the results by using the effective-field temperature
that is defined in terms of the photon-number expectation value
as Teff(z,K,ω) = h̄ω/{kB ln[1 + 1/〈n̂(z,K,ω)〉]} [33,60]. The
corresponding effective-source-field temperature of the elec-
trically or optically excited QW ranges from 5175 K (compare
with ∼6000 K of solar radiation on earth) to 625 K as the
photon energy ranges from 2.76 to 5 eV.

Figure 2(a) shows the base-10 logarithm of the total EM
LDOS for photon energy h̄ω = Eg + kBT = 2.786 eV as a
function of position and the in-plane component of the wave
vector. The sapphire substrate lies on the left and air on the
right. The light cones for sapphire, GaN, and air are defined by
the in-plane wave vector component values K < nk0, where n

is the real part of the refractive index of the respective material.
The light cones of the different material layers are clearly
visible in the figure. Due to the evanescent fields, the LDOSs
are slightly elevated also beyond the material interfaces. One
can also see the very large LDOS associated with the GaN/Ag
SP resonance near the position z = 0 and K/k0 = 5.0. The
less visible air/Ag SP resonance is near the position z = 0
and K/k0 = 1.0. The GaN guided modes and the associated
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FIG. 2. (a) The base-10 logarithm of the total EM LDOS, (b) the effective temperature of the total EM field in the case of a thermally excited
QW, and (c) the effective-field temperature in the case of an electrically or optically excited QW corresponding to the bias voltage U = 2.6 V
for photon energy h̄ω = Eg + kBT = 2.786 eV as a function of position and the in-plane component of the wave vector. The position z = 0 is
fixed to the Ag/air interface. The white dashed lines represent the light cones of GaN, sapphire, and air.

interference patterns can be seen between the GaN light cone
and the sapphire light cone with 1.78 < K/k0 < 2.51.

Figure 2(b) shows the effective-field temperature of the
total EM field corresponding to the LDOS in Fig. 2(a) in the
case of a thermally excited QW. For the narrow In0.15Ga0.85N
layer located slightly left from the position z = 0 μm, the
source-field temperature is 350 K; for other material layers
it is 300 K. It can be seen that the light cones of each
material are visible also in the effective-field temperature. The
evanescent fields near the material interfaces are even more
pronounced when compared to the LDOS in Fig. 2(a). At
high values of K , the effective-field temperatures approach the
source-field temperature in each layer, whereas for K within
the light cones of air and sapphire, the effective temperature
is reduced due to the strong coupling to the semi-infinite
air and sapphire layers. Figure 2(c) shows the corresponding
effective-field temperature of the total EM field in the case of
an electrically or optically excited QW. The figure clearly
resembles the case of thermal excitation in Fig. 2(b), but
the values of the effective-field temperature are significantly
higher, as expected.

Figure 3(a) presents the base-10 logarithm of the total
EM LDOS in the QW as a function of the photon energy
and the in-plane component of the wave vector. The figure
clearly shows the GaN/Ag SP resonance, as well as the GaN
guided modes corresponding to the Fabry-Pérot resonances
of the cavity. At photon energy slightly above 3 eV, the GaN
becomes absorptive, and therefore, there are no resonances
visible above this energy. If, instead of the total EM LDOS,
we were to plot the LDOS parts corresponding to the TE and
TM polarizations, then the SP modes would be visible only
in the TM case, as previously discussed, e.g., in Ref. [51].
Otherwise, the LDOSs of the TE and TM polarizations are
qualitatively very similar. Figure 3(b) shows the corresponding
base-10 logarithm of the total EM LDOS in air at 1 nm above
the structure. In addition to the resonances visible in Fig. 3(a),
in Fig. 3(b), one can also see the Ag/air SP mode just above the
light cone of air. Figure 3(c) presents the base-10 logarithm
of the EM LDOS in air at 1 μm above the structure. One
can clearly see that there is only a small contribution of the
evanescent fields remaining, especially at high frequencies,

and the only significant contribution to the EM LDOS arises
from the propagating modes in the light cone of air.

Figure 3(d) shows the effective-field temperature of the total
EM field in the middle of the QW as a function of energy and
K/k0 for the case of a thermally excited QW. The effective
temperature is essentially above the background temperature
of 300 K when the imaginary part of the refractive index of the
InGaN QW significantly deviates from zero either due to band-
to-band or other absorption and emission mechanisms. At low
frequencies, the thin InGaN becomes nearly transparent, and
therefore, the effective temperature reaches the background
temperature. The emissivity peak near photon energyh̄ω = 0.5
eV follows from the peak in the infrared absorption coefficient
of the QW [57]. The corresponding effective-field temperature
in the case of an electrically or optically excited QW is
shown in Fig. 3(g). The emission begins at the photon energy
corresponding to the band gap, where the resulting effective-
field temperature also obtains its highest values, as expected.
At high energies well above the band gap, the effective-field
temperature again reaches the source-field temperature of 300
K. The effective temperature of the field generally increases
as the optical confinement of the mode increases: In the
case of an electrically or optically excited QW and photon
energy h̄ω = Eg + kBT = 2.786 eV, the modes extending
into the light cone of air have Teff ≈ 2200 K, whereas the
modes bound in the light cone of GaN reach Teff ≈ 2700 K,
while the evanescent InGaN modes reach values as high as
Teff ≈ 3500 K. For all these cases, however, Teff remains well
below the source-field temperature of the QW due to the losses
caused by the surrounding lossy materials.

Figure 3(e) presents the effective-field temperature of the
total EM field in air at 1 nm above the structure, corresponding
to the LDOS in Fig. 3(b) in the case of a thermally excited QW.
The values of the effective-field temperature are somewhat
lower than the values of the effective-field temperature in
the QW in Fig. 3(d). This is mainly due to the attenuation
related to the increased distance to the excited QW. The
effective-field temperature in Fig. 3(e), however, resembles the
effective-field temperature in the QW. Also, the effective-field
temperatures in the case of an electrically or optically excited
QW at the two positions presented in Figs. 3(g) and Fig. 3(h)
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FIG. 3. The base-10 logarithm of the total EM LDOS as a function of photon energy and the in-plane component of the wave vector (a) in
the QW, (b) in air at 1 nm above the surface, and (c) in air at 1 μm above the surface. (d), (e), and (f) The effective temperature of the total EM
field at the corresponding positions in the case of a thermally excited QW. (g), (h), and (i) The effective-field temperature at the corresponding
positions in the case of an electrically or optically excited QW corresponding to the bias voltage U = 2.6 V.

are quite similar. In the case of a thermally excited QW at low
frequencies, the infrared emission of the QW is not visible in
air as the silver layer between air and the QW becomes very
lossy at low frequencies.

Figures 3(f) and 3(i) show the effective-field temperatures
of the total EM field in air at 1 μm above the structure
corresponding to the LDOS in Fig. 3(c) in the cases of
thermally and electrically or optically excited QWs. The
contribution of the evanescent fields is reduced as in the case
of the EM LDOS. Due to the longer distance to the structure
and reflections at the interfaces, the values of the effective-
field temperatures are also consequently lower compared to
the values of the effective-field temperatures in the QW in
Figs. 3(d) and 3(g).

IV. CONCLUSIONS

We have developed a three-dimensional QFED method to
describe the photon-number quantization and thermal balance
in general lossy and lossless geometries. By appropriately

defining the photon ladder operators and the densities of states,
we were able to present the ladder operators and the photon-
number expectation values using formulas that are equivalent
to the forms previously obtained by using a one-dimensional
formalism. The resulting generalized QFED method allows
studying, e.g., plasmonic structures and defining an effective-
field temperature that realistically describes the excitation of
the optical field.

To demonstrate the applicability and physical implications
of the presented QFED method, we have used the model
to study the energy and position dependencies of the EM
LDOSs and effective-field temperatures in a light-emitting
InGaN QW structure, which has recently been of experimental
and theoretical interest. The results show that the developed
method is well suited for analyzing the emission of electrically,
optically, or thermally excited QWs. The effective tempera-
tures were studied both as a function of position and as a
function of photon energy. Electrical and optical excitations
of the QW produce high effective-field temperatures, whose
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energy spectrum is quite narrow, whereas the effective-field
temperature of a thermally excited QW has a significantly
broader emission spectrum, as expected.

In addition to providing further insight into the classi-
cal fluctuational electrodynamics theory, the QFED method
enables interesting further studies as it bridges the classical
propagating wave picture of the EM field and the fluctuational
electrodynamics, which is widely used to model near-field
effects. Therefore, we expect that using the QFED method, one
could, for instance, find a radiative transfer equation that allows
describing interference effects, thus widening the applicability
of the conventional radiative transfer equation beyond its main
limitation in describing interference effects. This would make
it possible to use the radiative transfer equation to describe
also near-field effects in resonant structures.
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APPENDIX A: GREEN’S FUNCTIONS

Here we briefly review the known relations between the
electric, magnetic, and exchange Green’s functions. We first

define the electric Green’s function
↔
Gee(r,ω,r′) that satisfies

[45]

∇r ×
(∇r ×

↔
Gee(r,ω,r′)
μ(r,ω)

)
− k2

0ε(r,ω)
↔
Gee(r,ω,r′)

=
↔
I δ(r − r′), (A1)

where
↔
I is the unit dyadic and k0 = ω/c is the wave number

in vacuum with the vacuum velocity of light c. The subscript
r in ∇r highlights that the differentiation is here performed
with respect to r instead of r′. The solution of Eq. (5) is then

written in terms of the electric Green’s function
↔
Gee(r,ω,r′) by

integrating the product of the Green’s function and the source
terms over all the source points r′ as

Ê+(r,ω) = μ0

∫ ↔
Gee(r,ω,r′) ·

[
iωĴ+

e (r′,ω)

− ∇r′ ×
(

Ĵ+
m(r′,ω)

μ0μ(r′,ω)

)]
d3r ′

= iωμ0

∫ ↔
Gee(r,ω,r′) · Ĵ+

e (r′,ω)d3r ′

+ k0

∫ ↔
Gem(r,ω,r′) · Ĵ+

m(r′,ω)d3r ′, (A2)

where the subscript r′ in ∇r′ inside the integral indi-
cates that the differentiation is performed with respect to
the source point r′. In the case of the second term, we
have applied the Stokes theorem resulting in the integra-
tion by parts formula

∫
V

Gα · (∇r′ × J)d3r ′ = ∫
V

(∇r′ × Gα) ·
Jd3r ′ − ∫

∂V
(Gα × J) · dS′ separately for each row vector Gα

of the matrix representation of
↔
Gee(r,ω,r′) with the boundary

condition that the Green’s functions go to zero when the

separation between the source point r′ and the field point r

tends to infinity. Using the shorthand notation
↔
Gee(r,ω,r′) ×

∇r′ = −[∇r′ × G1,∇r′ × G2,∇r′ × G3]T , where T denotes
transpose, we then define the exchange Green’s function
↔
Gem(r,ω,r′) as

↔
Gem(r,ω,r′) =

↔
Gee(r,ω,r′) × ∇r′

k0μ(r′,ω)
. (A3)

Solving for the magnetic field by using Faraday’s law in
Eq. (3) and substituting the electric field operator in terms of
the Green’s functions in Eq. (A2) give

Ĥ+(r,ω) = 1

iωμ0μ(r,ω)
[Ĵ+

m(r,ω) + ∇r × Ê+(r,ω)]

= k0

∫ ∇r ×
↔
Gee(r,ω,r′)

k0μ(r,ω)
· Ĵ+

e (r′,ω)d3r ′

− ik2
0

ωμ0

∫ [∇r ×
↔
Gem(r,ω,r′)

k0μ(r,ω)

+
↔
I

δ(r − r′)
k2

0μ(r,ω)

]
· Ĵ+

m(r′,ω)d3r ′

= k0

∫ ↔
Gme(r,ω,r′) · Ĵ+

e (r′,ω)d3r ′

+ iωε0

∫ ↔
Gmm(r,ω,r′) · Ĵ+

m(r′,ω)d3r ′, (A4)

where we have first substituted the expression for Ê+(r,ω)
from Eq. (A2) and incorporated the separate Ĵ+

m(r,ω) term into
the integral using a suitable δ-function presentation and then

defined the exchange Green’s function
↔
Gme(r,ω,r′) and the

magnetic Green’s function
↔
Gmm(r,ω,r′) as

↔
Gme(r,ω,r′) = ∇r ×

↔
Gee(r,ω,r′)

k0μ(r,ω)
, (A5)

↔
Gmm(r,ω,r′) = −∇r ×

↔
Gem(r,ω,r′)

k0μ(r,ω)
−

↔
I

δ(r − r′)
k2

0μ(r,ω)
. (A6)

By using Eqs. (A3) and (A6), one also obtains an expression of

the magnetic Green’s function
↔
Gmm(r,ω,r′) directly in terms

of the electric Green’s function
↔
Gee(r,ω,r′) as

↔
Gmm(r,ω,r′) = −∇r × [

↔
Gee(r,ω,r′) × ∇r′]

k2
0μ(r,ω)μ(r′,ω)

−
↔
I

δ(r − r′)
k2

0μ(r,ω)
.

(A7)

APPENDIX B: GREEN’S FUNCTIONS FOR STRATIFIED
MEDIA

To gain more insight and analytical formulas directly
applicable to common planar geometries and to partly lift the
divergences associated with absorbing media, we apply the
formalism developed above for stratified media. In the case
of stratified media, it is convenient to use the plane-wave
representation for the dyadic Green’s functions: A point
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in space is denoted in the Cartesian basis (x̂,ŷ,ẑ) by r =
xx̂ + yŷ + zẑ = R + zẑ, where R = xx̂ + yŷ is the in-plane
coordinate and the surface normals are along the z coordinate.
Similarly, a wave vector of a plane wave is denoted by
k = K + kz sgn(z − z′)ẑ, where the component K is in the x-y

plane and kz is given by kz =
√

k2
0n

2 − K2, with Im(kz) � 0.

For convenience, we also define the unit vector K̂ = K/K .
The above notation is convenient since at the x-y plane, the

dyadic Green’s functions of stratified media depend only on the
relative in-plane coordinate R − R′. Therefore, in the plane-

wave representation, the dyadic Green’s functions
↔
Gjk(r,ω,r′),

j,k ∈ {e,m}, can be written as [61,62]

↔
Gjk(r,ω,r′) = 1

4π2

∫ ↔
R

T↔
g jk(z,K,ω,z′)

↔
ReiK·(R−R′)d2K,

(B1)

where the terms
↔
R

T↔
g jk(z,K,ω,z′)

↔
R are the Fourier transforms

of
↔
Gjk(r,ω,r′) that have been obtained by rotating the dyadic

plane-wave Greens functions
↔
g jk(z,K,ω,z′) calculated using

the standard techniques to evaluate the fields in layered struc-
tures as presented below. More specifically,

↔
g jk(z,K,ω,z′)

have been evaluated in a coordinate system where the in-plane
noise components are taken to be perpendicular and parallel to

K, and the rotation with the rotation matrix
↔
R is used to return

this convention of direction back to the coordinate system
where the direction of the dipoles does not depend on K.

Due to the symmetry properties of the Green’s

functions
↔
Gjk(r,ω,r′), also

↔
g jk(z,K,ω,z′) obey symmetry

relations. When the field and source positions z and z′
are interchanged, the values of the Green’s functions
are changed according to the reciprocity relations
as follows. The spectral dyadic Green’s functions
↔
g jk(z,K,ω,z′) obey the reciprocity relation

↔
g kj (z′,K,ω,z) =

diag(−1,1,−1)
↔
g jk(z,K,ω,z′)T diag(−1,1,−1), where

diag(−1,1,−1) is a diagonal matrix with diagonal elements
−1, 1, and −1. In addition, they obey the complex conjugation

relation
↔
g

∗
jk(z,K,ω,z′) = ↔

g jk(z,K, − ω,z′).

1. Multi-interface reflection and transmission coefficients

In order to write the spectral dyadic Green’s functions for
a multi-interface geometry in a compact form, we first define
the multi-interface reflection and transmission coefficients that
take into account all the reflections in the geometry. First,
the single-interface reflection and transmission coefficients
following from the boundary conditions of the tangential and
normal polarizations (σ ∈ {‖ , ⊥}) requiring the tangential
components of the electric and magnetic fields to be continuous

at interfaces are given for the electric and magnetic fields by

re,‖ = μ2kz,1 − μ1kz,2

μ2kz,1 + μ1kz,2
, te,‖ = 2μ2kz,1

μ2kz,1 + μ1kz,2
,

re,⊥ = ε1kz,2 − ε2kz,1

ε2kz,1 + ε1kz,2
, te,⊥ = 2

√
ε1/μ1 n2kz,1

ε2kz,1 + ε1kz,2
,

(B2)

rm,‖ = ε2kz,1 − ε1kz,2

ε2kz,1 + ε1kz,2
, tm,‖ = 2ε2kz,1

ε2kz,1 + ε1kz,2
,

rm,⊥ = μ1kz,2 − μ2kz,1

μ2kz,1 + μ1kz,2
, tm,⊥ = 2

√
μ1/ε1 n2kz,1

μ2kz,1 + μ1kz,2
,

where εl , μl , nl , kz,l , l = 1,2, are the relative permittivities,
permeabilities, refractive indices, and the z components of
the wave vectors in the two materials. The single-interface
coefficients in Eq. (B2) equal the conventional reflection
and transmission coefficients used, e.g., in Ref. [45]. In the
following, with primed reflection and transmission coefficients
we denote the reflection and transmission coefficients for the
incidence from medium 2 to medium 1, and they are obtained
by switching indices 1 and 2 in Eq. (B2).

The multi-interface geometry is defined by interface po-
sitions zl , l = 1,2, . . . ,N , separating material layers with
relative permittivities and permeabilities εl and μl , l =
1,2, . . . ,N + 1. The layer thicknesses are denoted by dl =
zl − zl−1, where l = 2, . . . ,N . The multi-interface reflection
and transmission coefficients Rl,j and Tl,j , which account
for the multiple reflections in different medium layers, are
recursively given in terms of the single-interface reflection
and transmission coefficients as

Rl,j,σ = rl,j,σ + Rl+1,j,σ e2ikz,l+1dl+1

1 + rl,j,σRl+1,j,σ e2ikz,l+1dl+1
, (B3)

Tl,j,σ = tl,j,σ νl+1,j,σ

νl,j,σ (1 − R′
l−1,j,σ rl,j,σ e2ikz,ldl )

, (B4)

where l = 1,2, . . . ,N , j ∈ {e,m}, σ ∈ {‖ , ⊥}νl,j,σ = 1/(1 −
R′

l−1,j,σRl,j,σ e2ikz,ldl ), and R′
0,j,σ = RN+1,j,σ = 0. As in the

case of single-interface coefficients in Eq. (B2) the primed
coefficients denote the coefficients for right incidence. The
layers are indexed such that R′

l,j,σ corresponds to the same
interface as Rl,j,σ . The propagation coefficient for a certain
material layer of thickness dl is given as Pl = eikz,ldl when
the transmission coefficient from layer l′ to layer l > l′ + 1 is
recursively given by Tl′,l,j,σ = Tl′,l−1,j,σTl−1,j,σ eikz,l−1dl−1 , with
Tl′,l′+1,j,σ = Tl′,j,σ , and that from layer l′ to layer l < l′ − 1 by
T ′

l′,l,j,σ = T ′
l′,l+1,j,σT ′

l,j,σ eikz,l+1dl+1 , with T ′
l′,l′−1,j,σ = T ′

l′−1,j,σ .

2. Spectral dyadic Green’s functions

Here we give a compact componentwise representation of
the spectral dyadic Green’s functions for general stratified
media. The presentation adapts the dyadic Green’s functions
given, e.g., in Ref. [45] or, in the case of purely dielectric
structures, in Appendix A of Ref. [47]. However, the chosen
presentation has a few differences: (1) We use the orthonormal
basis (K̂ × ẑ,K̂,ẑ), where the in-plane noise components are
taken to be perpendicular and parallel to K. Then, the rotation
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matrix
↔
R in Eq. (B1) is used to return this convention of

direction back to the coordinate system where the direction
of the dipoles does not depend on K. (2) Instead of using
the orthonormal system of complex-valued unit dyads of
Refs. [45,47], we write the dyadic Green’s functions as
matrices. (3) We use the scaled forms of the dyadic Green’s

functions; for example,
↔
Gee(r,ω,r′) is obtained as a solution to

the differential equation in Eq. (A1) instead of the correspond-
ing equation in Ref. [45], whose right-hand side contains an
additional factor 1/μ(r,ω). Thus, our notation corresponds to
the notation used in the case of normal incidence in Ref. [34].

The spectral dyadic Green’s functions
↔
g ee(z,K,ω,z′) and

↔
g mm(z,K,ω,z′), in our notation, are given in terms of the scaled

dyadic Green’s functions
↔
ξ e(z,K,ω,z′) and

↔
ξ m(z,K,ω,z′) as

↔
g ee(z,K,ω,z′) = μ(z′,ω)

↔
ξ e(z,K,ω,z′) − δ(z − z′)

k2
0ε(z,ω)

ẑẑ, (B5)

↔
g mm(z,K,ω,z′) = ε(z′,ω)

↔
ξ m(z,K,ω,z′) − δ(z − z′)

k2
0μ(z,ω)

ẑẑ. (B6)

The scaled dyadic Green’s functions
↔
ξ e(z,ω,z′) and

↔
ξ m(z,ω,z′) in Eqs. (B5) and (B6) are given in the orthonormal basis

(K̂ × ẑ,K̂,ẑ) by

↔
ξ j (z,K,ω,z′) =

⎛
⎜⎜⎝

ξ+
j,‖(z,ω,z′) 0 0

0 kzk
′
z

kk′ ξ+
j,⊥(z,ω,z′) i

kzK

kk′
∂

kz∂z
ξ−
j,⊥(z,ω,z′)

0 i
Kk′

z

kk′
∂

kz∂z
ξ+
j,⊥(z,ω,z′) K2

kk′ ξ
−
j,⊥(z,ω,z′)

⎞
⎟⎟⎠, (B7)

where the primed and unprimed quantities correspond to the quantities at positions z′ and z, respectively, and ξ±
j,σ (z,ω,z′) are

the scaled scalar Green’s functions, which are presented in the case of normal incidence in Ref. [34]. For non-normal incidence,
the generalization of the scaled scalar Green’s functions of Ref. [34] is obtained by substituting the wave number k with its
z component kz and the reflection and transmission coefficients of normal incidence with the corresponding quantities for
non-normal incidence, given in Eqs. (B3) and (B4). Assuming that the source point z′ is located in layer l′ (zl′−1 < z′ < zl′ ) and
the field point z is located in layer l (zl−1 < z < zl), in the three cases l = l′, l > l′, and l < l′, the scaled scalar Green’s functions
are compactly given by

ξ±
l=l′,j,σ (z,ω,z′) = i

2kz,l′
(eikz,l′ |z−z′ | ± νl′,jRl′,j,σ [e−ikz,l′ (z+z′−2zl′ ) ± R′

l′−1,j,σ e−ikz,l′ (z−z′−2dl′ )]

± νl′,j,σR′
l′−1,j,σ [eikz,l′ (z+z′−2zl′−1) ± Rl′,j,σ eikz,l′ (z−z′+2dl′ )]), (B8)

ξ±
l>l′,j,σ (z,ω,z′) = i

2kz,l′
Tl′,l,j,σ (eikz,l′ (zl′−z′) ± νl′,j,σR′

l′−1,j,σ [eikz,l′ (z′+dl′−zl′−1) ± Rl′,j,σ eikz,l′ (2dl′ −z′+zl′ )])(eikz,l (z−zl−1)

±Rl,j,σ e−ikz,l (z−zl−1−2dl )), (B9)

ξ±
l<l′,j,σ (z,ω,z′) = i

2kz,l′
T ′

l′,l,j,σ (eikz,l′ (z′−zl′−1) ± νl′,j,σRl′,j,σ [e−ikz,l′ (z′−2dl′ −zl′−1)±R′
l′−1,j,σ eikz,l′ (z′+2dl′ −zl′−1)])(e−ikz,l (z−zl )

±R′
l−1,j,σ eikz,l (z+dl−zl−1)). (B10)

The spectral dyadic Green’s functions
↔
g me(z,K,ω,z′) and

↔
g em(z,K,ω,z′) following from Eqs. (A3), (A5), and (B1) are,

respectively, presented in terms of the scaled dyadic exchange Green’s functions
↔
ξ ex,e(z,K,ω,z′) and

↔
ξ ex,m(z,K,ω,z′) as

↔
g me(z,K,ω,z′) = μ(z′,ω)

μ(z,ω)

↔
ξ ex,e(z,K,ω,z′), (B11)

↔
g em(z,K,ω,z′) = −ε(z′,ω)

ε(z,ω)

↔
ξ ex,m(z,K,ω,z′). (B12)

The scaled dyadic exchange Green’s functions
↔
ξ ex,e(z,K,ω,z′) and

↔
ξ ex,m(z,K,ω,z′) are given in terms of the scaled scalar

Green’s functions in Eqs. (B8)–(B10) by

↔
ξ ex,j (z,K,ω,z′) =

⎛
⎜⎝

0 − k′
zk

kzk′
∂

k0∂z
ξ+
j,⊥(z,ω,z′) i Kk

k0k′ ξ
−
j,⊥(z,ω,z′)

∂
k0∂z

ξ+
j,‖(z,ω,z′) 0 0

−i K
k0

ξ+
j,‖(z,ω,z′) 0 0

⎞
⎟⎠. (B13)

013848-9
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APPENDIX C: DERIVATION OF THE DENSITIES OF STATES

1. Nonlocal densities of states

The time-domain field operators are obtained from the frequency-domain operators by Fourier transforms. For example, the
time-domain electric field operator is given by

Ê(r,t)= 1

2π

∫ ∞

0
Ê+(r,ω)e−iωtdω + 1

2π

∫ ∞

0
Ê−(r,ω)eiωtdω, (C1)

where Ê−(r,ω) is the negative-frequency part obtained by a Hermitian conjugate of the positive-frequency part Ê+(r,ω) in
Eq. (6).

The frequency-space correlation functions are given by

〈Ê−(r,ω) · Ê+(r,ω′)〉 = μ2
0ωω′

∫
〈Ĵ†e(r′,ω) ·

↔
G

†

ee(r,ω,r′) ·
↔
Gee(r,ω′,r′′) · Ĵe(r′′,ω′)〉d3r ′d3r ′′

+ k2
0

∫
〈Ĵ†m(r′,ω) ·

↔
G

†

em(r,ω,r′) ·
↔
Gem(r,ω′,r′′) · Ĵm(r′′,ω′)〉d3r ′d3r ′′

= δ(ω − ω′)μ2
0ω

2
∫

|j0,e(r′,ω)|2Tr[
↔
G

†

ee(r,ω,r′) ·
↔
Gee(r,ω,r′)]〈η̂(r′,ω)〉d3r ′

+ δ(ω − ω′)k2
0

∫
|j0,m(r′,ω)|2Tr[

↔
G

†

em(r,ω,r′) ·
↔
Gem(r,ω,r′)]〈η̂(r′,ω)〉d3r ′, (C2)

〈Ê+(r,ω) · Ê−(r,ω′)〉 = μ2
0ωω′

∫
〈Ĵe(r′,ω) ·

↔
Gee(r,ω,r′) ·

↔
G

†

ee(r,ω′,r′′) · Ĵ†e(r′′,ω′)〉d3r ′d3r ′′

+ k2
0

∫
〈Ĵm(r′,ω) ·

↔
Gem(r,ω,r′) ·

↔
G

†

em(r,ω′,r′′) · Ĵ†m(r′′,ω′)〉d3r ′d3r ′′

= δ(ω − ω′)μ2
0ω

2
∫

|j0,e(r′,ω)|2Tr[
↔
Gee(r,ω,r′) ·

↔
G

†

ee(r,ω,r′)][〈η̂(r′,ω)〉 + 1]d3r ′

+ δ(ω − ω′)k2
0

∫
|j0,m(r′,ω)|2Tr[

↔
Gem(r,ω,r′) ·

↔
G

†

em(r,ω,r′)][〈η̂(r′,ω)〉 + 1]d3r ′. (C3)

In the time domain, we have

〈Ê(r,t)2〉 = 1

4π2

∫ ∞

0

∫ ∞

0
〈Ê−(r,ω) · Ê+(r,ω′)〉ei(ω−ω′)t dωdω′ + 1

4π2

∫ ∞

0

∫ ∞

0
〈Ê+(r,ω) · Ê−(r,ω′)〉ei(ω′−ω)t dωdω′, (C4)

which then becomes

〈Ê(r,t)2〉 =
∫ ∞

0

∫
μ2

0ω
2

2π2
|j0,e(r′,ω)|2Tr[

↔
Gee(r,ω,r′) ·

↔
G

†

ee(r,ω,r′)]
(

〈η̂(r′,ω)〉 + 1

2

)
d3r ′dω

+
∫ ∞

0

∫
k2

0

2π2
|j0,m(r′,ω)|2Tr[

↔
Gem(r,ω,r′) ·

↔
G

†

em(r,ω,r′)]
(

〈η̂(r′,ω)〉 + 1

2

)
d3r ′dω. (C5)

Using |j0,e(r′,ω)|2 = 4πh̄ω2ε0εi(r′,ω) and |j0,m(r′,ω)|2 = 4πh̄ω2μ0μi(r′,ω) gives

〈Ê(r,t)2〉 =
∫ ∞

0

∫
2h̄ω4μ0

πc2
{εi(r′,ω)Tr[

↔
Gee(r,ω,r′) ·

↔
G

†

ee(r,ω,r′)]

+ μi(r′,ω)Tr[
↔
Gem(r,ω,r′) ·

↔
G

†

em(r,ω,r′)]}
(

〈η̂(r′,ω)〉 + 1

2

)
d3r ′dω. (C6)

This allows defining the NLDOS for the electric field as

ρNL,e(r,ω,r′) = 2ω3

πc4
{εi(r′,ω)Tr[

↔
Gee(r,ω,r′) ·

↔
G

†

ee(r,ω,r′)] + μi(r′,ω)Tr[
↔
Gem(r,ω,r′) ·

↔
G

†

em(r,ω,r′)]}. (C7)

Corresponding equations can be written for the magnetic field. The NLDOS of the magnetic field is then given by

ρNL,m(r,ω,r′) = 2ω3

πc4
{εi(r′,ω)Tr[

↔
Gme(r,ω,r′) ·

↔
G

†

me(r,ω,r′)] + μi(r′,ω)Tr[
↔
Gmm(r,ω,r′) ·

↔
G

†

mm(r,ω,r′)]}. (C8)
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2. Interference density of states

For an optical mode the quantum optical Poynting vector is defined as a normal-ordered operator in terms of the positive-
and negative-frequency parts of the electric and magnetic field operators as Ŝ(r,t) =: Ê(r,t) × Ĥ(r,t) := Ê−(r,t) × Ĥ+(r,t) −
Ĥ−(r,t) × Ê+(r,t) [48]. Substituting the time-space forms of the electric and magnetic field operators in Eqs. (6) and (7) gives

〈Ŝ(r,t)〉 = 1

4π2

∫ ∞

0

∫ ∞

0
〈Ê−(r,ω) × Ĥ+(r,ω′)〉ei(ω−ω′)t dωdω′ − 1

4π2

∫ ∞

0

∫ ∞

0
〈Ĥ−(r,ω) × Ê+(r,ω′)〉ei(ω−ω′)t dωdω′. (C9)

The frequency-space correlation functions are given by

〈Ê−(r,ω) × Ĥ+(r,ω′)〉 = −iωμ0k0

∫
〈[Ĵ†e(r′,ω) ·

↔
G

†

ee(r,ω,r′)] × [
↔
Gme(r,ω′,r′′) · Ĵe(r′′,ω′)]〉d3r ′d3r ′′

+ iω′ε0k0

∫
〈[Ĵ†m(r′,ω) ·

↔
G

†

em(r,ω,r′)] × [
↔
Gmm(r,ω′,r′′) · Ĵm(r′′,ω′)]〉d3r ′d3r ′′

= −δ(ω − ω′)iωμ0k0

∫
|j0,e(r′,ω)|2Tr[

↔
G

†

ee(r,ω,r′) ×
↔
Gme(r,ω,r′)]〈η̂(r′,ω)〉d3r ′

+ δ(ω − ω′)iωε0k0

∫
|j0,m(r′,ω)|2Tr[

↔
G

†

em(r,ω,r′) ×
↔
Gmm(r,ω,r′)]〈η̂(r′,ω)〉d3r ′, (C10)

〈Ĥ−(r,ω) × Ê+(r,ω′)〉 = −iωε0k0

∫
〈[Ĵ†m(r′,ω) ·

↔
G

†

mm(r,ω,r′)] × [
↔
Gem(r,ω′,r′′) · Ĵm(r′′,ω′)]〉d3r ′d3r ′′

+ iω′μ0k0

∫
〈[Ĵ†e(r′,ω) ·

↔
G

†

me(r,ω,r′)] × [
↔
Gee(r,ω′,r′′) · Ĵe(r′′,ω′)]〉d3r ′d3r ′′

= −δ(ω − ω′)iωε0k0

∫
|j0,m(r′,ω)|2Tr[

↔
G

†

mm(r,ω,r′) ×
↔
Gem(r,ω,r′)]〈η̂(r′,ω)〉d3r ′

+ δ(ω − ω′)iωμ0k0

∫
|j0,e(r′,ω)|2Tr[

↔
G

†

me(r,ω,r′) ×
↔
Gee(r,ω,r′)]〈η̂(r′,ω)〉d3r ′. (C11)

Here Tr[
↔
G

†

jj (r,ω,r′) ×
↔
Gkj (r,ω,r′)] = ∑

σ [êσ ·
↔
G

†

jj (r,ω,r′)] × [
↔
Gkj (r,ω,r′) · êσ ], which is a vector, in contrast to the conven-

tional trace of a matrix. The Poynting vector then becomes

〈Ŝ(r,t)〉 = 1

4π2

∫ ∞

0

∫
{−iωμ0k0|j0,e(r′,ω)|2Tr[

↔
G

†

ee(r,ω,r′) ×
↔
Gme(r,ω,r′) +

↔
G

†

me(r,ω,r′) ×
↔
Gee(r,ω,r′)]

+ iωε0k0|j0,m(r′,ω)|2Tr[
↔
G

†

em(r,ω,r′) ×
↔
Gmm(r,ω,r′) +

↔
G

†

mm(r,ω,r′) ×
↔
Gem(r,ω,r′)]}〈η̂(r′,ω)〉d3r ′dω

= 1

2π2

∫ ∞

0

∫ (−ωμ0k0|j0,e(r′,ω)|2Im{Tr[
↔
Gee(r,ω,r′) ×

↔
G

†

me(r,ω,r′)]}

+ωε0k0|j0,m(r′,ω)|2Im{Tr[
↔
Gmm(r,ω,r′) ×

↔
G

†

em(r,ω,r′)]})〈η̂(r′,ω)〉d3r ′dω. (C12)

Using |j0,e(r′,ω)|2 = 4πh̄ω2ε0εi(r′,ω) and |j0,m(r′,ω)|2 = 4πh̄ω2μ0μi(r′,ω) gives

〈Ŝ(r,t)〉 =
∫ ∞

0

∫
2h̄ω4

πc3

(
μi(r′,ω)Im{Tr[

↔
Gmm(r,ω,r′) ×

↔
G

†

em(r,ω,r′)]}

− εi(r′,ω)Im{Tr[
↔
Gee(r,ω,r′) ×

↔
G

†

me(r,ω,r′)]})〈η̂(r′,ω)〉d3r ′dω. (C13)

This allows defining the IFDOS as

ρIF(r,ω,r′) = 2ω3nr(r,ω)

πc4

(
μi(r′,ω)Im{Tr[

↔
Gmm(r,ω,r′) ×

↔
G

†

em(r,ω,r′)]} − εi(r′,ω)Im{Tr[
↔
Gee(r,ω,r′) ×

↔
G

†

me(r,ω,r′)]}),
(C14)

where nr(r,ω) is the real part of the refractive index.

APPENDIX D: DENSITIES OF STATES FOR STRATIFIED MEDIA

Here we present the densities of states for stratified media by using the components g
αβ

jk , α,β ∈ {1,2,3}, of the matrix

representations of the spectral dyadic Green’s functions
↔
g jk .
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1. Nonlocal densities of states

Using Eq. (C6) with ε(r′,ω) = ε(z′,ω), μ(r′,ω) = μ(z′,ω), 〈η̂(r′,ω)〉 = 〈η̂(z′,ω)〉, and∫
Tr[

↔
G

†

jk(r,ω,r′) ·
↔
Gjk(r,ω,r′)]d2R′ = 1

4π2

∫
Tr[

↔
g
†
jk(z,K,ω,z′) · ↔

g jk(z,K,ω,z′)]d2K, (D1)

where j,k ∈ {e,m}, gives

〈Ê(r,t)2〉 =
∫ ∫ ∞

0

∫ ∞

−∞

h̄ω4μ0

2π3c2
{εi(z

′,ω)Tr[
↔
g
†
ee(z,K,ω,z′) · ↔

g ee(z,K,ω,z′)]

+ μi(z
′,ω)Tr[

↔
g
†
em(z,K,ω,z′) · ↔

g em(z,K,ω,z′)]}
(

〈η̂(z′,ω)〉 + 1

2

)
dz′dωd2K. (D2)

Then, the NLDOS for the electric field can be written as

ρNL,e(z,K,ω,z′) = ω3

2π3c4
{εi(z

′,ω)Tr[
↔
g
†
ee(z,K,ω,z′) · ↔

g ee(z,K,ω,z′)] + μi(z
′,ω)Tr[

↔
g
†
em(z,K,ω,z′) · ↔

g em(z,K,ω,z′)]}

= ω3

2π3c4

∑
α,β

[
εi(z

′,ω)|gαβ
ee (z,K,ω,z′)|2 + μi(z

′,ω)|gαβ
em(z,K,ω,z′)|2], (D3)

where g
αβ
ee and g

αβ
em, with α,β ∈ {1,2,3}, are components of the matrix representations of the spectral dyadic Green’s functions

↔
g ee and

↔
g em. The NLDOS of the magnetic field is given by

ρNL,m(z,K,ω,z′) = ω3

2π3c4
{εi(z

′,ω)Tr[
↔
g
†
me(z,K,ω,z′) · ↔

g me(z,K,ω,z′)] + μi(z
′,ω)Tr[

↔
g
†
mm(z,K,ω,z′) · ↔

g mm(z,K,ω,z′)]}

= ω3

2π3c4

∑
α,β

[
εi(z

′,ω)
∣∣gαβ

me(z,K,ω,z′)
∣∣2 + μi(z

′,ω)
∣∣gαβ

mm(z,K,ω,z′)
∣∣2]

. (D4)

2. Local densities of states

As integrals of the electric and magnetic NLDOSs in Eqs. (D3) and (D4), the electric and magnetic LDOSs are given by

ρe(z,K,ω) = ω

2π3c2
Im

[
g11

ee + g22
ee + ε(z,ω)2

|ε(z,ω)|2 g33
ee

]
, (D5)

ρm(z,K,ω) = ω

2π3c2
Im

[
g11

mm + g22
mm + μ(z,ω)2

|μ(z,ω)|2 g33
mm

]
. (D6)

3. Interference density of states

Using Eq. (C13) with ε(r′,ω) = ε(z′,ω), μ(r′,ω) = μ(z′,ω), 〈η̂(r′,ω)〉 = 〈η̂(z′,ω)〉, and
∫

Tr[
↔
Gee(r,ω,r′) ×

↔
G

†

me(r,ω,r′)]d2R′ = 1

4π2

∫
ẑẑ · Tr[

↔
g ee(z,K,ω,z′) × ↔

g
†
me(z,K,ω,z′)]d2K, (D7)

∫
Tr[

↔
Gmm(r,ω,r′) ×

↔
G

†

em(r,ω,r′)]d2R′ = 1

4π2

∫
ẑẑ · Tr[

↔
g mm(z,K,ω,z′) × ↔

g
†
em(z,K,ω,z′)]d2K (D8)

gives

〈Ŝ(r,t)〉 =
∫ ∫ ∞

0

∫ ∞

−∞

h̄ω4

2π3c3

(
μi(z

′,ω)Im{ẑẑ · Tr[
↔
g mm(z,K,ω,z′) × ↔

g
†
em(z,K,ω,z′)]}

− εi(z
′,ω)Im{ẑẑ · Tr[

↔
g ee(z,K,ω,z′) × ↔

g
†
me(z,K,ω,z′)]})〈η̂(z′,ω)〉dz′dωd2K. (D9)

Note that the Poynting vector points purely in the z direction, which is natural due to the symmetry with respect to the z axis.
Hence, the IFDOS can be written as ρIF(z,K,ω,z′) = ẑρIF(z,K,ω,z′), where the scalar IFDOS ρIF(z,K,ω,z′) is given by

ρIF(z,K,ω,z′) = ω3nr(z,ω)

2π3c4

(
μi(z

′,ω)Im{ẑ · Tr[
↔
g mm(z,K,ω,z′) × ↔

g
†
em(z,K,ω,z′)]}

− εi(z
′,ω)Im{ẑ · Tr[

↔
g ee(z,K,ω,z′) × ↔

g
†
me(z,K,ω,z′)]})

= ω3nr(z,ω)

2π3c4

{
μi(z

′,ω)Im
[
g11

mmg21∗
em − g22

mmg12∗
em − g23

mmg13∗
em

] − εi(z
′,ω)Im

[
g11

ee g21∗
me − g22

ee g12∗
me − g23

ee g13∗
me

]}
. (D10)
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PARTANEN, HÄYRYNEN, TULKKI, AND OKSANEN PHYSICAL REVIEW A 95, 013848 (2017)

[43] A. G. Polimeridis, M. T. H. Reid, W. Jin, S. G. Johnson,
J. K. White, and A. W. Rodriguez, Fluctuating volume-current
formulation of electromagnetic fluctuations in inhomogeneous
media: Incandescence and luminescence in arbitrary geometries,
Phys. Rev. B 92, 134202 (2015).

[44] W. Eckhardt, Macroscopic theory of electromagnetic fluctua-
tions and stationary radiative heat transfer, Phys. Rev. A 29,
1991 (1984).

[45] M. Paulus, P. Gay-Balmaz, and O. J. F. Martin, Accurate and
efficient computation of the Green’s tensor for stratified media,
Phys. Rev. E 62, 5797 (2000).

[46] K. Joulain, R. Carminati, J.-P. Mulet, and J.-J. Greffet, Definition
and measurement of the local density of electromagnetic states
close to an interface, Phys. Rev. B 68, 245405 (2003).

[47] K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and
J.-J. Greffet, Surface electromagnetic waves thermally excited:
Radiative heat transfer, coherence properties and Casimir forces
revisited in the near field, Surf. Sci. Rep. 57, 59 (2005).

[48] R. Loudon, The Quantum Theory of Light (Oxford University
Press, Oxford, 2000).

[49] C. F. Bohren and D. R. Huffman, Absorption and Scattering of
Light by Small Particles (Wiley, Chichester, UK, 1998).

[50] E. Homeyer, P. Mattila, J. Oksanen, T. Sadi, H. Nykänen, S.
Suihkonen, C. Symonds, J. Tulkki, F. Tuomisto, M. Sopanen,
and J. Bellessa, Enhanced light extraction from InGaN/GaN
quantum wells with silver gratings, Appl. Phys. Lett. 102,
081110 (2013).

[51] T. Sadi, J. Oksanen, and J. Tulkki, Effect of plasmonic losses
on light emission enhancement in quantum-wells coupled to
metallic gratings, J. Appl. Phys. 114, 223104 (2013).

[52] M. M. Y. Leung, A. B. Djurisic, and E. H. Li, Refractive
index of InGaN/GaN quantum well, J. Appl. Phys. 84, 6312
(1998).

[53] A. S. Barker and M. Ilegems, Infrared lattice vibrations and
free-electron dispersion in GaN, Phys. Rev. B 7, 743 (1973).

[54] O. Ambacher, W. Rieger, P. Ansmann, H. Angerer, T. Mous-
takas, and M. Stutzman, Electron transport characteristics
of GaN for high temperature device modeling, Solid State
Commun. 97, 365 (1996).

[55] A. B. Djurisic and E. H. Li, Modeling the optical constants
of hexagonal GaN, InN, and AlN, J. Appl. Phys. 85, 2848
(1999).

[56] J. W. Trainor and R. K., Some properties of InN films prepared
by reactive evaporation, J. Electron. Mater. 3, 821 (1974).

[57] T. L. Tansley and C. P. Foley, Optical band gap of indium nitride,
J. Appl. Phys. 59, 3241 (1986).

[58] E. J. Zeman and G. C. Schatz, An accurate electromagnetic
theory study of surface enhancement factors for silver, gold,
copper, lithium, sodium, aluminum, gallium, indium, zinc, and
cadmium, J. Phys. Chem. 91, 634 (1987).

[59] I. H. Malitson, Refraction and dispersion of synthetic sapphire,
J. Opt. Soc. Am. 52, 1377 (1962).
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