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Modal theory of modified spontaneous emission of a quantum emitter in a hybrid plasmonic
photonic-crystal cavity system
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We present an intuitive and accurate modal description of the rich optical physics involved for quantum dipole
emitters coupled to hybrid plasmonic photonic-cavity structures. A significant frequency dependence for the
spontaneous emission decay rate of a quantum dipole emitter coupled to these hybrid structures is found. In
particular, it is shown that a Fano-type resonance reported experimentally in hybrid plasmonic systems arises
from a large interference between two dominant quasinormal modes of the systems in the frequency range of
interest. The presented modal theory forms an efficient basis for modeling quantum light-matter interactions in
these complex hybrid systems and also enables the quantitative prediction and understanding of both radiative
and nonradiative coupling for a wide range of dipole positions.
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I. INTRODUCTION

Plasmonic devices show great promise for applications in
quantum photonics and sensing technologies [1–4], due in part
to the strong local field confinement below the diffraction limit.
However, metals naturally have Ohmic losses and one must
characterize both radiative enhancement effects and Ohmic
dissipation on an equal footing. Despite their material losses,
metal dimer antennas can have good single photon output
β factors (i.e., the fraction of the dipole-emitted radiated
power available in the far field) of more than 60% [5,6], as
well as support very strong spontaneous emission (SE) rate
enhancements [5,7,8]. In addition, integration of plasmonic
structures with photonic crystal (PC) cavity platforms has been
shown to offer new possibilities [4,9–12] that can benefit both
from the higher quality (Q) factor of the PC subsystem and
the stronger field enhancements and tighter light confinement
by the plasmonic subsystem. In particular, plasmonic devices
offer an extremely wide spectral bandwidth compared to
dielectric devices such as PC cavities, because they have
intrinsically low Qs. Therefore, by coupling these two systems
together, the possibility of introducing very fine spectral
features within a broad operating band can be investigated and
exploited. Unfortunately, the theoretical description of such
hybrid devices is rather scarce and particularly complicated
because the traditional single mode cavity models faild for
a number of reasons. For example, the rich physics behind
Fano-type resonances that have been seen in hybrid plasmonic
cavity systems [9] needs to be explored in more details,
and is not well understood. In addition, hybrid plasmonic
systems bring together two completely different length scales:
a nanometer sized metallic resonator and a micrometer sized
photonic cavity. Modeling these complex devices is not trivial
and it is highly demanding for the usual computational
models because of the different spatial grid requirements.
Moreover, hybrid plasmonic systems are intrinsically lossy and
are subjected to open boundary conditions, causing various
conceptual problems with the development of an intuitive
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modal theory, which is the typical approach for dielectric
cavity systems.

In this paper, we demonstrate and apply an elegant modal
theory that allows one to accurately model the underlying
light-matter interactions and helps to explain the underlying
physics of the complex line shapes. For the cavity structure of
interest, we introduce a hybrid system that consists of a gold
dimer [5] placed on top of a nanobeam PC cavity [13] and show
how one can achieve very strong manipulation of SE decay
rate. Perturbative analysis of similar structures has been done
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FIG. 1. Schematic of the hybrid device where a gold dimer of
nanorods is placed on top of a nanobeam PC cavity. The top color
map shows the |Ey |2 of the dimer-only QNM in the middle of the
dimer. The color map on the bottom shows the |Ey |2 of the PC
beam-only QNM in the middle of the slab. The QNM frequencies
for the dimer and the PC cavity are ω̃di(eV) = 1.7803 − 0.0678i and
ω̃pc(eV) = 1.6156 − 2.6908 × 10−6i, respectively. The origin of our
coordinate system, (x,y,z) = (0,0,0), is placed exactly in the middle
of the dimer gap which is 20 nm.
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previously in order to estimate the frequency shift of the system
resonances due to the interplay between the subsystems [14];
however, a full analytic characterization of the hybrid system
using the system modes remains challenging. Using a rigorous
modal description, we show that when a dipole (or single
quantum emitter) is placed in between the dimer, then
a significant interference between the quasinormal modes
(QNMs) [15] of the two “cavities” takes place. The QNMs are
the frequency domain mode solutions to the electromagnetic
wave equation with open boundary conditions [16]. Using this
modal description, we study how the Purcell factor and β

factor changes as a function of frequency and dipole position
and verify the accuracy of our approach against full dipole
solutions to Maxwell’s equations. This modal description not
only explains the underlying physics of optical enhancement
and quenching in these complex systems, but it can also
be used as a foundation of studying quantum plasmonics
in hybrid systems, where the use of a Purcell factor and
modal theory have been questioned [17]. Indeed, plasmonic
devices have been recently proposed for use in enhanced
Raman detection experiments [18], where a suitable quantum
mechanical description must be used [18,19]. This requires
critical parameters such as the system losses that are typically
included in a phenomenological manner. In contrast, our modal
description paves the way toward building self-consistent
quantum theories for hybrid plasmonic systems.

A schematic of the proposed device is shown in Fig. 1,
where two color maps show the spatial profile of the main
QNM of the individual subsystems, namely the gold dimer
(top) and the nanobeam PC cavity (bottom). The dominant re-
sponse of the combined system is driven by the two hybridized
QNMs that are partly dimerlike and partly PC-like, as will be
shown later. Since the two QNMs of interest strongly overlap
in frequency, we employ a frequency domain technique [20] to
calculate them, using the commercial software COMSOL. It
should be noted that, the approach taken here in calculating and
employing the QNMs is quite robust when different types of
plasmonic and photonic cavities are used. However, adopting
our theory in its current form to include the coupling to
photonic waveguide modes is not straightforward, and is left
to future work.

This paper is organized as follows. In Sec. II, the key
elements of the QNM theory used to describe the radiative
and nonradiative decay rates are presented. Next, in Sec. III,
the details of the cavity system implementation are given,
accompanied by the detailed confirmation of the accuracy of
our model in predicting the correct electrodynamical response
of the hybrid system when the PC and metal are strongly
coupled near resonance. We find a significant change in the
Purcell factor caused by modal interference, and we study how
this factor changes as a function of dipole position. In Sec. IV,
we also investigate an intermediate coupling regime, where the
PC cavity resonance is detuned from the plasmon resonance
by a few hundred meV, and demonstrate the accuracy of our
approach in this regime as well. Section V is devoted to
studying the nonradiative decay rates of the hybrid structures
with the QNM approach, where again excellent agreement
against full dipole numerical calculations are obtained using
only the dominant two QNMs of the system. Finally, we
present our conclusions in Sec. VI.

II. QUASINORMAL MODE THEORY OF ENHANCED
SPONTANEOUS EMISSION FACTORS

AND NONRADIATIVE DECAY

In general, for a medium described by the complex
permittivity function ε(r,ω), the system Green function is
defined as the solution to a point dipole that satisfies

∇ × ∇ × G(r,r′; ω) − k2
0ε(r,ω)G(r,r′; ω) = k2

0δ(r − r′)I,
(1)

where, k0 = ω/c is the free space propagation constant and
I is the unity dyadic. In addition, the system QNMs, f̃μ(r),
are solutions to a non-Hermition Maxwell’s problem that are
associated with a complex eigenfrequency ω̃μ = ωμ − iγμ,
the imaginary part of which is a measure of energy leakage.
The non-Hermiticity originates from the fact that the system
QNMs are solutions to Helmhlotz equation

∇ × ∇ × f̃μ(r) − ω̃2
μ

c2
ε(r,ω)f̃μ(r) = 0, (2)

subjected to open boundary condition [21]. The system
response can be analyzed in the basis of the QNMs through
the Green function expansion [22]:

GQNM
(
r,r′; ω

) =
∑

μ

ω2

2ω̃μ(ω̃μ − ω)
f̃μ(r)f̃μ(r′), (3)

when the selected QNMs are dominantly contributing over
the frequency region of our interest. In order for the correct
physical quantities such as Purcell factor to be obtained from
this Green function expansion, normalized QNMs must be
used. Normalization of the QNMs is not a trivial task but can
be done in different ways [23,24], where, in general, spatial
integration of the QNMs over the computational volume is
involved. However, following [20], we avoid the difficulties of
spatially integrating QNMs and rather use the dipole response
at its own location to obtain the normalized QNMs from the
Green function expansion. The procedure is such that, first, one
needs to perform an iterative search for the QNM frequency of
the interest by looking at the hybrid system response; because
the QNMs are the pole of the system Green function, the closer
one gets to the QNM frequency the stronger the response will
become. Once the QNM frequency is found, one needs to
perform two separate dipole calculations, one in the presence
of the hybrid system and one in free space, in order to obtain the
scattered field from the hybrid geometry. Since the scattered
field is obtained at the QNM frequency, its contribution is
dominantly that particular QNM. We did a careful analysis
of mesh elements and open boundary conditions to ensure
convergent results. For our calculations, we use approximately
840 000 total number of elements, simulation volume of
6 μm3, with 10 PML layers, where the underlying symmetry
of the system was used to reduce the computational resources
needed.

Associated with this general non-Hermitian theory, there is
also a complex mode volume for QNMs that can be defined
from [21,23,24]

VQNM
μ = 1

n2
b f̃2

μ(rc)
, (4)
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where nb is the refractive index of the background medium
where the dipole emitter is embedded, and rc is the charac-
teristic position of a dipole emitter that will be coupled to
the QNM (i.e., typically at a local field maximum). The usual
real-valued effective mode volume for use in the conventional
Purcell’s equation is defined via [23]

1

Veff
μ

= Re

{
1

VQNM
μ

}
. (5)

Aside from being complex, the generalized mode volume
in (4) can also be negative in complex system where multiple
resonances are involved [25] as we will also see later.

The QNM expansion of the Green function can then be
used to obtain the SE decay rate of a quantum dipole emitter,
d = d n, oriented along n direction and placed at some position
rd , through

�(rd ) = 2

h̄ε0
d · Im{GQNM(rd ,rd ; ω)} · d. (6)

If using the Green function for the homogeneous medium, GB,
where n · Im{GB(rd ,rd ; ω)} · n = ω3nb/6πc3, one can easily
calculate the free space SE decay rate, �0, and therefore
compute at the projected SE enhancement factor along the
dipole direction:

F (rd ) = �(rd )

�0
, (7)

which is a generalized Purcell factor. In addition, the QNMs
of the system can be used to calculate the nonradiative decay
rate of the same dipole using [26]

�NR(rd ) = 2

h̄ωε0

∫
V

Re{j(r) · E∗(r)}dr, (8)

where E(r) = GQNM(r,rd ; ω) · d is the field emitted by the
dipole at rd and j(r) = ε0 ω Im{ε(r)}E(r) is the current density
induced by the dipole over the metal volume, V. Therefore, this
spatial integral can be used to compute the Ohmic losses in
a given problem. Accordingly, the ratio between the radiated
power to the far field and the total radiated power by the dipole
is given by the single photon β factor (or quantum efficiency
of the emitter),

β(rd ) = 1 − �NR(rd )

�(rd )
. (9)

Similar to the Purcell factor calculations, full-dipole numerical
calculation of the β factor usually requires performing tedious
numerical simulations per source point (e.g., for each dipole
position) of interest. However, once the system QNMs are
computed (as a function of space), the analytical spatial inte-
gration in Eq. (8) provides the nonradiative decay properties
of the system over a wide range of spatial positions and
frequencies, using only the discrete QNMs of interest. This
latter approach is naturally orders of magnitude faster than full
dipole calculations, and also helps to explain the underlying
physics.
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FIG. 2. Comparison between the Purcell factor, F , of a
y-polarized dipole placed in between the gold nanorods (center
position), when in free space (dashed red) and when placed on top of
the dielectric beam (5 nm away from the beam surface) without any
PC holes (solid blue).

III. GOLD DIMER STRONGLY COUPLED
TO PC NANOBEAM

Gold dimer resonators can be designed to have both high
a Purcell factor and a high β factor, as discussed in the
Introduction [5]. In this work, we consider a dimer made of two
gold nanorods with radius of rAu = 10 nm and rod height of
hAu = 80 nm, respectively. The dimer is assumed to be in free
space with background refractive index of nb = 1. To simulate
the gold dispersive behavior, the usual Drude model is used

ε(ω) = 1 − ω2
p

ω(ω + iγp)
, (10)

where ωp = 1.26 × 1016 rads/s is the plasma frequency and
γp = 1.41 × 1014 rads/s is the collision rate. This particular
dimer has a single mode behavior over a wide range of
frequencies as shown in Fig. 2, with the peak localized plasmon
resonance appearing near 1.8 eV. The dimer alone has a very
large F = 3800, caused by coupling to the mode profile shown
in Fig. 1, when the dipole is placed in the middle of the dimer
gap and oriented along the y direction. If one brings the gold
dimer close to the surface of a nanobeam without any PC
structure patterned (i.e., a beam without holes), there will be
two main effects: the resonance frequency of the dimer is
redshifted and the decay rate becomes enhanced further. This is
shown in the same figure for comparison, when the gold dimer
is placed 5 nm away from the surface of the beam. The accurate
knowledge of the spectral redshifting is clearly important in
obtaining good coupling between the two subsystems.

The nanobeam PC cavity is modeled as silicon nitride,
with a refractive index of n = 2.04 [27]. The height and the
width of beam are h = 200 nm and w = 367 nm, respectively.
Following [27], the nanobeam design includes two sections,
namely a mirror and taper region, where the hole radius and
spacing are different. The taper section is made of seven
holes, such that their radius were decreased from 86 nm
to 68 nm and their spacing was decreased from 306 nm to
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264 nm, in a linear fashion. On the ends of the taper section,
the mirror section is designed such that 17 holes of fixed
radius r = 86 nm with fixed spacing of a = 306 nm are used.
The length of the cavity region in between the two smallest
holes, in the very middle of the structure, is chosen to be
126 nm. This design supports one main QNM of interest at
ω̃c(eV) = 1.6156 − 2.6908 × 10−6i, corresponding to a large
quality factor of Q = 3 × 105. The mode profile for this QNM
is also shown in Fig. 1. Our investigations show that this PC
cavity supports additional QNMs at lower frequencies with
lower Qs that can be effectively ignored for working in the
frequency range of our interest; this will be made clearer when
discussing the F characteristics of the device below.

When the gold dimer is placed on top of the nanobeam
cavity, the individual modes discussed above become
strongly hybridized. The resonance frequencies of the
two hybridized QNMs are ω̃1(eV) = 1.6429 − 0.0548i and
ω̃2(eV) = 1.6063 − 0.0144i, corresponding to Q1 = 15 and
Q2 = 55, respectively. Notice the Fano feature associated with
the second QNM d gives rise to the interesting interference
feature in the total decay behavior of the quantum emitter
placed in the middle of the dimer gap. Although such
features have been seen before [9], they lack a quantitative
theoretical description. Fano type resonances appear many
different plasmonic systems with application ranging from
lasing to switching [28,29], where many of them the can be
modelled using our presented theory. Our approach, can be also
applied to a wide range of photonic cavity structures including
inverse photonic structures [30]. The associated generalized
mode volumes at r0 are also estimated to be V

QNM
1 (λ1

3) =
(1.96 + 0.68i) × 10−4 and V

QNM
2 (λ2

3) = (−0.86 − 6.39i) ×
10−4. Note that the latter is negative which originates from the
interference between two subsystems and can be understood
by looking at the actual contributions from each QNM to the
total decay rate of the dipole; being negative suggests that
this volume does not represent a physical volume, but rather
is a quantity with dimensions of volume required for use in
the calculation of the Purcell factor. Note that, when there is
only one QNM present in a system, or when the QNMs are
sufficiently far apart in frequency such that strong interference
features are not seen, then the V QNM becomes positive and can
be interpreted as the conventional mode volume. Similar mode
volumes have been previously reported for coupled metallic
rods [24] and for coupled cavities in PCs [24,25].

The two coupled QNMs are believed to be responsible
for the dominant response of the system over the frequency
range of interest. In order to confirm this and represent the
accuracy of the analytical model in the basis of QNMs,
the predicted F is compared with the dipole calculations.
In Fig. 3, F is plotted using dipole calculations in circles
and analytic calculations in solid line, where an excellent
agreement between the two is obtained. In the same figure,
we have also plotted the contributions from each individual
mode. Note that each of the individual enhancement factors
do not necessarily represent physically meaningful quantities;
however, the total enhancement is confirmed to be always
positive and well behaved. There are also small oscillations
present in the full-dipole calculations at lower frequencies that
are not captured by the analytic model, since we only use a
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FIG. 3. Generalized Purcell factor, F , calculated for the hybrid
structure where the y-polarized excitation dipole is placed at
(x,y,z) = (0,0,0) (see Fig. 1). The solid orange line is the analytic
calculation using an expansion of the dominant QNMs of the system,
while the black circles are the full dipole calculations. The small
disagreement at lower frequencies comes from other QNMs of the
PC cavity that are not included in the two-QNM analytical study.

two mode expansion. As mentioned before, these are due to
contributions from lower frequency modes of the PC cavity
and can be safely ignored (though they could be included if
more modes were deemed necessary). The two QNM modal
description provides an accurate model to the full system
response including the enhanced decay rate of a given dipole
at various locations over a wide range of frequencies, where
normally one single dipole calculation must be performed per
frequency point per spatial position. In addition, as will be
discussed next, the modal expansion brings new insights into
the underlying physics that is not normally available from
full dipole calculations. Worth to note is that the same Green
function of the hybrid system can then be used to explore
the quantum dynamics of quantum emitters coupled to this
system [31].

The maximum modal SE enhancement is approximately
F = 4900 which is similar to that achieved using the dimer
on top of the slab alone. However, this maximum now occurs
at a different frequency closer to the frequency of higher-Q
QNM which itself is near the resonance of the bare PC
cavity. This accurate knowledge of the frequency shifting,
which is a consequence of an effective coupling between the
two components of the hybrid device, is well beyond weak
coupling. But, more importantly, just next to the maximum,
as a result of the very strong interference between the two
individual QNMs, a minimum enhancement occurs that is
drastically different in magnitude compared to the maximum;
indeed the F is significantly reduced (approximate to F = 4),
which can potentially be utilized as a switching mechanism
between the two fundamentally different response regimes of
the system. For example, a quantum dot placed in the dimer
gap will become relatively dark if excited at this particular
frequency, whereas in contrast becomes quickly bright when
one moves away from this minimum point.
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FIG. 4. (a)–(c) Generalized Purcell factor, F , at z = 0 (in between
the dimer gap), z = −15 nm (at the beam surface) and z = −115 nm
(in the middle of the beam), respectively. Since the field intensity
around dimer is orders of magnitude larger than in PC beam, a
nonlinear scale is used to better highlight the spatial mode features.

As mentioned earlier, hybrid QNMs of the system inherit
features from both the dimer and PC cavity. However, the
low-Q mode is more dimerlike than the high-Q mode. Indeed,
for the particular structure under study, the magnitude of the
field in between dimer gap is found to be more than an order
of magnitude stronger than in the center of the nanobeam, for
both of the QNMs, which is another indication of significant
hybridization of the individual QNMs of the system. To help
quantify the hybrid characteristics of these modes, it is useful
to look at a spatial map of the enhancement factor, F . In
Fig. 4, we plot F at three different heights (z values) over a
rectangular xy cut: (a) at the center of the dimer, (b) on the
surface of the nanobeam, and (c) at the nanobeam center. Note
that the system response behaves mostly dimerlike in Fig. 4(a),
whereas in contrast becomes more PC cavity like in Fig. 4(c).
However, at any height both components contribute to the
response. These maps are calculated at the frequency of the
maximum enhancement factor in Fig. 3, shown by the dashed
line. A drastic decrease in d F is seen when moving away
from dimer and closer to the nanobeam, as shown in Fig. 3.
However, this trend is not always obtained and depending on
frequency, e.g., at the exact frequency that the minimum takes
place, we found that quite the opposite occurs and F will
increase from its minimum value in the dimer gap to higher
values in the middle of the nanobeam. This is a nontrivial
feature of this hybrid device that originates from significant
hybridization discussed earlier. It should be also noted that,
because the dimer greatly shapes the structures of both of the
QNMs in this device, the increase in d F mentioned later is
not as drastic as the decrease in the previous scenario.
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FIG. 5. Generalized Purcell factor, F , calculated for the second
hybrid structure where the gold dimer is moved further away from
the PC nanobeam by 100 nm compared to the initial configuration
for the strong coupling (which causes a detuning of the QNMs by
around 160 meV). Similar to before, a y-polarized excitation dipole
is placed at the middle of the dimer gap. The solid line is the analytic
calculation using an expansion of the two dominant QNMs of the
system, while the circles are the full dipole calculations.

IV. INTERMEDIATE COUPLING REGIME

The strong interference discussed so far is considered when
the individual resonances are very close in frequency such
that the significant reduction in the emission enhancement
at the plasmonic resonances is seen. Whether the present
modal theory can predict the correct physics involved in
hybrid structures at other frequency regimes where the PC
resonance is coupled to the plasmonic tail rather than the
plasmonic peak, might be questioned. To address this question,
we now consider another hybrid device where the dimer
is spatially shifted 100 nm above the PC nanobeam and
as a result the coupling between plasmonic and photonic
resonances occurs at the tail of the plasmonic mode, in
a much weaker coupling regime. Once again we employ
a two QNMs expansion of the Green function in order
to study this weak coupling regime. The new resonances
in for this configuration are ω̃1(eV) = 1.7719 − 0.0691i for
the dimerlike QNM and ω̃2(eV) = 1.6147 − 0.0003i for the
PC-like QNM. These, translate to Q1 = 13 and Q2 = 2400
for the dimerlike and the PC-like QNMs, respectively. Note
that the plasmonic quality factor is almost the same, whereas
the PC quality factor is greatly enhanced. This is characteristic
of the intermediate coupling where the PC resonance is less
affected (broadened) by the presence of the gold dimer. In
Fig. 5, we show the comparison between our modal calculation
(in solid) and the full dipole calculation (in circles) of the
SE enhancement, where an excellent agreement is once again
obtained. Moreover, we show a wider range of frequencies in
order to show the degree of accuracy in the QNM prediction
of the enhancement emission at frequencies farther away
from the plasmonic resonance. This is quite remarkable given
the fact that QNMs are evaluated at one single frequency
and then used to obtain the hybrid system response at far
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detuned frequencies. Also, in this new configuration, the
contribution from other PC resonances, that were seen before,
are less noticeable. This is indeed expected as now these other
resonances are coupled farther down the tail of the plasmonic
QNM, where comparably a less efficient coupling will occur.
Another important point to make is that the highest emission
enhancement takes place near the PC-like QNM of the system
and is indeed higher than the maximum enhancement possible
near the plasmonic dimer (and even using the plasmonic dimer
on its own when there is no PC present). Most certainly, this
enhancement is lowered compared to the bare PC cavity, but
the benefits of the plasmonic dimer can now be exploited.
Given the fact that QNMs are extremely less computationally
expensive to calculate compared to full dipole calculation, it
is clear that this modal theory presents both a rigorous and
economical tool for studying such plasmonic hybrid systems.

V. NONRADIATIVE DECAY RATES

As for any plasmonic device, achieving a high emission
enhancement for a quantum emitter placed in proximity of
the metal is not good enough on its own, as one also needs
to know how much of this value is quenched. Indeed, a good
portion of the SE enhancement is due to the coupling to the
induced charges in the form of Ohmic losses. Therefore, it is
essential to quantify the nonradiative contribution to the decay
rate, �NR, that can be computed analytically using the system
QNMs. Employing Eq. (8) is trivial in the case of a single mode
system, as one has to perform a simple spatial integration of
the system QNM over the metallic region. However, extra care
must be taken when there are two (or more) QNMs involved. In
the present case, we have two QNMs dominantly responsible
for the emitter behavior and therefore the field generated over
the lossy region has dominant contributions from both of these
QNMs, i.e., where

E(r) = ω2 f̃1(r0) · d
2ω̃1(ω̃1 − ω)

f̃1(r) + ω2 f̃2(r0) · d
2ω̃2(ω̃2 − ω)

f̃2(r). (11)

Thus there will be cross-coupling of the two QNMs of the
hybrid system to be integrated over the metallic region. In
contrast to the total decay rate, F , simply adding contributions
from single QNMs do not add up to the total �NR. Note
that additional QNMs can, in principle, also contribute to the
nonradiative decay rate through a spatial integral involving the
dominant QNMs of the system. However, as will be shown
below, the two-QNM Green function indeed also gives a very
good agreement against full dipole calculations for the �NR.

In Fig. 6, we plot the �NR for the hybrid system where the
general trend of the total nonradiative decay rate is similar to
the total decay rate. In the same figure, we have also plotted
the pure modal contributions to the nonradiative decay rate
form each QNM. Note that these do not represent physically
meaningful quantities on their own, and adding them together
will not provide the interference feature associated with
the true nonradiative decay behavior. However, as discussed
earlier, the cross term contribution is essential to explain the
correct physics of nonradiative decay.

Finally, we also investigate the validity of our modal
nonradiative decay rates by calculating the �NR for the second
configuration of the hybrid plasmonic device discussed in
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FIG. 6. Nonradiative decay rate, �NR, calculated for the hybrid
structure where the excitation dipole is placed at (x,y,z) = (0,0,0)
(see Fig. 1). This corresponds to the emission enhancement plot
shown in Fig. 3. The solid orange line is the analytic calculation
using a Green function expansion in terms of dominant QNMs of the
system, while the black circles are the full dipole calculations. Some
small discrepancies at lower frequencies come from other QNMs of
the PC cavity that are not included in the two mode expansion.

Sec. IV. The result for this comparison is plotted in Fig. 7 over
a wide range of frequencies, where an excellent qualitative
agreement is shown.

Our analysis in this section shows a relatively fixed beta
value of approximately β = 0.46 for the first configuration
of the hybrid plasmonic device with near resonance coupling,
and a relatively fixed value of approximately β = 0.4 for the
second configuration with the off-resonance coupling, over a
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Γ

0
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Total
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FIG. 7. Nonradiative decay rate, �NR, calculated for the second
hybrid structure where the gold dimer is moved further away form
the PC nanobeam by 100 nm compared to the initial configuration
used for the strong coupling. This corresponds to the emission
enhancement plot shown in Fig. 5. The solid line is the analytic
calculation using a Green function expansion of the system response
in terms of dominant QNMs of the system, while the circles are the
full dipole calculations.
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wide range of frequencies. It is interesting that the stronger
interference effects that are present in the first hybrid device
also facilitate more output power of the coupled dipole.

VI. CONCLUSION

In conclusion, we have introduced a hybrid plasmonic-PC
system that is capable of very strong modification of the
SE decay rate of dipole emitters when placed right in the
middle of the dimer gap. The drastic change from F = 4900
to F = 4 can be utilized as a switching knob to trigger into
fundamentally different response regimes of this system. In
addition, the overall β factor (or quantum efficiency) of about
0.46 is achieved that suggests reasonable output coupling
of the light to the far field. To study the system in detail,
we have adopted a QNM description that is capable of
presenting a clear and intuitive picture of the complex physics
behind the nontrivial dipole response. With this efficient

modal description, the full decay SE rate characteristics of
the system are quickly available, which can also be used
to study quantum light-matter interactions, when quantum
emitters such as quantum dots are coupled to these hybrid
systems. Moreover, this analytical QNM approach allows one
to compute the nonradiative coupling (frequently ignored in
the literature) to the underlying QNMs, which is essential for
designing and optimizing such structures for use in emerging
nanophotonics technologies.
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