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Quantum signature for laser-driven correlated excitation of Rydberg atoms
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The excitation dynamics of a laser-driven Rydberg-atom system exhibits a cooperative effect due to the
interatomic Rydberg-Rydberg interaction, but the large many-body system with inhomogeneous Rydberg
coupling is hard to exactly solve or numerically study by density-matrix equations. In this paper, we find
that the laser-driven Rydberg-atom system with most of the atoms being in the ground state can be described
by a simplified interaction model resembling the optical Kerr effect if the distance-dependent Rydberg-Rydberg
interaction is replaced by an infinite-range coupling. We can then quantitatively study the effect of the quantum
fluctuations on the Rydberg excitation with the interatomic correlation involved and analytically calculate the
statistical characteristics of the excitation dynamics in the steady state, revealing the quantum signature of the
driven-dissipative Rydberg-atom system. The results obtained here will be of great interest for other spin-1/2
systems with spin-spin coupling.
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I. INTRODUCTION

A laser-driven Rydberg gas in which the Rydberg excited
atoms experience the long-range dipole-dipole or van der
Waals interaction potential can exhibit atomic many-body
correlations that are of great interest for future applications
in quantum information processing [1] and quantum nonlinear
optics [2]. While much attention has recently been devoted
to the enhancement of optical nonlinearity by mapping the
Rydberg-Rydberg correlation onto an optical field [3–13] and
to the nonequilibrium quantum phenomena [14–20] and the
preparation of Rydberg crystals [21–23] by modulating the
driven-dissipative dynamics, quantitative understanding of the
excitation process for the Rydberg-atom system itself is of
particular interest, on the other hand, and is not yet clear.

There has been a lot of theoretical work focusing on
the excitation dynamics in both the coherent [24–31] and
dissipative regimes [32–40]. Generally, the system was an-
alyzed via a mean-field treatment disregarding the interatomic
correlation [18,19,23,32,38], a variational approach allowing
for an approximation of the true steady state [39] or a per-
turbation theory up to fourth order [33,37,40]. Alternatively,
the incoherent dynamics can be numerically simulated on
account of strong dissipation via the rate equation [25,36] and
weak decay via the density-matrix master equation [28] (or,
equivalently, the wave-function Monte Carlo approach [33–
36,38]) and the density-matrix renormalization group [22],
which are normally useful for lattice geometries consisting of
several tens of atoms.

The excitation dynamics under resonant and off-resonant
driving exhibit different counting statistics of the Rydberg-
atom number. While the resonant driving leads to a reduced
number fluctuations of the Rydberg excitations [30,41,42],
the off-resonant coupling offers richer physics such as the
experimentally observed optical bistability [43], Rydberg
aggregates [44,45], bimodal counting distribution [46], and
kinetic constraints [47]. In addition, of special interest for

the experimental analysis is the formation mechanism of the
collective many-body states since the statistical characteristics
[44,46] and direct imaging [48,49] are challenging for distin-
guishing sequential and simultaneous excitation processes of
Rydberg atoms. These have also been theoretically studied via
the analytical model with generalized Dicke states [41] and
Monte Carlo simulation [44].

In this paper, we study the excitation dynamics of a
laser-driven dissipative Rydberg-atom system in the Holstein-
Primakoff regime; that is, the majority of the atoms remain in
the ground state [44,46]. To give an intuitive understanding,
we make use of a simplified picture for the many-body system
as in Ref. [34], where the characteristic Cμ/Rμ (μ = 3,6)
dependent interaction for atom pairs with the separation R

is replaced by an infinite-range coupling (or average pair
interaction). It allows us to regard the system as a nonlinear
optical polarizability model [50] and quantitatively study the
effect of quantum correlations on the excitation dynamics in
the steady state. We find from the linearized calculation that
the quantum fluctuations to the first order will enhance the
Rydberg population [34,37] and modulate the fluctuation of
the collective excitation number. Moreover, the nonclassical
effects like pair excitation of Rydberg atoms can be clearly
revealed by the full quantum results after comparison with
the classical steady-state solution. The limitations for this
simplified model are also discussed. Our finding not only
connects to the recent experimental observations for the
many-body system with Rydberg-Rydberg coupling [51] but
also relates to the trapped spin-1/2 ions system where the
spin-spin couplings are mediated by the motional degrees of
freedom [52].

This paper is organized as follows. In Sec. II, we introduce
our model for the interacting Rydberg atoms in the Holstein-
Primakoff regime. In Sec. III, we numerically solve the
classical Langevin equation of motion for the Rydberg-atom
system to study the bistability of Rydberg population. In
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Sec. IV, we discuss the effect of quantum fluctuations on
the Rydberg excitation dynamics in the linearized regime. In
Sec. V, we give the exact steady-state solution of the Fokker-
Planck equation for describing the full quantum dynamics.
Section VI finally contains a summary of our results and an
open discussion of the limitations for the model.

II. THEORETICAL MODEL

Consider a system of N atoms (N � 1) that are excited
from the ground state |gj 〉 to a Rydberg state |ej 〉 by a
continuous and spatially uniform laser beam with detuning
� from atomic resonance and Rabi frequency � (assumed to
be real). By including the all-to-all interatomic coupling (or
average pair interaction) χ , the Hamiltonian in the interaction
picture and rotating-wave approximation reads (� = 1) [34]

H =
N∑

j=1

[
−�|ej 〉〈ej | + �

2
(|ej 〉〈gj | + |gj 〉〈ej |)

]

+χ
∑
j<k

|ej 〉〈ej | ⊗ |ek〉〈ek|. (1)

We now introduce the collective spin operators S+ =∑N
j=1 |ej 〉〈gj | and S− = ∑N

j=1 |gj 〉〈ej |, which, according to
the Holstein-Primakoff transformation, can be expressed in
terms of the bosonic operators b and b† (with [b,b†] = 1)
as S+ = b†

√
N − b†b and S− = √

N − b†bb if the lowest
energy level of these new operators is set to be the atomic
state in which all of the atoms are in the ground state
[53,54]. It follows that

∑N
j=1 |ej 〉〈ej | = 1

2 [S+,S−] + N
2 = b†b

and
∑

j<k |ej 〉〈ej | ⊗ |ek〉〈ek| = 1
2b†b†bb. We then focus on

the parameter regime where the mean number of Rydberg
excitations is much less than the total number of atoms
(i.e., n̄e ≡ 〈b†b〉 � N ), resulting in S+ 	 √

Nb†, S− 	 √
Nb

[44,46]. Thus, the Hamiltonian of the system can be rewritten
by

Hb = −�b†b + χ

2
b†b†bb + λ(b + b†), (2)

with λ = √
N�/2. Note that the system involving the

Rydberg-Rydberg coupling behaves in a way resembling the
optical Kerr nonlinearity, and its coherent dynamics will
remain in the symmetric Dicke-state space. However, the
spontaneous decay from the Rydberg excited state (with the
relaxation rate γ ) may lead to an incoherent mixture with the
asymmetric dark states. For clarity, our work will focus on the
state space spanned mainly by null and single Rydberg excita-
tions accompanied by a tiny fraction of double excitations. The
Rydberg population is confirmed by direct simulations of the
master equation ρ̇ = −i[Hb,ρ] + γ

2 (2bρb† − ρb†b − b†bρ)
for a zero-temperature thermal reservoir, and the counting
statistics of Rydberg excitation is quantified by the Mandel Q

parameter defined as Q = 〈(�n̂e)2〉/〈n̂e〉 − 1, with n̂e ≡ b†b,
as shown in Fig. 1. The exact simulation of the dissipative
dynamics for few atoms with the Hamiltonian (1) can be
found in Appendix A, which shows good agreement with the
bosonization model. But it should also be mentioned that for
a realistic Rydberg system, such as an atomic ensemble or
a spin lattice, the finite interaction range and the continuum
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FIG. 1. (a) Mean Rydberg population n̄e and (b) Mandel Q

parameter as a function of time for laser detunings � = −5, 0, and
5. We fix units of γ = 1, taking λ = 0.6, χ = 10. In all cases the
population of the double-excitation state is less than 0.01. For � = 5,
the Rydberg excitation exhibits super-Poissonian counting statistics
with Q > 0, while for � = −5 and � = 0, the sub-Poissonian
processes characterized by Q < 0 are found.

of interatomic coupling strengths due to broad distribution of
atom positions may induce loss of interatomic correlations,
which may negate the effectiveness of the model.

III. CLASSICAL DYNAMICS

The quantum Langevin equation of motion for the bosonic
system is

ḃ = −iλ − i�b − iχb†b2 + ξ (t), (3)

where � = −(� + iγ /2) might include the decoherence due
to the laser linewidths and Doppler broadening and ξ (t) is
the zero-value-mean noise operator. Beyond the mean-field
theory, here the correlation between atoms is retained in the
evolutional dynamics. In the classical limit, the equations of
motion for ᾱ = 〈b〉 and ᾱ∗ = 〈b†〉 are given by

˙̄α = −iλ − iᾱ(� + χ |ᾱ|2),

˙̄α∗ = iλ + iᾱ∗(�∗ + χ |ᾱ|2). (4)

Then, the mean number of Rydberg excitations n̄es = |ᾱs |2 in
the steady state fulfills the algebraic equation

χ2n̄3
es − 2χ�n̄2

es + n̄es |�|2 − λ2 = 0, (5)

which allows at most three real positive roots. A stable n̄es

must conform to the Hurwitz criterion [given by ∂(λ2)/∂n̄es =
3χ2n̄2

es − 4n̄esχ� + |�|2 > 0 here], which ensures that the
system returns to the stable branch soon after the small
perturbation. Therefore, if the conditions |�| >

√
3γ /2 and

�χ > 0 are satisfied, the bistable region will be given by
n̄es > n̄(+)

es or n̄es < n̄(−)
es with the real positive n̄(±)

es = (2� ±√
�2 − 3

4γ 2)/3χ. For our interest, the dependence of n̄es on
the laser detuning � for a repulsive interatomic interaction
(χ > 0) is shown in Fig. 2(b), which exhibits optical bistability
with hysteresis [43]. The coexistence of low and high Rydberg
populations in the off-resonance regime (� > 0) leads to the
bimodal counting distributions of the Rydberg excitation [46].
However, for � = 0, the bimodality cannot arise due to the
impossible bistability.
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FIG. 2. (a) Mean number of Rydberg excitations 〈b†b〉 in the
steady state with full quantum theory as a function of λ and �.
The inset shows the pair excitation of two atoms for � = χ/2.
(b) Classical stationary mean n̄es , quantum- mechanical steady-state
solution of 〈b†b〉 and |〈b〉|, and Mandel Q parameter versus laser
detuning � with λ = 0.3 (dashed lines) and λ = 0.6 (solid lines).
Other parameters are as in Fig. 1. χ , λ, and � are in units of γ .

IV. LINEARIZED DYNAMICS

The dissipative quantum dynamics for the system can be
described by the master equation or the corresponding Fokker-
Planck equation (FPE) [50],

Ṗ (α,β,t) = i

[
∂

∂α
(�α + χα2β + λ) − χ

2

∂2

∂α2
α2

− ∂

∂β
(�∗β + χβ2α + λ) + χ

2

∂2

∂β2
β2

]
P (α,β,t),

(6)

by introducing the nondiagonal generalized P representation
defined by

ρ(t) =
∫

D

dσ (α,β)P (α,β,t)
|α〉〈β∗|
〈β∗|α〉 , (7)

where D is the integration domain and dσ is the integration
measure, which can be a volume integral d2αd2β over a
complex phase space or a line integral dαdβ over a manifold
embedded in a complex phase space [50]. Note that α and β

are arguments of the generalized P function (in relation to the
c numbers of b and b†) and are complex conjugate in the mean
ᾱ = β̄∗.

Transforming the FPE into the Ito form yields a pair of
stochastic differential equations (SDEs):

∂

∂t

[
α

β

]
=

[−i(�α + χα2β + λ)
i(�∗β + χβ2α + λ)

]

+
[−iχα2 0

0 iχβ2

] 1
2
[

ξ1(t)
ξ2(t)

]
, (8)

with ξ1,2(t) being the δ-correlated Gaussian white noise,
satisfying 〈ξ1,2(t)〉 = 0 and 〈ξ1,2(t)ξ1,2(t ′)〉 ∼ δ(t − t ′). We
then linearize the SDEs around the classically steady-state
solution ᾱs(β̄s = ᾱ∗

s ) and find that the quantum fluctuation
δX̂ = [δα̂,δβ̂]T close to the classical stable branches obeys

the equation

δ
˙̂
X = −μ(ᾱs) · δX̂ + D1/2(ᾱs) · ξ (t), (9)

where

μ(ᾱs) = −i

[
� + 2χ |ᾱs |2 −χᾱ∗2

s

χᾱ2
s −� − 2χ |ᾱs |2

]
(10)

and

D(ᾱs) =
[−iχᾱ2

s 0
0 iχᾱ∗2

s

]
(11)

are the linearized drift and the diffusion array, respectively.
The correlation matrix with regard to δX̂ can now be
calculated through

C =
[ 〈b2〉 − 〈b〉2 〈b†b〉 − |〈b〉|2
〈b†b〉 − |〈b〉|2 〈b†2〉 − 〈b†〉2

]

= D · Det(μ) + [μ−I · Tr(μ)]D[μ−I · Tr(μ)]T

2Tr(μ)Det(μ)
. (12)

The above result allows us to obtain the mean Rydberg
population and the Mandel Q parameter in the linearized
regime (see Appendix B):

n̄e ≈ |ᾱs |2 + 〈δα̂†δα̂〉 = n̄es + χ2

2�
n̄2

es, (13)

Q ≈ 2n̄esRe[〈δα̂2〉/ᾱ2
s ] + 2〈δα̂†δα̂〉

= n̄esχ

�
(� − χn̄es), (14)

with � = |�|2 − 4χ�n̄es + 3χ2n̄2
es . The steady-state solution

n̄es can be obtained by solving the set of classically nonlinear
equations (4), and there may exist two stable solutions for
a well-selected laser detuning, as shown in Fig. 2(b). We
now assume this solution has been found and focus on the
effect of the quantum fluctuations. One of the intriguing
effects can be found in the asymptotic expansion of n̄e to
the first order [see Eq. (13)], where the Rydberg population is
enhanced by the Rydberg-Rydberg coupling via the intensity
of the quantum fluctuation 〈δα̂†δα̂〉 [34,37]. Second, due to
the Rydberg-Rydberg interactions, the laser field drives the
atomic transition from the ground state to the Rydberg state
in a cooperative manner, with the fluctuations of the collective
excitation number being characterized by the Mandel Q factor.
The results show that the collective excitation number exhibits
super-Poissonian distribution for laser detuning � greater than
the collective energy shift n̄esχ among the correlated interact-
ing particles (�/n̄esχ > 1) and sub-Poissonian distribution
for the other case, (i.e., �/n̄esχ < 1), leading to collective
quantum jumps while the system stays in the two classically
stable branches [34]. The linear theory breaks down for � → 0
(corresponding to the violation of the Hurwitz criterion), in
which case n̄es approaches the onset of instability.

V. FULL QUANTUM DYNAMICS

Having seen the effect of the quantum fluctuations based
on the linearization, we next address the question with full
quantum theory. In the quantum noise limit, there exists an
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exact steady-state solution Pss(α,β) = αc−2βd−2 exp[−z(1/α

+ 1/β) + 2αβ] for the FPE (6), with z = 2λ/χ, c = 2�/χ ,
and d = c∗ (see Appendix C). While we obtain the generalized
P function, the Rydberg population and the Rydberg counting
statistics can be calculated via

〈b†nbm〉 =
∫
D

dσ (α,β)Pss(α,β)βnαm∫
D

dσ (α,β)Pss(α,β)
. (15)

The appropriate integration domain D here will be a complex
manifold embedded in the space C2, and each path of
integration is chosen to be a Hankel path O. These ensure
that the distribution function P (α,β) vanishes correctly at
the boundary. Skipping over the fussy calculations, we finally
come to (see Appendix C)

〈b〉 = z

c

0F2(c + 1,d,2z2)

0F2(c,d,2z2)
, (16)

〈b†b〉 = z2

cd

0F2(c + 1,d + 1,2z2)

0F2(c,d,2z2)
, (17)

Q = z2

(c + 1)(d + 1)
0F2(c + 2,d + 2,2z2)

0F2(c + 1,d + 1,2z2)

− z2

cd

0F2(c + 1,d + 1,2z2)

0F2(c,d,2z2)
, (18)

where 0F2(c,d,z) is a hypergeometric series defined as

0F2(c,d,z) =
∞∑

n=0

zn

n!

�(c)�(d)

�(c + n)�(d + n)
, (19)

with �(x) = [ z1−x

2πi

∫
O σ−xeσzdσ ]−1 being the gamma function.

The phase diagram for the mean number of Rydberg
excitations in (λ,�) space shows that the Rydberg excitation
dramatically increases at the laser detunings � = 0 and
� = χ/2 [see Fig. 2(a)], which corresponds to individually
resonant excitation of each atom and pair excitation of the
interacting atoms, respectively. Numerical simulation proves
that the system is confined in the subspace spanned by the null-
and double-excitation states for � = χ/2 without considering
the relaxation, confirming that for this detuning the atomic
excitation is caused by the two-photon process; this is funda-
mentally different from the case of resonant driving, where the
system has no probability of being pumped to the state with
more than one excitation due to the Rydberg blockade. Taking
into account the atomic spontaneous emission, the issue of
whether the many-body states of the Rydberg atoms are created
by the coherent two-photon process or sequential excitations
of individual atoms is then determined by the sequential
excitation to the two-photon ratio, which is proportional to
γ 2/N�2 [44]. Thus, the system favors double excitation since
the multiatom coherence becomes significant and the dephas-
ing induced by random distribution of atom positions and the
specific spatial laser profile is neglected [36]. This can be
further confirmed by measuring the Mandel Q parameter that is
in close relation to the spatial correlation function g(2)(R) [55].
The excitation processes exhibit sub-Poissonian character
(Q < 0) on resonance and super-Poissonian character (Q > 0)
for � = χ/2. In addition, due to the fact that the interatomic
correlations between any pair of atoms are included, the
cooperative transitions from the double-excitation state to the

|g
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laser detuning
Δ = χ

9 10
0.01

0.015

b†b

Q
Δ = χ

Δ

Δ =
χ

2

|e

|e

FIG. 3. Left: Quantum-mechanical steady-state solution of mean
Rydberg population 〈b†b〉 and Mandel Q parameter versus laser
detuning � with increasing driving strength λ = 1 and χ = 10. χ ,
λ, and � are in units of γ . Right: An already excited Rydberg atom
forwards the excitation of the surrounding atoms interacting with it
for � = χ . See the text for details.

higher-excitation states are largely detuned from resonance
and are suppressed because the collective energy shifts are
much larger than the laser driving strength.

For 0 < � < χ/2, both the individual excitation and the
pair excitation are possible. While the classical dynamics
predicts an optical bistability, the quantum-mechanical
calculation including the interatomic correlation does not
exhibit bistability. It should also be noted that the pair
excitation of two atoms is a nonclassical effect that cannot be
revealed by the classical theory [see arrow in Fig. 2(b); see
also Appendix D]. An extra quantum signature for the system
is given by the dips in the laser-detuning dependence of |〈b〉|,
which arise at the transition points of the Mandel Q factor,
which shows reduced or enhanced quantum fluctuations of
Rydberg excitations [16,32,34].

Increasing the laser intensity will enhance the mean number
of Rydberg excitations for � = χ/2 but meanwhile weaken
the super-Poissonian excitation process due to the decreasing
ratio �/n̄esχ , as shown in Fig. 3. This fact can be directly un-
derstood from the linearized calculation [Eq. (14)]. For the far-
off-resonance regime � � �, there is a small chance (roughly
N�2/4�2) for an atom to be excited to the Rydberg state if all
the atoms are initially in the ground state. However, while an
atom has been luckily excited by the laser beam with the detun-
ing � = χ , similar to the Rydberg aggregates, the surrounding
atoms tend to be excited cooperatively due to the Rydberg-
Rydberg coupling, as sketched in the right panel of Fig. 3. Also,
the sequential to simultaneous three-photon excitation ratio is
on the order of γ 2�2/N2�4 and is extremely weak here.

VI. DISCUSSION AND CONCLUSION

As mentioned in Sec. II, the simplified picture here requires
the interatomic correlations to be well preserved in the whole
Rydberg ensemble, and the only scenario where the present
model describes actual Rydberg-atom interactions is when all
interactions are so strong (χ � � or λ) that the ensemble is
fully blockaded; that is, not even double excitations can ever
occur. While the scale of a Rydberg-atom system is much
larger than the blockade radius (i.e., the critical correlation
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distance), the quantum correlations may vanish for Rydberg
atoms located far away from each other; then the situation
becomes different for the Rydberg excitation number related
to the number of blockade spheres that fit into the excitation
volume. The excitation dynamics for an ultracold Rydberg
gas with high atomic density has been experimentally studied
in the strong-dephasing regime (due to the spatial dependence
of atom positions or laser geometry) and in the limit of short
excitation times [44,46].

It is more interesting to study the excitation dynamics
in the scenario where χ is of an order comparable to � or
λ, as employed here. The quantum correlations among all
the atoms become essential, giving rise to the pronounced
quantum signature discussed previously. But for actual
experiments such as individual Rydberg atoms trapped in
tunable two-dimensional arrays of optical microtraps [51],
the distance-dependent interatomic coupling strength is
determined by the specific lattice sites that the atoms locate
on, and therefore the factor of 8 (or higher) difference in
interactions comparing two adjacent atoms already introduces
correlations and breaks the present approach. This is regardless
of the dimensionality or geometry of the lattice. However, the
strong two-photon transitions will still be visible while many
pairs of atoms feature a distance that fits in with the two-photon
resonance condition; namely, the two-photon resonance can
be enhanced by choosing the appropriate detuning for a
given lattice constant [36]. The limitations arise from the
fact that the atoms near the edge of the lattice evolve as an
inhomogeneous distribution of atom positions, which breaks
the spatial symmetry and may induce an additional dephasing,
reducing the visibility of two-photon transitions [51].

In conclusion, we have analyzed the steady-state excitation
dynamics of a weakly driven Rydberg-atom system by treating
the inhomogeneous Rydberg-Rydberg interaction as an all-to-
all coupling. While the present model cannot represent the
full picture of a realistic system, in contrast to the previous
analytical or experimental studies that mainly focus on the
mean-field dynamics and neglect the interatomic correlations,
the analytical calculation here allows us to find the effect of the
quantum fluctuations on the Rydberg excitation process and
the quantum phenomena such as simultaneous biexcitation of
Rydberg atoms and interaction-assisted Rydberg excitation,
which are referred to as the quantum signature of the system.
The simplified model forms the basis for quantitatively under-
standing the Rydberg aggregates [44,45], bimodal counting
distribution [46], and kinetic constraints [47] in recent experi-
mental observations with Rydberg atoms and, more generally,
the many-body effect for the interacting spin-1/2 systems [52].
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FIG. 4. (a) Mean Rydberg population n̄e and (b) Mandel Q

parameter as a function of time for laser detunings � = −5, 0, and
5. Other parameters are as in Fig. 1.

APPENDIX A: THE EXACT SIMULATION OF THE
DISSIPATIVE DYNAMICS WITH ATOMIC SPIN

OPERATORS

In this appendix, we show that the exact simulation of
the Hamiltonian H in the main text with spin operators
for few atoms is found to be in good agreement with the
theoretical model in terms of bosonic operators. We also
show how to obtain the correlation matrix under linearization
and the analytical steady-state solution for the Fokker-Planck
equation as in Ref. [50], discussing the optical bistability for
the nonlinear polarizability model. The nonclassical nature of
the quantum-mechanical steady states is also shown by the
Wigner functions.

The exactly dissipative dynamics of the laser-driven system
with the Hamiltonian H in the main text can be described by
the master equation

ρ̇ = 1

i�
[H,ρ] + γ

2

N∑
j=1

Lj , (A1)

where

Lj = 2σ (j )
ge ρσ (j )

eg − σ (j )
eg σ (j )

ge ρ − ρσ (j )
eg σ (j )

ge , (A2)

σ
(j )
ge = |gj 〉〈ej |, and σ

(j )
eg = |ej 〉〈gj |. With the excitation-

number operator being n̂e = ∑N
j=1 |ej 〉〈ej |, the mean number

of Rydberg excitations and the Mandel Q parameter can be cal-
culated via n̄e = Tr(ρn̂e) and Q = Tr[ρ(�n̂e)2]/Tr(ρn̂e)−1,
respectively.

Simulating Eq. (A1) with N = 6, we show the time-
dependent mean Rydberg population n̄e and Mandel Q

parameter in Fig. 4 and the steady-state solution of n̄e and
Q versus laser detuning � in Fig. 5, which demonstrate the
quantitatively good agreement with the results obtained via the
simulation of the bosonization model.

APPENDIX B: THE QUANTUM FLUCTUATION
UNDER LINEARIZATION

Splitting the operators b (b†) into classical and quantum
parts α = ᾱ + δα̂(t), β = β̄ + δβ̂(t) (ᾱ∗ = β̄), we obtain the
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FIG. 5. Quantum-mechanical steady-state solution of n̄e and
Mandel Q parameter versus laser detuning � for (a) λ = 0.6 and
(b) λ = 1. Other parameters are as in Fig. 2(b).

linearized correlation matrix given by

C =
[ 〈b2〉 − 〈b〉2 〈b†b〉 − |〈b〉|2
〈b†b〉 − |〈b〉|2 〈b†2〉 − 〈b†〉2

]

=
[ 〈δα̂2〉 〈δα̂†δα̂〉
〈δα̂†δα̂〉 〈δα̂†2〉

]
, (B1)

where

〈δα̂2〉 = −χᾱ2(�∗ + 2χn̄es)

2�
, (B2)

〈δα̂†δα̂〉 = χ2n̄2
es

2�
, (B3)

and

〈δα̂†2〉 = −χᾱ∗2(� + 2χn̄es)

2�
, (B4)

with � = γ 2

4 + �2 − 4χ�n̄es + 3χ2n̄2
es , obtained from C =

D·Det(μ)+[μ−I·Tr(μ)]D[μ−I·Tr(μ)]T

2Tr(μ)Det(μ) by using the drift and diffusion
arrays. Thus, the mean number of Rydberg excitations and the
Mandel Q parameter in the linearized regime are given by

n̄e ≈ |ᾱ|2 + 〈δα̂†δα̂〉 = n̄es + χ2

2�
n̄2

es (B5)

and

Q = [〈(b†b)2〉 − 〈b†b〉2]

〈b†b〉 − 1

= 2Re[ᾱ∗2〈δα̂2〉] + 2n̄es〈δα̂†δα̂〉
n̄es + 〈δα̂†δα̂〉 + O[(δα̂†)2(δα̂)2],

(B6)

respectively. For 〈δα̂†δα̂〉 � n̄es and keeping only the first-
order fluctuation, the Mandel Q parameter approximates to

Q ≈ 2Re[〈δα̂2〉/ᾱ2] + 2〈δα̂†δα̂〉
= n̄esχ

�
(� − χn̄es). (B7)

It should be realized that the mean Rydberg population is
enhanced by the intensity of the quantum fluctuation 〈δα̂†δα̂〉
induced by the Rydberg-Rydberg interaction. Moreover, the
Mandel Q parameter is additionally affected by the quantum
fluctuation 〈δα̂2〉 around 〈b〉. The cooperation of the quantum
fluctuations 〈δα̂2〉 and 〈δα̂†δα̂〉 finally determines the statistical

dynamics of the Rydberg excitation, in relation to the super-
(sub-)Poissonian counting statistics. On the other hand, the
Hurwitz criterion for stability is given by � > 0. While �

approaches zero, the quantum fluctuations diverge, and the
linearization fails.

APPENDIX C: THE EXACT SOLUTION OF THE
FOKKER-PLANCK EQUATION

Consider the Fokker-Planck equation (in the quantum noise
limit, excluding the thermal noise, i.e., nth = 0)

Ṗ (α,β,t) = [
∂uAu(α,β) + 1

2∂u∂vDuv(α,β)
]
P (α,β,t)

= ∂u

{
1
2 Duv[(Dvu)−1(2Au + ∂vDuv)P + ∂vP ]

}
(C1)

where u,v = α,β and the diffusion array is

D(α,β) =
[−iχα2 0

0 iχβ2

]
, (C2)

A(α,β) =
[

i(�α + χα2β + λ)
−i(�∗β + χβ2α + λ)

]
. (C3)

A steady-state exact solution for the Fokker-Planck equa-
tion exists only when the conditional equations ∂uVv = ∂vVu

are fulfilled [56], where the potential function is given by
V� = (D�u)−1(2Au + ∂σ Duσ ), � = 1,2, that is,[

V1

V2

]
= − 2

χ

[
(� − χ )/α + χβ + λ/α2

(�∗ − χ )/β + χα + λ/β2

]
. (C4)

It is straightforward to verify that ∂βV1 = ∂αV2 = −2 here.
Thus, in the stationary limit Ṗ (α,β,t = ∞) = 0, we have[

∂uAu(α,β) + 1
2∂u∂vDuv(α,β)

]
P (α,β,t) = 0 (C5)

or

∂u{Duv[(Dvu)−1(2Au + ∂vDuv)P + ∂vP ]} = 0. (C6)

The exact solution for the Fokker-Planck equation is therefore
given by

Pss(α,β) = exp

[
−

∫ (Cα,Cβ )�

V�(α,β)d(α,β)�

]

= exp

{
2

χ

∫ Cα

[(� − χ )/α + χβ + λ/α2]dα

+ 2

χ

∫ Cβ

[(�∗ − χ )/β + χα + λ/β2]dβ

}

= exp

{
2

χ
[(� − χ ) ln α − λ/α] + 2

χ
[(�∗ − χ ) ln β

− λ/β] + 2
∫ (Cα,Cβ )

(αdβ + βdα)

}

= αc−2βd−2 exp[−z(1/α + 1/β) + 2αβ], (C7)

where z = 2λ/χ and c = 2�/χ (d = c∗) are dimensionless
quantities. Note that no Glauber-Sudarshan P (α,α∗) function
exists in the steady state with β = α∗ due to the diverging
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FIG. 6. The Hankel path of integration.

exponential factor exp(2αα∗), except as a generalized form
P (α,β).

The generalized P (α,β) function has to satisfy the normal-
ization condition, which implies

I =
∫ (Cα,Cβ )

Pss(α,β)dαdβ

=
∫ (Cα,Cβ )

dαdβαc−2βd−2e−z(1/α+1/β)+2αβ

=
∫ (Cα,Cβ )

d(α−1)d(β−1)
∞∑

n=0

2n

n!
αc+nβd+ne−z(1/α+1/β)

=
∫ (Cα,Cβ )

dα1dβ1

∞∑
n=0

2n

n!
α

−(c+n)
1 β

−(d+n)
1 e−z(α1+β1),

(C8)

with α1 = α−1 and β1 = β−1. On the other hand, the �-
function identity can be defined by using the Hankel path
of integration O (see Fig. 6),

1

�(c + n)
= 1

2πi

∫
O

(σz)−(c+n)eσzd(σz)

= z1−(c+n)

2πi

∫
O

σ−(c+n)eσzdσ, (C9)

with which we obtain

I =
∫ (Cα,Cβ )

dα1dβ1

∞∑
n=0

2n

n!
α

−(c+n)
1 β

−(d+n)
1 e−z(α1+β1)

=
∞∑

n=0

2n

n!

[∫
O

dα1α
−(c+n)
1 e−zα1

∫
O

dβ1β
−(d+n)
1 e−zβ1

]

= (−4π2)
∞∑

n=0

2n

n!

zc+d+2(n−1)

�(c + n)�(d + n)

= (−4π2)zc+d−2

�(c)�(d)
0F2(c,d,2z2), (C10)

where 0F2(c,d,z) is the generalized hypergeometric function
defined as

0F2(c,d,z) =
∞∑

n=0

zn

n!

�(c)�(d)

�(c + n)�(d + n)
. (C11)

The normalized ith-order correlation function G(i,j ) cor-
responding to the normally ordered averages 〈b†ibj 〉 can be

5 0 5
0.4

0.2

0

0.2

0.4

b†b

| b |

Q

FIG. 7. Comparison of the numerical steady-state solution of
|〈b〉|, 〈b†b〉, and Q under the original master equation for the
bosonization model (solid lines) with the analytical results (16)–(18)
(symbols) in the main text. All parameters are the same as in Fig. 2(b).

calculated by the generalized P representation:

G(i,j ) =
∫

dσ (α,β)P (α,β)βmαn∫
dσ (α,β)P (α,β)

=
(−4π2)zc+d−2+i+j

�(c+j )�(d+i) 0F2(c + j,d + i,2z2)
(−4π2)zc+d−2

�(c)�(d) 0F2(c,d,2z2)
. (C12)

With Euler’s functional equation �(z)/�(z + n + 1) =
1/z(z + 1) · · · (z + n), we finally have

G(i,j ) = zi+j �(c)�(d)0F2(c + j,d + i,2z2)

�(c + j )�(d + i)0F2(c,d,2z2)
(C13)

and therefore the quantum-mechanical steady-state solution
of 〈b〉, 〈b†b〉, and Q = 〈b†b†bb〉

〈b†b〉 − 〈b†b〉. We have verified
these analytical results by comparisons with the numerically
obtained steady-state solution of the original master equa-
tion ρ̇ = −i[Hb,ρ] + γ

2 (2bρb† − ρb†b − b†bρ). As shown in
Fig. 7, we find excellent agreement between the two different
methods.

APPENDIX D: THE NONCLASSICAL NATURE OF THE
QUANTUM-MECHANICAL STEADY STATES

The nonclassical nature of the quantum-mechanical steady
states for the excitation processes with resonant driving and
laser detuning � = χ/2 manifests itself in the Wigner function
with a negative value, as shown in Fig. 8.
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FIG. 8. Wigner function W (x,p) of the quantum-mechanical
steady-state solution with (a) � = 0 and (b) � = χ/2.

013842-7



WU, LI, YANG, AND ZHENG PHYSICAL REVIEW A 95, 013842 (2017)

[1] M. Saffman, T. G. Walker, and K. Mølmer, Rev. Mod. Phys. 82,
2313 (2010).
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J. Evers, S. Whitlock et al., Phys. Rev. Lett. 112, 013002
(2014).

[45] A. Urvoy, F. Ripka, I. Lesanovsky, D. Booth, J. P. Shaffer, T.
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