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Dynamical diffraction leads to an interesting, unavoidable set of interference effects for neutron interferometers.
This experiment studies the interference signal from two and three successive Bragg diffractions in the Laue
geometry. We find that intrinsic Bragg-plane misalignment in monolithic, “perfect” silicon neutron interferometers
is relevant between successive diffracting crystals, as well as within the Borrmann fan for typical interferometer
geometries. We show that the dynamical phase correction employed in the Colella, Overhauser, and Werner
gravitationally induced quantum interference experiments is attenuated by slight, intrinsic misalignments between
diffracting crystals, potentially explaining the long-standing 1% discrepancy between theory and experiment.
This systematic may also impact precision measurements of the silicon structure factor, affecting previous and
future measurements of the Debye-Waller factor and neutron-electron scattering length as well as potential
fifth-force searches. For the interferometers used in this experiment, Bragg planes of different diffracting crystals
were found to be misaligned by 10 to 40 nrad.
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I. INTRODUCTION

For the past 40 years, single-crystal neutron interferom-
eters have demonstrated their robustness in the fields of
fundamental physics, quantum mechanics, neutron scattering,
nuclear theory, and quantum information. This is due to
the neutron’s interaction with magnetic and nuclear structure
and earth’s terrestrial gravitational field having roughly equal
magnitudes and through the high sensitivity gained over
other techniques in measuring interference effects. For most
interferometry experiments only properties of the sample or
interaction being probed are of interest, and the details of
the physical interferometer can be ignored. However, some of
the most interesting neutron interferometry experiments are
sensitive to a neutron’s path and phase accumulated within the
crystal beam splitters. Dynamical diffraction, which describes
Bragg diffraction within a crystal lattice, describes the inner
workings of the interferometer and is dependent on multiple
Bragg diffractions constructively interfering before leaving the
device.

The standard neutron interferometer consists of several
crystals or “blades” for consecutive Bragg diffraction. Bragg
scattering requires that each of these blades be aligned relative
to each other within the angular acceptance of the silicon
crystal, called the Darwin width �Darwin, typically between
5 and 25 μrad. For this reason, neutron interferometers are
made from a single, float-zone silicon ingot. The blades create
a Mach-Zehnder neutron interferometer with several centime-
ters of path separation. The blades are formed by removing
material from the ingot but preserving approximately half the
ingot to serve as a common base (see Fig. 1). This common
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base ensures that the crystal blades are aligned relative to
each other to within �Darwin. Further details of constructing
an interferometer can be found in Ref. [1]. Typically, this
relative alignment between the blades is assumed to be
perfect, even over the relatively large dimensions of the
crystal (∼10 cm). This assumption, however, is justified only
at the microradian level, while outside this alignment the
interferometer would cease to function. Our work considers
how the relative imperfect alignment of these blades at levels
over 100 times smaller than �Darwin impacts the performance
of the interferometer due to interference effects arising from
dynamical Bragg diffraction.

Inside the crystal blades neutrons undergo Bragg diffraction
(Fig. 2) where the incoming free-particle state splits into
two degenerate branches. This is because the solution of the
Schrodinger equation within the crystal lattice has two unique
solutions per incident momentum mode |kkk〉. Each of the two
branches accrues a different dynamical-induced phase which is
a function of the incident neutron momentum mode’s deviation
from the Bragg condition.

For momenta of the incoming particle extremely close
to the exact Bragg condition, this leads to the well-known
Pendellösung interference in a single diffracting crystal [2].
The two states become at least partially separated in space and
can recombine upon subsequent Bragg diffractions. This leads
to an interference peak in the reflected intensity as a function
of crystal misalignment at the nanoradian scale [3–6]. These
effects are also seen in Mach-Zehnder neutron interferometers.
For example, dynamical phases affected measurements of
gravitationally induced quantum interference [7–10]. More
recently, it was demonstrated that one can use a Mach-Zehnder
geometry with extra diffracting crystals to measure dynamical
phase differences between fully separated beams [1,11,12].
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FIG. 1. The crystal interferometer used in the second experiment
described in text. Four blades protrude from a common base.

This work was performed at the National Institute for
Standards and Technology (NIST) Center for Neutron Re-
search (NCNR) in Gaithersburg, Maryland. Following [3–6],
two- and three-crystal rocking curves were measured by
counterrotating two fused silica prisms between blades of a
neutron interferometer. Our measurements show that both the
net offset and variation of intrinsic Bragg plane misalignments
are large enough to be relevant between and within diffracting
crystal blades. It is then shown that this phenomenon is a
possible culprit for the 20-yr discrepancy between theory
and experiment for measurements of gravitationally induced
quantum interference using a perfect-crystal neutron inter-
ferometer [9,10,13]. These experiments, beginning in 1975,
are commonly referred to as the COW experiments after
Colella, Overhauser, and Werner, the authors of the first

FIG. 2. An incoming momentum state |kkk〉 excites two degenerate,
{α,β}, states within the crystal. These two states become spatially
separated according to the microradian misalignment of |kkk〉 from the
exact Bragg condition. Each incoming neutron wave packet fills the
entire Borrmann fan (outlined by green dashed lines).

measurement [14]. Bragg-plane misalignment will also affect
future experiments that measure dynamical phases, such as
precision measurements of the silicon structure factor, the
measurement of which is sensitive to the Debye-Waller factor,
the neutron-electron scattering length, and even fifth forces at
the angstrom length scale [15–17].

We begin with the necessary, but unfortunately dense,
results from dynamical diffraction theory. Two experiments to
measure the net Bragg-plane misalignment between diffracting
crystals of a neutron interferometer at the nanoradian level are
covered in Sec. IV. Finally, we discuss the implications of this
systematic on gravitationally induced quantum interference
measurements in Sec. V.

II. DYNAMICAL DIFFRACTION IN PERFECT-CRYSTAL
NEUTRON INTERFEROMETERS

Dynamical diffraction for the neutron case has been
thoroughly treated in the past [18–20]. When a neutron wave
packet undergoes Bragg diffraction in the Laue geometry (the
reciprocal lattice vector HHH , pointed along the crystal surface),
the reflected wave packet has a Lorentzian phase-space profile
with a width δk/k ∼ vH /Hk ∼ 10−6, with vH given by [18]

vH = 4π

a3

∑
v

bve
iHHH ·xxxv , (1)

where the summation is over one unit cell, with a3 being its
volume and bv being the nuclear scattering length of the vth
nuclei.

Dynamical phases are incurred from the momentum-
space-dependent filling of the Borrmann fan, as shown in
Fig. 3. For each incoming neutron momentum mode, two
degenerate states are excited within the crystal. These two
states, {α,β}, are linear combinations of the transmitted, |kkk〉,
and diffracted, |kkk + HHH 〉, states and propagate in a direction
through the crystal that is a function of the incoming
momentum mode’s misalignment from Bragg. The definition
of these states is given in Appendix A. Neutron momentum
modes that are exactly on Bragg propagate orthogonally to
HHH . Off-Bragg components pass through the crystal at an
angle [20]

� = ± arctan

⎧⎨
⎩

(
K2

H − K2
)

tan θB√(
K2

H − K2
)2 + |vH |2

⎫⎬
⎭, (2)

where θB is the Bragg angle, KKK is the incident momentum
mode inside the crystal, and KKKH = KKK + HHH . Note that K2

H −
K2 = 0 is another way of writing the Bragg condition, such
that � = 0 at the exact Bragg condition and � → θB for
increasingly off Bragg momenta.

In the case of multiple diffracting crystals, the twofold-
degenerate splitting of each incoming |kkk〉 continues, such
that there is a 2N splitting after N crystals. The α and β

states are labeled according to the first crystal, corresponding
to the sign of the current density, J

α,β
x = ±sgn(Hx0)|Jx |,

relative to HHH for the first crystal, HHH 0. If all of the crystals
have the same thickness, there are N + 1 combinations
of α and β reflections or transmissions leaving the N th
crystal with N − 1 recombination points (Fig. 4). If the
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FIG. 3. Dynamical phases in a two-crystal geometry.
(a) Momentum-space depiction, with the component of kkk

along HHH selected by the crystal colored. The magnitude of the
crystal’s angular acceptance relative to the spread of the wave
packet in phase space is greatly exaggerated for clarity. (b) Coherent
recombination is dependent on the precise alignment of the crystals
and a uniform potential between and within the diffracting crystals.
Only the infrared deviations from Bragg are shown; the ultraviolet
deviations follow the same pattern.

crystals are perfectly aligned and have the same thickness,
then there is no phase shift between the permutations of α

and β states for each of the N − 1 recombination points.
However, if one crystal is misaligned with respect to another, a
momentum-dependent phase shift arises, which quickly leads
to dephasing and a loss of contrast in the interferometer. This
effect is why perfect-crystal neutron interferometers must be
cut from single, float-zone-grown silicon ingots. Addition-
ally, the interferometer blades are made to have the same
thickness to a few micrometers to avoid similar dephasing
effects.

III. DYNAMICAL PHASE INTERFERENCE

Dynamical phases affect many diffracting geometries,
from single-crystal Pendellösung interference [2,21,22] to
multicrystal rocking curves [3–6], traditional Mach-Zehnder
neutron interferometers [7,8,10], and more complicated ge-
ometries [1,11,12,16]. Crystal misalignment behaves as a
phase shifter for a multicrystal interference peak [6], implying
that such misalignments will change the predicted response of
an overall Mach-Zehnder neutron interferometer. To see this,

(a)

(b)

FIG. 4. (a) Our experimental setup used to measure intrinsic
misalignments in an interferometer. (b) The Mach-Zehnder neutron
interferometer geometry used in the COW experiments. Here the di-
rection of gravity is denoted byggg sin(φ), where φ is the interferometer
tilt about the incoming beam axis.

our measurements utilize the geometry depicted in Figs. 4(a)
and 4(b). In Fig. 4(a) we depict how we use a Mach-Zehnder
interferometer for our measurements, and in Fig. 4(b) we
depict the usual method in which these interferometers are
used (for example, in the COW experiments). We use the
interference peak structure of two and three Bragg reflections
to measure Bragg-plane misalignments. We then show how
these misalignments affect the phase and contrast of a Mach-
Zehnder interferometer.
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A. Two-crystal geometry

It can be shown that the intensity for a twice Bragg reflected
neutron is (up to a normalization constant)

I =
∫

d
dkz|〈ψ |kz〉|2
√

1 − 
2

{
1 − P (D2)

+ 1

2
cos(HDδ
)[P (D2 − D1)

− 2P (D1) + P (D1 + D2)]

}
, (3)

where D1 and D2 are the thicknesses of the first and second
diffracting crystals, δ is the angular Bragg-plane misalignment
of the two crystals in the kkk,HHH plane, kz is the neutron
momentum along the Bragg planes (see Fig. 2), and |〈kz|ψ〉|2
is the momentum-space intensity profile of the incoming wave
packet (Fig. 3) along z. The integration variable 
 ranges from
−1 to 1 and is related to momentum in the HHH direction [20],


 = kkk · HHH√
(kkk · HHH )2 + (H 2/vH )2

(4)

= tan(�)/ tan(θB). (5)

The function P is defined by

P (D) = cos

(
D|vH |

kz

√
1 − 
2

)
, (6)

which is the origin of Pendellösung interference. Except for
P (D2 − D1), the P (D) terms correspond to the overlap of
states with different combinations of α and β reflections.

For the NIST setup, the width of |〈kz|ψ〉|2 (Fig. 3) is
σkz/kz ∼ 0.0015 rad, and |vH |D/kz ∼ 217. As a result, the
P (D) term is attenuated by only a few percent after the
integration of |〈ψ |kz〉|2 over kz. However, the range of 


of {−1,1} and the
√

1 − 
2 envelope ensure that the highly
oscillatory term

P (D) = cos

( |vH |D
kz

√
1 − 
2

)
∼ cos

(
217√
1 − 
2

)
(7)

integrates to a small value. In other words, Pendellösung inter-
ference terms dephase very quickly for the crystal thicknesses
typically used in neutron interferometers of D ∼ 2.5 mm. As
a result P (D) terms are often ignored, and most authors use
the approximation

I →
∫

d

√

1 − 
2

{
1 + 1

2
cos(HDδ
)

}

= π

2

(
1 + J1(u)

u

)
, (8)

where J1 is the first-order Bessel function of the first kind and
u = HDδ.

This approximation of letting P (D) → 0 is generally a
good one and can be extended to any geometry of diffracting
crystals. We therefore will not derive the equivalent of
Eq. (3) for three-crystal rocking curves or Mach-Zehnder
interferometers. However, we will explore what we call the
“fine structure” in the intensity arising from nonzero P (D)
terms in Sec. IV C for the two-crystal rocking curve.

For a more in-depth analysis of a two-crystal interferometer
with thick blades the reader is encouraged to see [6]. The
authors use a combination of prisms, phase steps, and a slit on
the second crystal to characterize the interferometer.

B. Three-crystal geometry

In the Pendellösung dephasing limit, P (D) → 0, the inter-
fering portion of a neutron undergoing three Bragg reflections
is (Fig. 4) [23]

I =
∫ 1

−1
d
(1 − 
2)

3
2 {3 + 2 cos[(u − w)
]

+ 2 cos[u
] + 2 cos[w
]}

= 6π

(
3

16
+ J2(u − w)

(u − w)2
+ J2(u)

u2
+ J2(w)

w2

)
, (9)

where u = HDδ1,2 and w = HDδ1,3, with δi,j being the
angular misalignment between the ith and j th crystals. The
u terms in Eqs. (8) and (9) are equivalent. We employ this
relationship later to make an absolute measurement of the
misalignment,

HDδ2,3 = u − w. (10)

C. Misalignment in a Mach-Zehnder interferometer

The typical Mach-Zehnder geometry is depicted in
Fig. 4(b), where two spatially separated, coherent beams (I
and II) are produced in the first crystal blade and recombined
in the final blade, resulting in two interfering beams, the
0 beam and the H beam. The COW experiments utilize
this geometry. We can describe the response of a Mach-
Zehnder neutron interferometer to misalignments with three
independent variables, {u,v,w} (Fig. 4), which describe the
misalignment between the two mirror and analyzer crystal
blades relative to the initial splitter crystal blade. To do this,
we start by writing down the state leaving the interferometer:

|ψ〉 = |I〉 + |II〉, (11)

where we are coherently adding the states from paths I and II
together. Then let

|ψ〉 → |I(v,w)〉 + |II(u,w)〉eiφ0 , (12)

where φ0 is the nondynamical phase shift between the two
paths of the interferometer and |I(v,w)〉 and |II(u,w)〉 are states
that depend on the misalignments {u,v,w}. Notice that |I〉
is not a function u and |II〉 is not a function v, so that the
misalignments of the mirror crystals for each path need not be
the same. Comparing the intensity of the two beams exiting
the interferometer to the measured interferogram,

〈ψ |ψ〉 = A + B cos(φ0 + ϕD)

= (〈I| + 〈II|e−iφ0 )(|I〉 + |II〉eiφ0 ). (13)

The measured, dynamical phase ϕD is then [9]

ϕD = arctan

{
− Im(〈I|II〉)

Re(〈I|II〉)
}
, (14)
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and the contrast is given by

C = B

A
= 2

√
Im[〈I|II〉]2 + Re[〈I|II〉]2

〈I|I〉 + 〈II|II〉 . (15)

In general we can write |I,II〉 in terms of the {α,β} branches,

|I,II〉 = |α,α,α〉I,II + |β,β,β〉I,II

+ (|α,α,β〉I,II + |α,β,α〉I,II + |β,α,α〉I,II)

+ (|α,β,β〉I,II + |β,α,β〉I,II + |β,β,α〉I,II). (16)

Different combinations of α and β reflections and transmis-
sions give Pendellösung terms similar to those already dis-
cussed in reference to Eq. (3). Therefore, in the Pendellösung
dephasing approximation, the overlap between states with
different numbers of α and β reflections and transmissions
is taken to be zero when forming 〈I,II|I,II〉. Expressions for
〈I,II|I,II〉 for the 0 beam are given in Appendix B.

IV. EXPERIMENT

An assembly of two fused silica prisms, each with a pitch
of 6◦, was placed between the first and second blades of a
three-blade interferometer [Fig. 4(a)]. The prism assembly
is the same as the one used in [24]. The beam transmitted
through the first crystal blade was blocked. The prisms were
counterrotated to deflect the neutron beam in the kkk,HHH plane,
generating interference peaks in two detectors, labeled RRR
and RRT. The RRR + RRT (equivalent to RR) and RRR
signals are of interest here and are given by Eqs. (8) and (9),
respectively.

Measurements were made with two of the NIST neutron
interferometers. For the first interferometer, a single set of RR
and RRR curves was measured over a long period of time, so
that the uncertainty in the peak position would be low, and the
fine structure [P (D) �= 0] of the RR curve could be analyzed
(see Sec. IV C). For the second interferometer, the RR and
RRR curves were measured as a function of interferometer
translation to measure any spatial dependence of the Bragg-
plane misalignments between crystal blades.

To measure a rocking-curve interference peak, the prisms
are counterrotated (Fig. 5), and the beam deflection due the
prisms is of the form

δp ∝ tan γ sin φ

(
cos θ + sin θ

tan γ sin φ + tan θ

1 − tan γ sin φ tan θ

)
, (17)

where γ is the pitch of the prism; θ is the angle between the
prism rotation axis and the neutron beam; and φ is the angle
of the prism from vertical. For the first set of measurements,
the prism assembly was aligned parallel to the interferometer
blades, so that θ 
 θB .

For the second set of measurements, the prism assembly
was aligned perpendicular to the beam such that θ 
 0.
The horizontal spatial dependence of the rocking-curve peak
positions was measured by translating the interferometer
relative to the beam by 1 cm in 1 mm steps, with rocking
curves taken for each translational position (see Fig. 7 below).
With the translation of the interferometer, the crystal volume
probed by neutrons is also shifted. Rocking-curve position vs
translation thus gives a one-dimensional map of the Bragg-

(a)

(b)

FIG. 5. RR and RRR summed intensity with fits. Integrated count
time was 89 min per point. Each plot is the sum of 89 individual
rocking curves. (a) RR intensity. The P (D) → 0 fit uses Eq. (20),
and the P (D) �= 0 fit is explained in Sec. IV C. (b) The RRR intensity
with the fit to Eq. (21).

plane misalignment between crystal blades as a function of
position.

A. Peak location and sensitivity

To assess a rocking curve’s tendency to drift (similar to
the way the phase of a Mach-Zehnder neutron interferometer
drifts), the peak position of each RR rocking curve for
the first crystal was found by fitting to Eq. (20), which is
defined in the next section; included is an explanation of how
the peak locations can be reported in terms of an intrinsic
angular alignment. The set of 89 rocking-curve positions
fits a Gaussian distribution (exp[−(x − μ)2/(2σ 2)]), with
μ = (16.9 ± 0.4) nrad and σ = (3.24 ± 0.34) nrad (Fig. 6).
The peak locations are stable, and the uncertainty matches that
which is predicted by counting statistics; the average peak loca-
tion uncertainty was 2.94 nrad. Furthermore, averaging the 89
individual rocking-curve positions gives (16.78 ± 0.31) nrad,
which is indistinguishable from fitting the combined data to
Eq. (20). This yields a peak location of (16.37 ± 0.31) nrad.
The average reduced χ2 (31 − 4 DOF (degree of freedom)) for
the 89 individual rocking-curve fits was 1.1. The reduced χ2

for the combined fit was 2.8.
The interference structure outside the central peak is

undetectable in an individual rocking curve yet can be resolved
from summing many rocking curves together. Complications
arising from Pendellösung interference may explain why the
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FIG. 6. Fitted peak locations follow the distribution predicted by
counting statistics. The average uncertainty in the individual rocking-
curve peak positions was 2.94 nrad. This should be compared to fitting
the set of 89 rocking-curve peak positions to a Gaussian distribution,
which gives σ = (3.24 ± 0.34) nrad.

χ2 from the single rocking curve is inferior to the χ2 from 89
individual fits (see Sec. IV C). The uncertainty in the central
peak location corresponds to an angular resolution for the
setup used here of 0.35 nrad misalignment between crystals
for 2 days of measurement. This sensitivity can conceivably be
increased by two or more orders of magnitude by using thicker
diffracting crystals, blocking the noninterfering portions of
the outgoing beam and running a dedicated experiment for
∼1 month, making angular deflection measurements at the
picoradian level a possibility.

B. Intrinsic Bragg-plane misalignment

Intrinsic misalignment of Bragg planes has been observed
in two-blade interferometers before by Arthur et al. [6]. We are
able to measure the intrinsic misalignment between the second
and third blades here. The intrinsic misalignments elsewhere
in the interferometer are indistinguishable from the relative
alignment of the prisms. We form fit functions by substituting

u → aδp + u0,

w → aδp + w0 (18)

into Eqs. (8) and (9), where a is a fit parameter that has to do
with the prism material and neutron wavelength and δp is given
by Eq. (17). If there is an offset in the prism counterrotation,
φ → φ + φ0 in Eq. (17), then to first order in φ0 this adds
the same constant offset to u0 and w0. Inserting Eq. (18) into
Eq. (9), the form of the RRR beam intensity is given by

I ∝ J2(u0 − w0)

(u0 − w0)2
+ J2(aδp + u0)

(aδp + u0)2
+ J2(aδp + w0)

(aδp + w0)2
. (19)

The first term changes only the peak baseline, which is
absorbed into the A and B fit parameters below. Combing
this result with the RR result, we now have two fit functions
with related parameters:

IRR = A1 + B1
J1(aδp + u0)

(aδp + u0)2
, (20)

IRRR = A2 + B2

[
J2(aδp + u0)

(aδp + u0)2
+ J2(aδp + w0)

(aδp + w0)2

]
, (21)

FIG. 7. Misalignments as a function of interferometer translation.
The measured misalignments between blades 1 and 2 and blades
1 and 3 are shifted depending on a possible offset in the prism
counterrotation (red data, left axis), while the misalignment between
blades 2 and 3 is an absolute measurement (blue data, right axis).

where {A1,2,B1,2,a,u0,w0} are fit parameters and δp is
the independent variable given by the prism counterrota-
tion [Eq. (17)]. Here we have let the prism counterro-
tation misalignment be absorbed into u0 and w0, such
that

u0 → uc + up = uc + wp,

w0 → wc + wp = wc + up, (22)

where the c and p subscripts refer to the intrinsic crystal-
lographic misalignment and the effective misalignment from
an unknown offset in the prism counterrotation, respectively,
and we have noted that wp = up. In short, the RR peak is
located at u0, and the RRR peak location is (u0 + w0)/2.
As a result, computing the misalignment u0 − w0 = uc − wc

automatically removes the effective misalignment from the
prism counterrotation offset φ0.

Fitting the RR curve [Fig. 5(a)] to Eq. (20) gives u0
HD

=
(16.37 ± 0.31) nrad. Combining this result with the RRR fit
of Fig. 5(b) to Eq. (21) yields w0

HD
= (4.75 ± 0.66) nrad, lead-

ing to a measured absolute misalignment, u0−w0
HD

= uc−wc

HD
=

(11.57 ± 0.89) nrad for the first interferometer. Both fits have
reduced χ2 (31 − 4 DOF) of 2.8. The uncertainties quoted here
do not use expanded error bars to decrease the reduced χ2 to
1. Doing so increases the quoted uncertainties by a factor of√

2.8 
 1.7.
When the second interferometer was translated, we found

a variation in misalignment on the order of 4 nrad/mm.
Shown in Fig. 7 are the measured rocking-curve positions
as a function of interferometer translation. This suggests
that the variation in crystallographic misalignment within
each diffracting crystal is large enough to be relevant. If
crystallographic misalignments are taken to be fields instead of
constants, then the integrals over 
 as well as the solutions to
Shrödinger’s equation within the crystal are perturbed. These
effects, which we do not take into account in our fits of the
RR and RRR intensity, as well as the discussion in the next
section, help explain the poor reduced χ2 for both the RR and
RRR fits.
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C. Rocking-curve fine structure

If the P (D) terms in Eq. (3) are not neglected in regards
to the RR curve, the fit can be improved. An outline of the
fit functions used is given in Appendix C. Keeping the P (D)
terms adds three more parameters to the fit,

{ |vH |(D2 − D1)

kz

,
|vH |D

kz

,
σkz

kz

}
. (23)

In this context D is the average of the crystal thicknesses.
The reduced χ2 (31 − 4 DOF) when using Eq. (20) as a fit
function was 2.8. If |vH |D/kz is allowed to be a fit parameter,
the reduced χ2 (31 − 5 DOF) falls to 1.9. It was found that
|vH |(D2 − D1)/kz and σkz/kz did not impact the quality of
the fit. However, a range for each can be computed given what
we know about the thicknesses of the interferometer blades
and the phase-space profile of the incoming neutron beam. For
the beam used here, σkz/kz ∼ 0.0015 rad, which attenuates the
P (D) terms by only a few percent, and the crystal thicknesses
are thought to be the same to a few microns.

Even though the parameters |vH |(D2 − D1)/kz and σkz/kz

do not improve the fit, they are covariant with u0 and |vH |D/kz.
As such, assuming a possible range of values for the difference
in crystal thicknesses and the beam divergence slightly changes
the best fits for the rocking-curve peak position and silicon
structure factor. We should therefore include a systematic
uncertainty when reporting rocking-curve peak positions. By
performing fits over the acceptable ranges of |vH |(D2 −
D1)/kz and σkz/kz, we find a systematic uncertainty in u0

HD
and

|vH |D/kz of 0.08 and 0.15 nrad, respectively. This leaves us
with x ± σstat ± σsys of u0

HD
= (−16.49 ± 0.32 ± 0.08) nrad

and |vH |D/kz = (220.29 ± 0.25 ± 0.15), with χ2
red = 1.9 for

31 − 5 DOF.
The still large reduced χ2 of 1.9 indicates there may be

additional complications to the rocking-curve structure. This
is likely due to variation in crystallographic misalignment
between crystal blades demonstrated in Sec. IV B. Our fit
of |vH |D/kz corresponds to a sensitivity to vH of one part
in 10−3, which is the level at which the neutron electron
scattering length impacts vH . However, the uncertainty in the
Debye-Waller factor prevents a measurement of the neutron
electron scattering length from being performed with only
one Bragg diffraction [15]. Our sensitivity to vH is not
surprising, as two-crystal rocking curves have been used
to measure the x-ray silicon structure factor [25]. In that
case the impact of the incoming momentum-space profile
has also been studied [26]. While the net misalignment
between the two diffracting crystals of the RR curve does
not affect a measurement of vH , the same cannot be said
for the setups used in [1,11,12] or in [16], where extra
diffracting crystals are placed in a Mach-Zehnder neutron
interferometer. However, all Bragg diffraction measurements
of vH are subject to possible systematics caused by variations
in HHH within the diffracting crystal(s). Our measurement of the
spatial dependence of Bragg-plane misalignments discussed
in Sec. IV B suggests this effect is not negligible. We leave the
analysis of the impact of such stress fields on rocking curves
and Pendellösung interference to future work.

V. IMPLICATIONS FOR GRAVITATIONALLY INDUCED
QUANTUM INTERFERENCE EXPERIMENTS

In the COW gravitationally induced quantum interference
experiments, a Mach-Zehnder neutron interferometer is tilted
about the incoming beam axis to induce a gravitational phase
shift between paths of the interferometer from the earth’s
gravitational field [Fig. 4(b)]. The resulting phase shift versus
sin φ, where φ is the interferometer tilt angle, is predicted to
be linear, with the slope qgrav being the measured value to be
compared to theory. The primary contribution to qgrav is due to
the path separation in the earth’s gravitational field, but a few
corrections are needed.

Dynamical phase effects contributed a perturbation in the
expected phase shift for the COW experiments. The Sagnac
effect constituted another correction, and bending of the inter-
ferometer crystal itself was accounted for using simultaneous
neutron, x-ray measurements [9]. Later experiments used two
neutron wavelengths to account for the crystal bending [10,13].
We will focus on data from [9], which used the x-ray technique,
because they are more easily analyzed from information given
in the article. For a history and more thorough description of
the COW experiments, see [20].

When the interferometer is tilted in the COW geometry,
the beam between crystal blades is deflected by up to
about 100 nrad by gravity, leading to the dynamical phase
correction. We measured misalignments between diffracting
crystals on the order of 10 to 40 nrad. The relative size
of the intrinsic misalignments and gravitational deflection
imply that the natural misalignment of the interferometer
is large enough to perturb the predicted dynamical phase
shift. This is a likely explanation for the dynamical phase
in the COW experiments being consistently smaller than
predicted. Recalculating the dynamical phase contribution to
the gravitationally induced phase shift while allowing for
intrinsic crystal misalignment, we find that including nonzero
Bragg-plane misalignments attenuate the dynamical phase
contribution [Figs. 8(a) and 8(c)] and also impact the predicted
loss of contrast as a function of interferometer tilt [Fig. 8(b)].
Here we have assumed the phase shift due to the bending of
the interferometer under its own weight is already accounted
for by the simultaneous x-ray measurement. The distortion of
the theoretical contrast and dynamical phase contribution are
due to net misalignments that we have not allowed to change
upon tilting the interferometer. The nonlinear nature of the
dynamical phase and contrast corrections and the three degrees
of freedom create the predicted distortions of the dynamical
phase and contrast response. The correction from reasonable
misalignments as measured in this work is of the correct size
to account for the discrepancy between theory and experiment
in [9].

There are too many relevant parameters that would need
to be measured to recompute the dynamical phase correction
for previous COW experiments with intrinsic crystallographic
misalignments in the interferometer crystal included. How-
ever, for the interferometer used in [9], we were able to find a
set of misalignments {uc,vc,wc}

HD
= {δu,δv,δw} = {−39.2 nrad, −

10.7 nrad, − 3.5 nrad} that were consistent with qgrav and fitted
to normalized contrast, C(φ)

C(0) [Fig. 8(b)]. A fit to contrast
versus tilt angle cannot determine all three misalignment
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FIG. 8. (a) Dynamical phase [Eq. (14)] for the interferometer used
in [9] were it to have intrinsic misalignments. The corresponding
theoretical values of qgrav are given in the legend. The final curve
has qgrav set to the measured value of (58.72 ± 0.03) rad [9].
(b) Normalized contrast [Eqn. (15)] vs tilt for the interferometer
used in [9] were it to have intrinsic misalignments. Data points are
from [9]. Uncertainties were not reported. (c) Theoretical slope of the
gravitational phase shift as a function of δu = δv crystal misalignment
with δw = 0. Experimental results ±2σ from [9] are also shown.

parameters. As a result, the fit to contrast was performed with
the theoretical value of qgrav fixed to be the value measured
in [9]. Additionally, to see that misalignments tend to decrease
the theoretical value of qgrav, Fig. 8(c) shows qgrav as a function
of misalignment with δu = δv and δw = 0 compared to the
measured value from [9].

The predicted contrast at no tilt with {δu,δv,δw} =
{−39.2 nrad, − 10.7 nrad, − 3.5 nrad} for the interferometer

used in [9] is 81%, which should be compared with the
measured value of 59%. Fits to absolute contrast, instead
of normalized contrast, yielded poor results, suggesting that
there are other factors contributing to loss of contrast in
this interferometer. The variation in misalignments within
diffracting crystals as discussed in Sec. IV B or environmental
factors such as vibrations are possible culprits.

A two-crystal interferometer such as the one used in [6]
may be able to resolve the disagreement between theory and
experiment for gravitationally induced quantum interference
using silicon neutron interferometers. If such an interferometer
were tilted along the beam axis, deflection due to gravity
would shift the central interference peak. As we have shown
here, complications from crystal-blade misalignments can be
measured for such an interferometer in a fairly direct manner.
Only the centroid of the rocking curve would be affected due
to gravity and the Sagnac effect, the consequences of which
are calculable.

Finally, we note that gravitationally induced quantum
interference has since been found to agree with theory at the
0.1% level using a spin-echo neutron interferometer [27] and
at 0.08% with a very cold grating neutron interferometer [28].
Atom interferometer experiments have confirmed theory at the
parts per billion level [20].

The effect of intrinsic misalignments in neutron interfer-
ometers does not end with gravitationally induced quantum
interference. In the experiment performed in [11], a measure-
ment of the dynamical phase upon Laue transmission resulted
in a weaker dynamical phase response than predicted. It is
unclear whether including nonzero intrinsic interferometer
misalignments would explain the discrepancy.

VI. CONCLUSION

Measurements that rely on dynamical phases in neutron in-
terferometry require careful characterization of imperfections
in the interferometer crystal. Crystal misalignments on the 10
to 40 nrad level, as well as a dependence on Pendellösung
oscillations, have been measured for two monolithic silicon
neutron interferometers at the NCNR. Such crystallographic
imperfections may affect future precision measurements of
the silicon structure factor and provide a likely explanation for
the discrepancy between theory and experiment in the COW
gravitationally induced quantum interference measurements.
Rocking-curve interference peaks have the potential to mea-
sure very small deflections (on the order of picoradians) of the
neutron beam in an interferometer, as well as characterize the
strain in Mach-Zehnder neutron interferometers.
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APPENDIX A: ENERGY EIGENSTATES OF THE
DYNAMICAL DIFFRACTION HAMILTONIAN

We wish to find solutions to the dynamical diffraction
Hamiltonian [18]:

H = �
2

2m
k2 + 2π�

2

m

∑
�,v

b�,vδ(rrr − rrr�,v), (A1)

where b�,v is the scattering length of the nucleus located at rrr�,v ,
� indexes the unit cells, and v indexes the position within the
crystal cell. It is customary to expand Eq. (A1) in momentum
space:

2m

�2
H = (K2 + v0)|KKK〉〈KKK| + (

K2
H + v0

)|KKKH 〉〈KKKH |
+ vH |KKK〉〈KKKH | + v−H |KKKH 〉〈KKK|, (A2)

where KKKH ≡ KKK + HHH and vq is the neutron-silicon structure
factor per unit cell, given by [18]

vq = e−W 4π

�0

∑
v

bve
irrrv ·qqq, (A3)

where e−W is the Debye-Waller factor and �0 is the volume
of a unit cell. This Hamiltonian leads to the secular equation

(K2 + v0 − k2)
(
K2

H + v0 − k2) = |vH |2, (A4)

where we have suggestively labeled our energy eigenvalue
(with �

2/2m factored out) as k2. This will later turn out to be
the momentum of an incoming momentum mode |kkk0〉. Solving
the secular equation for a fixed momentum KKK gives

k2 = K2 + v0 + 1

2

(
K2

H − K2) ±
√

1

4

(
K2 − K2

H

) + |vH |2.
(A5)

The energy states of the dynamical diffraction Hamiltonian
therefore make up a continuous spectrum with a twofold
degeneracy formed by two momentum states, which we now
call KKK±,

K±2 = k2 − v0 + vH (−η ±
√

η2 + 1), (A6)

where

η ≡ K2
H − K2

2|vH | = δKδKδK · HHH
|vH | , (A7)

with δKδKδK being the deviation from the exact Bragg condition.
The corresponding value of K±2

H is then

K±2

H = k2 − v0 + vH (η ±
√

η2 + 1). (A8)

We are now ready to write down the energy eigenstates of
the dynamical diffraction Hamiltonian,

|KKK,±〉 = a±
0 (K)|KKK〉 + a±

H (K)|KKKH 〉, (A9)

with the coefficients

a±
0 (K) = 1√

2

(
1 ± K2

H − K2

2
√

1
4

(
K2

H − K2
)2 + |vH |2

) 1
2

,

a±
H (K) = ∓ 1√

2

(
∓ 1 + K2

H − K2√
1
4

(
K2

H − K2
)2 + |vH |2

) 1
2

,

or, in terms of the customary η parameter (which will replace
KKK in the HHH direction as an integration variable),

a±
0 (η) = 1√

2

(
1 ± η√

η2 + 1

) 1
2

, (A10)

a±
H (η) = ∓ 1√

2

(
1 ∓ η√

η2 + 1

) 1
2

. (A11)

Additionally, it can be shown that the ± states traverse a
distance x ′ − x along the crystal,

x ′ − x = ∓sgn(Hx)
η√

η2 + 1
D tan θB. (A12)

It is usually more useful to switch from the {±} basis to
the {α,β} basis where sgn(J α,β

x ) = ±sgn(Hx), which simply
requires that [20]

± → − sgn(η) (α branch)

± → sgn(η) (β branch)

for the ± in the equations above.

APPENDIX B: MACH-ZEHNDER GEOMETRY
CALCULATIONS

Following previous work [3,9,10,23] but generalizing to let
there be three separate misalignments {u,v,w} gives

〈I|I〉 = π

[
8
J1(v − w)

u − w
− 12

J2(v − w)

(v − w)2

− 12
J2(v)

v2
− 12

J2(w)

w2
+ 5

]
, (B1)

〈II|II〉 = π

[
8
J1(u)

u
− 12

J2(u − w)

(u − w)2

− 12
J2(u)

u2
− 12

J2(w)

w2
+ 5

]
, (B2)

Im[〈I|II〉] = 4π

[
J2

(
u+v

2

)
u+v

2

− J2
(

u−v
2 − w

)
u−v

2 − w

+ J2
(

u−v
2 + w

)
u−v

2 + w
− J2

(
u+v

2 − w
)

u+v
2 − w

]
, (B3)

Re[〈I|II〉] = 2π

[
4
J1

(
u−v

2

)
u−v

2

− 12
J2

(
u−v

2

)
(

u−v
2

)2 + 2
J1

(
u+v

2

)
u+v

2

− 6
J2

(
u+v

2

)
(

u+v
2

)2 + 2
J1

(
u−v

2 − w
)

u−v
2 − w

− 3
J2

(
u−v

2 − w
)

(
u−v

2 − w
)2
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+ 2
J1

(
u+v

2 − w
)

u+v
2 − w

− 6
J2

(
u+v

2 − w
)

(
u+v

2 − w
)2

+ 2
J1

(
u−v

2 + w
)

u−v
2 + w

− 3
J2

(
u−v

2 + w
)

(
u−v

2 + w
)2

]
(B4)

for the 0 beam. The phase and contrast of a regular interfero-
gram can then be extracted by inserting these expressions into
Eqs. (14) and (15).

APPENDIX C: ROCKING-CURVE FINE STRUCTURE

We wish to estimate Eq. (3) in terms of a set of pa-
rameters, {HDδ,

D|vH |
kz

,
σkz

kz
,

(D2−D1)|vH |
kz

} = {μ,�,σ,ξ}, which
corresponds to integrals of the form

I =
∫

d

√

1 − 
2 cos (μ
) cos

(
�√

1 − 
2

)
. (C1)

Because the blades of the interferometer are nearly the same
thickness, the P (D2 − D1) term in Eq. (3) can be expanded in
terms of � → ξ ,

I =
∫

d

√

1 − 
2 cos(μ
)

(
1 − ξ 2

2(1 − 
2)
+ O(ξ 4)

)

= π

(
J1(μ)

μ
− ξ 2

2
J0(μ) + O(ξ 4)

)
. (C2)

This approximation is found to have an error of less than
0.5% of the peak maximum for ξ = 0.2 and any value of μ.
The P (D) terms in Eq. (3), on the other hand, are extremely
oscillatory, so we integrate over 〈ψ |kz〉〈kz|ψ〉 and use a
stationary phase method, similar to [29,30]. In this case, it
is better to integrate over η than 
:

I = Re

{ ∫
dη exp

[
iμ

η

η2 + 1
+ i�

√
η2 + 1

− 1

2
(η2 + 1)�2σ 2 − 2 ln(η2 + 1)

]}
. (C3)

We then expand the argument of the exponential f (η)
around η0, which should be close to a minimum of f (η).
To avoid having to numerically find η0, we neglect terms η2

0
and higher in f (1)(η0) = 0, which gives

η0 = iμ

�2σ 2 − i� + 4
. (C4)

We then neglect terms in the argument of the exponential of
(η − η0)3 and higher and complete the integral as a Gaussian,

I = Re

⎧⎨
⎩

√
2π

exp
[
f (η0) − f (1)(η0)2

2f (2)(η0)

]
√

−f (2)(η0)

⎫⎬
⎭. (C5)

This function is found to have an error of less than 0.5% of the
peak value over the relevant ranges of {μ,�,σ }.
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