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Resonance fluorescence from an asymmetric quantum dot dressed
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We present the theory of resonance fluorescence from an asymmetric quantum dot driven by a two-component
electromagnetic field with two different frequencies, polarizations, and amplitudes (bichromatic field) in the
regime of strong light-matter coupling. It follows from the elaborated theory that the broken inversion symmetry
of the driven quantum system and the bichromatic structure of the driving field result in unexpected features of
the resonance fluorescence, including the infinite set of Mollow triplets, the quench of fluorescence peaks induced
by the dressing field, and the oscillating behavior of the fluorescence intensity as a function of the dressing field
amplitude. These quantum phenomena are of general physical nature and, therefore, can take place in various
double-driven quantum systems with broken inversion symmetry.
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I. INTRODUCTION

Advances in nanotechnology, laser physics, and microwave
techniques have created a basis for studies of the strong light-
matter coupling in various quantum systems. Differently from
the case of weak electromagnetic field, the interaction between
electrons and a strong field cannot be treated as a perturbation.
Therefore, the system “electron + strong field” is convention-
ally considered as a composite electron-field object which is
called “electron dressed by field” (dressed electron) [1,2]. The
field-induced modification of the physical properties of dressed
electrons was studied in both atomic systems [1–3] and vari-
ous condensed-matter structures, including bulk semiconduc-
tors [4–6], graphene [7–11], quantum wells [12–17], quantum
rings [18–21], quantum dots [22–32], etc. Among these struc-
tures, quantum dots (QDs)—semiconductor three-dimensional
(3D) structures of nanometer scale, which are referred to as
“artificial atoms”—seem to be the most interesting for optical
studies since they are basic elements of modern nanophoton-
ics [33,34]. In contrast to natural atoms, most QDs are devoid
of inversion symmetry and, therefore, are asymmetric. As an
example, QDs based on gallium nitride heterostructures have
a strong built-in electric field [35,36] and, therefore, acquire
the giant anisotropy [37–41]. This motivates studies of various
asymmetry-induced optical effects in QDs [29–32].

Most studies of dressed quantum systems have been per-
formed for a monochromatic dressing field. However, there are
a lot of interesting phenomena specific for quantum systems
driven by a two-mode electromagnetic field with two different
frequencies, polarizations, and amplitudes (bichromatic field).
In symmetric quantum systems (atoms and superconducting
qubits), the bichromatic coupling leads to features of photon
correlations, squeezing, Autler-Townes effect, suppression of
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spontaneous emission, multiphoton transitions, etc. [42–49].
Broken symmetry brings substantially new physics to bichro-
matically dressed quantum systems, including additional lines
in optical spectra, multiple splitting of the dressed-state
transitions, etc. [50–52]. Although these optical effects have
been extensively studied for a long time, a consistent quantum
theory of resonance fluorescence from bichromatically dressed
asymmetric systems has not been elaborated. The present
research is aimed to fill this gap at the border between quantum
optics and physics of nanostructures. To solve the problem, we
focused on the strong light-matter coupling regime when the
interaction of an asymmetric QD with a bichromatic dressing
field overcomes the spontaneous emission and nonradiative
decay of QD excitations. In this case, the spectral lines of QD
are well resolved and various radiation effects (particularly,
the resonance fluorescence) can be analyzed using a concept
of quasienergetic (dressed) electronic states. In the framework
of this approach, such characteristics of dressed QDs as
decay rates and line shapes can be calculated by solving
the master equations in the representation of quasienergetic
states. As a result, we found unexpected features of resonance
fluorescence, which are discussed below.

The paper is organized as follows. In Sec. II, we derive
quasienergetic electronic states for an asymmetric QD dressed
by a bichromatic electromagnetic field and calculate matrix
elements of optical dipole transitions between these states. In
Sec. III, we apply the found quasienergetic spectrum of dressed
electrons to elaborate the theory of resonance fluorescence
from the QD. Section IV contains the discussion of the calcu-
lated spectra of resonance fluorescence and the conclusion.

II. MODEL OF ELECTRONIC STRUCTURE

Let us consider an asymmetric QD with broken inversion
symmetry along the z axis, which is dressed by the bichromatic
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(a) (b)

FIG. 1. Sketch of the system under consideration: (a) Asymmetric
quantum dot (QD) with broken inversion symmetry along the z axis,
which is exposed to a bichromatic electromagnetic field with the
electric field amplitudes E1,2 and the frequencies ω1,2. (b) Two-level
model of the electronic energy spectrum of the QD, ε, with the
interlevel distance �ω0.

field

E(t) = E1 cos ω1t + E2 cos ω2t, (1)

where the electric field of the first mode, E1, is directed along
the z axis and the electric field of the second mode, E2, is
perpendicular to this axis [see Fig. 1(a)]. In what follows,
we will assume that the second frequency ω2 is near the
electronic resonance frequency ω0, whereas the first frequency
ω1 is far from all resonance frequencies. As a consequence,
the bichromatic field (1) effectively mixes only two electron
states of the QD, |1〉 and |2〉, which are separated by the
energy �ω0 [see Fig. 1(b)]. Within the basis of these two
states, the asymmetric QD can be described by the matrix
Hamiltonian [29]

Ĥ =
(−�ω0/2 − d11E1 cos ω1t −d12E2 cos ω2t

−d21E2 cos ω2t �ω0/2 − d22E1 cos ω1t

)
,

(2)

where d11 = 〈1|ez|1〉, d22 = 〈2|ez|2〉, and d12 = d21 =
〈1|ex|2〉 are the matrix elements of the operator of the electric
dipole moment along the z,x axes, and e is the electron charge.
To simplify calculations, the Hamiltonian (2) can be written
as a sum, Ĥ = Ĥ0 + Ĥ′, where

Ĥ0 =
(−�ω0/2 − d11E1 cos ω1t 0

0 �ω0/2 − d22E1 cos ω1t

)
(3)

is the diagonal part of the full Hamiltonian (2), and

Ĥ′ =
(

0 −d12E2 cos ω2t

−d21E2 cos ω2t 0

)
(4)

is the nondiagonal part describing electron transitions between
states |1〉 and |2〉 under influence of the field (1). Exact
solutions of the nonstationary Schrödinger equation with the
Hamiltonian (3),

i�
∂ψ

∂t
= Ĥ0ψ,

can be written in the spinor form as

ψ (−) = eiω0t/2 exp

[
i
d11E1

�ω1
sin ω1t

](
1
0

)
(5)

and

ψ (+) = e−iω0t/2 exp

[
i
d22E1

�ω1
sin ω1t

](
0
1

)
. (6)

Since the two pseudospinors (5) and (6) are the complete
basis of the considered electronic system at any time t ,
we can seek eigenstates of the full Hamiltonian (2) as an
expansion

ψ̃ = a(−)(t)ψ (−) + a(+)(t)ψ (+), (7)

where the time-dependent coefficients a(±)(t) obey the equa-
tion

i�ȧ(∓)(t) = −a(±)(t)d12E2 cos ω2te
∓iω0t

× exp

[
±i

(d22 − d11)E1

�ω1
sin ω1t

]
. (8)

Applying the Jacobi-Anger expansion,

eiz sin θ =
∞∑

n=−∞
Jn(z)einθ ,

we arrive from Eq. (8) at the equation

i�ȧ(∓)(t) = −a(±)(t)
d12E2

2

∞∑
n=−∞

Jn

[
(d22 − d11)E1

�ω1

]
× [e∓i(ω0+ω2−nω1)t + e∓i(ω0−ω2−nω1)t ], (9)

where Jn(z) is the Bessel function of the first kind. Formally,
the equation of quantum dynamics (9) describes a two-level
quantum system subjected to a multimode field. It is well
known that the main contribution to the solution of such
equation arises from a mode which is nearest to the resonance.
Correspondingly, near the resonance condition,

ω0 ± ω2 = nω1, (10)

we can neglect all modes except the resonant one. In this
approximation, Eq. (9) reads

iȧ(±)(t) = a(∓)(t)Fne
±iϕnt , (11)

where Fn = −(d12E2/2�)Jn(ω̃/ω1) are the Rabi frequencies
of the considered system,

ω̃ = E1(d22 − d11)

�
(12)

is the effective frequency, and ϕn = ω0 ± ω2 − nω1 is the res-
onance detuning. It follows from Eq. (11) that the considered
problem is reduced to the effective two-level system driven
by the monochromatic field with the combined frequency
ϕn. Using the well-known solution of Eq. (11) (see, e.g.,
Ref. [53]), we can write the sought wave functions (7)
in the conventional form of quasienergetic (dressed) states
as

ψ̃1 = e−iε̃1t/�

[√
1

2

(
1 + ϕn

2�n

)
	11(t)

(
1
0

)

−
√

1

2

(
1 − ϕn

2�n

)
ei(ϕn−ω0)t	22(t)

(
0
1

)]
, (13)
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ψ̃2 = e−iε̃2t/�

[√
1

2

(
1 + ϕn

2�n

)
	22(t)

(
0
1

)

+
√

1

2

(
1 − ϕn

2�n

)
e−i(ϕn−ω0)t	11(t)

(
1
0

)]
, (14)

where

ε̃1 = −�ω0

2
− ��n + �

ϕn

2
, ε̃2 = �ω0

2
+ ��n − �ϕn

2
(15)

are the corresponding quasienergies, and

	ii(t) = exp

[
i
diiE1

�ω1
sin ω1t

]
, �n =

√
ϕ2

n

4
+ F 2

n .

As to optical transitions between the dressed states (13)
and (14), they can be described by the matrix dipole elements

d̃ij (t) = 〈ψ̃i |ex|ψ̃j 〉 = d
(+)
ij + d

(−)
ij , (16)

where d
(+)
ij = [d (−)

ji ]
∗
,

d
(+)
21 = d21

2

[
1 + ϕn

2�n

]
	∗(t)ei(ω0−ϕn+2�n)t ,

d
(−)
21 = −d12

2

[
1 − ϕn

2�n

]
	(t)e−i(ω0−ϕn−2�n)t ,

d
(+)
11 = −d

(+)
22 = −d12

2

Fn

�n

	∗(t)ei(ω0−ϕn)t , (17)

and 	(t) = 	22(t)	∗
11(t).

III. RESONANCE FLUORESCENCE

The general theory to describe the resonance fluorescence in
the representation of quasienergetic (dressed) states has been
elaborated in Refs. [54–57]. Applying this known approach to
the considered dressed QD, we have to write the Hamiltonian
of interaction of the QD with the radiative field as

Ĥint = −d̃ij (t)[E+(t) + E−(t)], (18)

where

E±(t) =
∫

dωg±(ω)e±
ωa±

ω e∓iωt

is the positive (negative) frequency part of the radiative
electric field, E(t) = E+(t) + E−(t), the parameters g±(ω),
e±
ω , a±

ω describe the density, polarization, and amplitude of the
corresponding electromagnetic modes, respectively, and d̃ij (t)
are the dipole matrix elements of dressed QD (16) and (17).
Within the conventional secular approximation and Markov
approximation [1], the equations describing the quantum
dynamics of the considered two-level system read

dσ11(t)

dt
= −�11[σ11(t) − σS

11],

dσ12(t)

dt
= −�12σ12(t), σ11(t) + σ22(t) = 1,

where σ (t) = Tr{ρ(t)} is the reduced density operator which
involves tracing over reservoir variables, σαβ = 〈ψ̃α|σ |ψ̃β〉 are

the matrix elements of the density operator written in the basis
of dressed states (13) and (14),

σS
11 = w21

w12 + w21
, σ S

22 = w12

w12 + w21
(19)

are the steady-state populations of the dressed states (13)
and (14),

�11 = w12 + w21, �12 = �11

2
− Re(M11,22 + M22,11)

(20)

are the field-dependent decay rates for the dressed states (13)
and (14),

w12 = γ

4

(
1 − ϕn

2�n

)2

, w21 = γ

4

(
1 + ϕn

2�n

)2

(21)

are the probabilities of radiative transitions per unit time
between the dressed states (13) and (14),

Mα,α,β,β =
∫ ∞

0
dτ d̃αα(t − τ )d̃ββ(t)〈E(t)E(t − τ )〉, (22)

where 〈E(t)E(t − τ )〉 is the correlation function averaged
over the initial state of electromagnetic field, and γ is the
spontaneous emission rate. Substituting Eqs. (21) and (22) into
Eqs. (19) and (20), we arrive at the width of the transitions,

�11 = γ

2

(
1 + ϕ2

n

4�2
n

)
, �12 = γ

4

(
3 − ϕ2

n

4�2
n

)
, (23)

and the difference between the populations of dressed elec-
tronic states (13) and (14),

�S = σS
11 − σS

22 = 2w21/�11 − 1. (24)

Taking into account the aforesaid, the spectrum of resonance
fluorescence from the QD has the form [2]

S(ω) ∼ 1

π
Re

{∫ ∞

0
dτ 〈D(+)(t + τ )D(−)(t)〉e−iωτ

}
, (25)

where

D(±)(t) =
∑
α,β

σαβ(t)d (±)
αβ (t) (26)

is the positive(negative)-frequency part of the polarization
operator written in the basis of dressed states (13) and (14).
Applying the quantum regression theorem [2] and taking into
account Eqs. (16) and (17), we arrive at the correlation function
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of the polarization operator (26) in the steady-state regime for long time t and arbitrary time τ ,

〈D(+)(t + τ )D(−)(t)〉 = [
�2

S + (
1 − �2

S

)
e−�11τ

]〈d (+)
11 (t + τ )d (−)

11 (t)〉 + 1

2

[
(1 + �S)〈d (+)

12 (t + τ )d (−)
21 (t)〉

+ (1 − �S)〈d (+)
21 (t + τ )d (−)

12 (t)〉]e−�12τ , (27)

where

〈d (+)
11 (t + τ )d (−)

11 (t)〉 = d2
12

4

F 2
n

�2
n

〈	∗(t + τ )	(t)〉ei(ω0−ϕn)τ ≈ d2
12

4

F 2
n

�2
n

�(τ )e−iϕnτ ,

〈d (+)
12 (t + τ )d (−)

21 (t)〉 = d2
12

4

(
1 − ϕn

�n

)2

〈	∗(t + τ )	(t)〉ei(ω0−ϕn−2�n)τ ≈ d2
12

4

(
1 − ϕn

�n

)2

�(τ )e−i(ϕn+2�n)τ ,

〈d (+)
21 (t + τ )d (−)

12 (t)〉 = d2
12

4

(
1 + ϕn

�n

)2

〈	∗(t + τ )	(t)〉ei(ω0−ϕn+2�n)τ ≈ d2
12

4

(
1 + ϕn

�n

)2

�(τ )e−i(ϕn−2�n)τ ,

and �(τ ) = ∑
m J 2

m(ω̃/ω1)ei(ω0−mω1)τ . Substituting Eq. (27) into Eq. (25), the spectrum of resonance fluorescence, S(ω) =
S1(ω) + S2(ω), can be calculated as a sum of the two parts corresponding to the elastic and inelastic scattering of light [2], where
the elastic term reads

S1(ω) ∼ �2
S

π
Re

{∫ ∞

0
dτd

(+)
11 (t + τ )d (−)

11 (t)e−iωτ

}
=

[
�Sd12Fn

2�n

]2 ∑
m

J 2
m

(
ω̃

ω1

)
δ(ω − [n − m]ω1 − ω2), (28)

and the inelastic term is

S2(ω) ∼ d2
12

4π

{(
1 − �2

S

)(d12E2

2��n

)2

J 2
n

(
ω̃

ω1

)∑
m

J 2
m(ω̃/ω1)�11

[ω − (n − m)ω1 − ω2]2 + �2
11

+ 1

2

(
1 − ϕ2

n/4�2
n

)2(
1 + ϕ2

n/4�2
n

)
×

∑
m

J 2
m(ω̃/ω1)�12

[ω − (n − m)ω1 − ω2 + 2�n]2 + �2
12

+ 1

2

(
1 − ϕ2

n/4�2
n

)2(
1 + ϕ2

n/4�2
n

) ∑
m

J 2
m(ω̃/ω1)�12

[ω − (n − m)ω1 − ω2 − 2�n]2 + �2
12

}
. (29)

In what follows, we will focus on the inelastic term (29)
which is responsible for the spectral features of the resonance
fluorescence.

IV. DISCUSSION AND CONCLUSION

Let us consider the effect of the two key factors of the
considered system—the bichromatic structure of the dressing
field and the asymmetry of the QD—on the resonance fluo-
rescence. Mathematically, these two factors can be described
by the effective frequency (12) appearing in various terms of
Eq. (29). In order to explain it, we have to keep in mind that the
ground and excited states of the asymmetric QD, |1〉 and |2〉, do
not possess a certain spatial parity along the asymmetry axis z.
Therefore, the diagonal matrix elements of the dipole moment
operator in an asymmetric QD prove to be nonequivalent,
d22 
= d11. As a consequence, the difference of diagonal dipole
matrix elements, d22 − d11, describes the asymmetry of the
QD [29]. Since the effective frequency (12) is the product
of this difference and the first field amplitude, E1, it can be
considered as a quantitative measure of both the asymmetry of
the QD and the bichromatic nature of the dressing field (1). In
the following, we will discuss the dependence of the resonance
fluorescence on this effective frequency, ω̃ = (d22 − d11)E1/�.

The calculated spectra of resonance fluorescence (29) are
plotted in Figs. 2 and 3 for different effective frequencies ω̃

near the resonance (10) with n = 1. If the QD is symmetric
or the dressing field is monochromatic (ω̃ = 0), the terms

with m 
= 0 in Eq. (29) vanish since the Bessel functions of
the first kind, Jm(ω̃/ω1), satisfy the condition Jm(0) = δm0.
The nonzero terms with m = 0 correspond physically to the
well-known Mollow triplet in the fluorescence spectrum of a
two-level system driven by a monochromatic field [2], which
is plotted in Fig. 2(a). If the QD is asymmetric and the
dressing field is bichromatic (ω̃ 
= 0), the nonzero terms with
m 
= 0 in Eq. (29) result in the infinite set of Mollow triplets
which can be numerated by the index m = 0,±1,±2, . . . [see
Fig. 2(b) and Figs. 3(a)–3(c)]. It is shown in Figs. 2 and 3
that the bichromatic dressing field generates side Mollow
triplets (m 
= 0), shifts the main Mollow triplet (m = 0), and
change the amplitudes of the Mollow triplets. According
to Eq. (29), the amplitude of the mth Mollow triplet is
proportional to the squared Bessel function, J 2

m(ω̃/ω1). This
leads to the oscillating dependence of fluorescence peaks on
the irradiation intensity, I1 = ε0E

2
1c/4 [see Fig. 3(d)]. It should

be stressed that the zeros of the Bessel function, Jm(ω̃/ω1),
correspond physically to the zero amplitude of the mth Mollow
triplet. Thus, the dressing field can quench fluorescence peaks.
Particularly, the absence of the main Mollow triplet (m = 0)
in Fig. 3(c) is caused by the first zero of the Bessel function,
J0(ω̃/ω1).

Summarizing the aforesaid, we can conclude that the
exciting of asymmetric quantum systems by a bichromatic
field results in the following features of resonance fluorescence
spectra: an infinite set of Mollow triplets, the quench of
fluorescence peaks induced by the dressing field, and the
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FIG. 2. The spectra of resonance fluorescence from an asymmet-
ric quantum dot with the interlevel distance �ω0 = 1 meV, dipole
moments d22 − d11 = d12 = 40 D, and the decay rate γ = 10−10 s−1:
(a) in the presence of a monochromatic dressing field with the
amplitude E2 = 3 × 103 V/cm and the frequency ω2 = 0.86 ω0; (b)
in the presence of a bichromatic dressing field with the amplitudes
E1 = 1.3 × 103 V/cm, E2 = 3 × 103 V/cm and the frequencies
ω1 = 0.18 ω0, ω2 = 0.86 ω0. The indices m = 0,±1 indicate the
different Mollow triplets.

oscillating behavior of the fluorescence intensity as a function
of the dressing field amplitude. To explain the physics of
these effects, we have to stress that the considered bichromatic

field (1) consists of an off-resonant dressing field E1 (which
renormalizes electronic energy spectrum) and a near-resonant
field E2 (which induces electron transitions between the
two electronic levels). Although the dressing field E1 is off
resonant, it is very strong. Therefore, there are noticeable
multiphoton processes which can involve many photons of the
field. Particularly, electron transitions between the electronic
levels can be accompanied by absorption of both the near-
resonant photon �ω2 and many off-resonant photons n�ω1,
where n is the number of the photons. As a consequence,
there is an infinite set of resonances (10) corresponding to
the different numbers n = 0,1,2, . . .. Since each resonance
is accompanied by its own Mollow triplet, an infinite set of
Mollow triplets appears in the fluorescence spectrum. As to the
field-induced quench of fluorescence peaks and the oscillating
behavior of the fluorescence intensity as a function of the
dressing field amplitude, these effects arise from the Bessel-
function factors in Eq. (29). Physically, these factors describe
the nonlinear renormalization of electronic properties with the
strong dressing field E1. It should be noted that the appearance
of the Bessel functions in expressions describing dressed
electrons is a characteristic feature of various quantum systems
driven by a dressing field. Particularly, the similar Bessel-
function factors describe renormalized electronic properties
of dressed quantum wells [58,59] and graphene [60,61].

Since the considered quantum phenomena depend on
electronic parameters, the elaborated theory paves the way to
the nondestructive optical testing of various asymmetric struc-
tures. Applying the developed theory to experimental studies
of asymmetric QDs, one should take into account that phonons
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FIG. 3. The spectra of resonance fluorescence from an asymmetric quantum dot with the interlevel distance �ω0 = 1 meV, dipole moments
d22 − d11 = d12 = 40 D, and the decay rate γ = 10−10 s−1 in the presence of a bichromatic dressing field with the frequencies ω1 = 0.16 ω0

and ω2 = 0.85 ω0, the amplitude E2 = 2.2 × 103 V/cm, and different amplitudes E1: (a)–(c) structure of the Mollow triplets with the numbers
m = 0,±1,±2; (d) dependence of the central resonant peaks of the Mollow triplets with the numbers m = 0,±1 on the irradiation intensity
I1 = ε0E

2
1c/4.
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strongly affect optical transitions in semiconductor structures.
To avoid the phonon-induced destruction of the discussed fine
structure of the fluorescence spectra, measurements should
be performed at low temperatures T , satisfying the condition
T � �ε, where �ε = �|F1| is the characteristic field-induced
shift of electron energies (the dynamic Stark shift).
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