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Spatial soliton pairs of the vectorial Thirring model realized in a coherent atomic system via
electromagnetically induced transparency

Hui-jun Li and Kun Zhang
Institute of Nonlinear Physics and Department of Physics, Zhejiang Normal University, Jinhua, Zhejiang 321004, China

(Received 25 February 2016; revised manuscript received 5 December 2016; published 20 January 2017)

We propose a scheme to realize a (2+1)-dimensional vectorial Thirring model in a coherent atomic system via
electromagnetically induced transparency (EIT). We show that under EIT conditions the probe field envelopes
obey coupled nonlinear Schrödinger equations, which are reduced to a Thirring model when system parameters
are suitably chosen. We present spatial soliton-pair solutions exhibiting many interesting features, including
controllability (i.e., the soliton property of one component can be adjusted by the propagation constant of another
component in which the soliton remains unchanged), diversity (i.e., many different types of soliton-pair solutions
can be found, including bright-bright, dark-bright, dark-dark, darklike-dark, dark-dipole, darklike-multidark, and
high-dimensional bright-bright, dark-darklike soliton pairs), and stability. Furthermore, we demonstrate that the
stability of soliton pairs in the system can be strengthened by adjusting the propagation constant. Comparing
with previous studies, in addition to supporting much more stable (1+1)-dimensional and (2+1)-dimensional
spatial soliton-pair solutions, the present scheme needs only a single atomic species and hence is easy to realize
experimentally.
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I. INTRODUCTION

Spatial optical solitons are the special wave packets appear-
ing as a result of interplay between diffraction and nonlinearity.
Their study is of special interest due to their rich nonlinear
physics and important practical applications [1–5]. Generally,
spatial optical solitons are produced in passive optical media.
In order to avoid significant optical absorption, a very high light
intensity is used to obtain enough nonlinearity for balancing
the diffraction effect.

In recent years, much interest has focused on the highly
resonant media via electromagnetically induced transparency
(EIT) [6]. An EIT system possesses many striking features,
including the suppression of optical absorption [7], a large
reduction of group velocity [8], a giant enhancement of Kerr
nonlinearity with very low power light field [9], and many
adjustable parameters, such as the strength of the control
field, detuning, and atomic density. So, there has been much
research in theory and experiment, including ultraslow optical
transmission and storage [10,11], the phase gate [12], the
optical clock [13], efficient four-wave mixing [14], the bistable
state [15], and high-dimensional spatiotemporal optical soli-
tons [16]. In addition, due to the similarity between the light
field transmission equation and the quantum Schrödinger
equation, the EIT system is also used to simulate some
quantum systems [17], such as Anderson’s model [18,19], the
parity-time symmetrical model [20–23], and so on.

Despite extensive discussion of the giant cross-phase
modulation (XPM) and the related solitons in EIT media,
its study has been restricted mainly to the coupled nonlinear
Schrödinger equation (CNLSE) [24], such as for symbiotic
solitons [25] and fermionic bright solitons [26]. There is hardly
any discussion about the soliton pair that arises solely from the
balance between diffraction and XPM without the contribution
from self-phase modulation (SPM). Until recent years, holo-
graphic [27–29] and Thirring-type [30] solitons were proposed
in photorefractive and atomic media, respectively. But there
still exist self-interaction terms in the denominators of satura-
tion nonlinearity, so the Thirring model, which was proposed

for the first time by Thirring in quantum field theory [31], is
the only model in which there are no terms other than XPM
terms in the nonlinear terms. However, this model, which
was realized by using the two species of a coherent atomic
system, is asymmetrical, so there are some drawbacks, i.e.,
only (1+1)-dimensional bright-bright (BB) soliton pairs are
discussed.

In the present article, we suggest a six-level scheme [32] to
realize the Thirring model in a lifetime-broadened atomic gas
based on the mechanism of EIT. Different from the two-species
scheme [30], the scheme we suggest here is a single-species
scheme. And due to the asymmetry of the Thirring model [30],
the coefficients of XPM terms must be positive; however, in
our scheme, the sign and the size of nonlinear coefficients
can be adjusted by the energy level detuning, conveniently.
So, we can realize four kinds of Thirring models. In addition,
we also find some characteristics that are different from the
results of traditional CNLSE. First, in the Thirring soliton pair,
one soliton can be controlled by the propagation constant of
another equation satisfied by another soliton which will remain
unchanged; we call this phenomenon response interchange
(RI). So, the soliton pairs may be used as the optical switch.
Second, we not only find the BB, dark-bright (DB), dark-dark
(DD), darklike-dark (DLD, composed of the darklike soliton
and dark soliton), dark-darklike (DDL, composed of two
darklike solitons), and dark-dipole soliton pairs in the different
Thirring models, but we also obtain DB, DD, DLD, dark-
dipole, and darklike-multidark (DLMD) soliton pairs in the
same model in which the nonlinear coefficients have opposite
signs. Finally, though the two-dimensional (2D) soliton pairs
are unstable due to the inherent instability, the stable 2D
BB and DDL soliton pairs are obtained by controlling the
propagation constant. Compared with the scheme proposed
by Segev’s group [30], the advantages of our scheme are as
follows:

(1) In the case of using the same (or less) laser
fields, this model can be achieved by a single species of
atom.
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(2) Due to utilizing two polarization components of the
probe field, their propagation equations are completely sym-
metrical, so there exist DD soliton pairs.

(3) Owing to the tunable coefficients of XPM terms, there
are more multiform soliton pairs.

(4) Moreover, this model is a vectorial Thirring model.
The rest of the article is arranged as follows. Section II

describes the model under study. Section III derives the
Thirring model using the multiple-scales method. Section IV
investigates various soliton pairs and their stability. The final
section (Sec. V) contains a discussion and summary of the
main results of our work.

II. MODEL

The model under consideration is 87Rb atomic gas
(see Fig. 1). A linearly polarized (LP) pulsed probe field
with center frequency ωp (half Rabi frequency �p1 for
right-circularly polarized field σ− and �p2 for left-circularly
polarized field σ+), which can be transformed into two beams
of circularly polarized fields as shown in Fig. 1(b), two strong
LP control fields with frequencies ωc1 (half Rabi frequency
�c1) and ωc2 (half Rabi frequency �c2), respectively, form a
six-state system as shown in Fig. 1(a). The electric fields can
be written as E = [ep+Ep+ + ep−Ep−] exp [i(kpz − ωpt)] +
ecnEcn exp [i(−kcnz − ωcnt)] + c.c. (n = 1,2), where el

and kl(El) are respectively the polarization unit vector
in the lth direction and the wave number (envelope)
of the lth field. The one-half Rabi frequencies of the
probe and the control field are �p1 = (ep− · p03(25))Ep−/�,
�p2 = (ep+ · p04(15))Ep+/�, �c1 = (ec1 · p13)Ec1/�, and
�c2 = (ec2 · p24)Ec2/�, where pij is the electric dipole matrix
element associated with the transition from |i〉 to |j 〉. Then
the Hamiltonian in the interaction picture reads Ĥint =
−�

∑5
j=1 �j |j 〉〈j | − �(�p1|3〉〈0| + �p1|5〉〈2|+�p2|4〉〈0| +

�p2|5〉〈1| + �c1|3〉〈1| + �c2|4〉〈2| + H.c.), where �3,4 =
ωp − (ω3,4 − ω0), �1,2 = ωp − ωc − (ω1,2 − ω0), and
�5 = 2ωp − ωc − (ω5 − ω0) are the one-, two-, and
three-photon detunings, respectively.

Under the rotating-wave approximation, the evolution
equations for atomic amplitude Aj (j = 1–5) can be written
as

(
i

∂

∂t
+ d1

)
A1 + �∗

c1A3 + �∗
p2A5 = 0, (1a)

(
i

∂

∂t
+ d2

)
A2 + �∗

c2A4 + �∗
p1A5 = 0, (1b)

(
i

∂

∂t
+ d3

)
A3 + �c1A1 + �p1A0 = 0, (1c)

(
i

∂

∂t
+ d4

)
A4 + �c2A2 + �p2A0 = 0, (1d)

(
i

∂

∂t
+ d5

)
A5 + �p2A1 + �p1A2 = 0, (1e)

with
∑5

i=0 |Ai |2 = 1, where dj = �j + iγj and γj (j = 1–5)
is the decay rate of the state |j 〉.

Under a slowly varying envelope approximation, the
Maxwell equation of the probe field is reduced to

i

(
∂

∂z
+ 1

c

∂

∂t

)
�p1 + c

2ωp

(
∂2

∂x2
+ ∂2

∂y2

)
�p1

+ κ03A3A
∗
0 + κ25A5A

∗
2 = 0, (2a)

i

(
∂

∂z
+ 1

c

∂

∂t

)
�p2 + c

2ωp

(
∂2

∂x2
+ ∂2

∂y2

)
�p2

+ κ04A4A
∗
0 + κ15A5A

∗
1 = 0, (2b)

with κ04,15 = Nωp|ep+ · p04,15|2/(2ε0�c), κ03,25 = Nωp|ep− ·
p03,25|2/(2ε0�c), where N is the atomic concentration. In the
following, we assume that the time duration of the probe
field is large enough so that the time dependence of the Rabi
frequencies �p1 and �p2 can be neglected (i.e., continuous
approximation).

FIG. 1. (a) Excitation scheme of the lifetime broadened six-state atomic system interacting with a strong, continuous-wave control field
with the half Rabi frequency �cn, and a weak, linear polarized pulsed probe field with the half Rabi frequency �pn (n = 1,2). (b) Possible
experimental arrangement of the laser fields, where ωp and ωc1,c2 are the linearly polarized (LP) pulsed probe field and LP cw control fields,
respectively. There is a 45◦ angle between the polarization direction of the LP pulse and the principle axis of the quarter-wave plate (QWP).
BS and HWP are a 50:50 beam splitter and a half-wave plate, respectively. And σ+ (σ−) denotes the left (right)-circularly polarized laser field.
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III. ASYMPTOTIC EXPANSION
AND THE THIRRING MODEL

To solve the Maxwell Schrödinger equations (1) and (2),
one employs the standard method of multiple scales. We
assume that the atomic population whose loss is characterized
by a small parameter ε is in the ground state |0〉 initially.
The asymptotic expansions for the atomic amplitudes and
probe field envelopes are Al = ∑∞

j=0 εjA
(j )
l (l = 0–5) and

�pn = ∑∞
j=1 εj�

(j )
pn (n = 1,2). And the multiscale variables

zl = εlz (l = 0,2), x1 = εx, and y1 = εy are introduced
to avoid divergence. Substituting these expansions and the
multiscale variables into Eqs. (1) and (2), we obtain a series
of equations for A

(j )
l and �

(j )
pn (l = 0–5, n = 1,2), as shown in

the Appendix.
At ε order, we obtain

�(1)
pn = Fn exp(iknz0), n = 1,2, (3)

with k1,2 = κ03,04d1,2/D1,2 = β ′
1,2 + iα1,2, D1,2 = |�c1,c2|2 −

d1,2d3,4, and Fn are the envelope functions depending on slow
variables z2, x1, and y1.

At ε3 order, using the solvability conditions for �(3)
pn, we

obtain the (2+1)-dimensional CNLSE:

i
∂Fn

∂z2
+ c

2ωp

(
∂2

∂x2
1

+ ∂2

∂y2
1

)
Fn − (Wn1|F1|2+Wn2|F2|2)Fn = 0,

(4)

with Wnn = knGn exp(−2α′
nz2), Gn = (|�cn|2+|dn|2)/|Dn|2,

α′
n = ε2αn, and W12,21 = [k1,2G2,1 + (κ25,15�c2,c1/D

∗
2,1 +

κ03,04�c1,c2/D1,2)(�∗
c1/D1 + �∗

c2/D2)/d5] exp(−2α′
1,2z2).

At ε2 and ε3 orders, we have taken �(2)
pn = �(3)

pn = 0.
Considering the asymptotic expansions, we know �p =
εF exp (iknz0).

After returning to the original variables, the (2+1)-
dimensional CNLSE (4) takes the dimensionless form

i
∂u1

∂s
+ ∇2

⊥u1 + σ11|u1|2u1 + σ12|u2|2u1 = 0, (5a)

i
∂u2

∂s
+ ∇2

⊥u2 + σ21|u1|2u2 + σ22|u2|2u2 = 0, (5b)

where ∇2
⊥ = ∂2

∂ξ 2 + ∂2

∂η2 , s = z/Ldiff , ξ = x/Rx , η = y/Ry ,
un = �pn exp (−iknz)/U0, and σmn = −Wmn/|W12| (m,n =
1,2), with Ldiff = 2ωpR2

x/c as the typical diffraction length,
and we have taken the typical nonlinear length LNL = Ldiff =
1/|W12U

2
0 |, with U0 = √

c/(2ωpR2
x |W12|) as the typical Rabi

frequency of the probe field. Here, if Rx = Ry , this model is
(2+1) dimensional; if Rx 
 Ry , the y-directional diffraction
∂2/∂η2 can be neglected, so CNLSE (5) is reduced to being
(1+1) dimensional.

For a practical example, we select the D1 line transition
52S1/2 → 52P1/2 and D2 line transition 52S1/2 → 52P3/2 of
87Rb atoms, respectively.

We now make some remarks about how to design the
Thirring model. In the first case, we construct the Thirring
model in which the signs of XPM terms are the same by
considering the D1 line transition. The levels of the system

are taken as |0〉 = |5S1/2,F = 1,mF = 0〉, |1〉 = |5S1/2,F =
1,mF = −1〉, |2〉 = |5S1/2,F = 1,mF = 1〉, |3〉 = |5P1/2,

F = 1,mF = −1〉, |4〉 = |5P1/2,F = 1,mF = 1〉, and |5〉 =
|5P1/2,F = 1,mF = 0〉. The parameters are γ0 = �0 =
0, 2γ1 = 2γ2 = 300 s−1, 2γ3 = 2γ4 = 2γ5 = 3.6 × 107 s−1,
ωp = 2.37 × 1015 s−1, and Rx = 2.52 × 10−3 cm [33].

According to the formulas below Eq. (4), if knGm (n,m =
1,2) are small enough, then only XPM terms remain. Now, we
make some reasonable assumptions and approximations:

(1) Use one beam of the control field; that is,
�c1=�c2=�c.

(2) Consider the quantum interference conditions of EIT
|�c|2 � |d1,2d3,4|, and take |�c|2 � |dn|2, |�c|2 � |dnd5|,
which ensures that SPM terms are far less than XPM terms.
And the size and the sign of the XPM terms can be controlled
by the detuning �5.

(3) In the cases of κ03 = κ25 = κ1 and κ04 = κ15 = κ2,
Wnn 
 W12,21 ≈ 4κ1,2/(d5|�c|2); that is, σnn 
 σ12,21, and
σ12,21 can be adjusted by κ1,2.

We take �c = 6.0 × 107 s−1, κ2/c0 = κ1 = 1.0 × 1011

cm−1 s−1, �1 = �2 = −3.0 × 104 s−1, �3 = �4 = 3.0 ×
108 s−1, and �5 = ∓1.5 × 109 s−1, in which c0 is a free pa-
rameter that can be adjusted by the polarization direction of the
electric dipole transition matrix elements. Substituting these
parameters into the coefficient expressions of CNLSE (5),
we can obtain the typical diffraction length Ldiff = 1.0 cm,
the typical Rabi frequency U0 = 3.67 × 106 s−1, and the
absorption coefficient α1 = α2/c0 = 0.004 cm−1, and these
coefficients of the SPM and XPM terms are

σ11 = σ22/c0 = (3.1 − 0.015i) × 10−3, (6a)

σ12 = σ21/c0 = ±1.0 + 0.01i. (6b)

In the second case, we construct the Thirring
model in which the signs of the XPM terms are
arbitrary using the D2 line transition. The levels of the
system are taken as |0〉 = |5S1/2,F = 2,mF = 0〉, |1〉 =
|5S1/2,F = 2,mF = −1〉, |2〉 = |5S1/2,F = 2,mF = 1〉,
|3〉 = |5P3/2,F = 1,mF = −1〉, |4〉 = |5P3/2,F = 3,mF =
1〉, and |5〉 = |5P3/2,F = 2,mF = 0〉. The parameters
are γ0 = �0 = 0, 2γ1 = 2γ2 = 300 s−1, 2γ3 = 2γ4 = 2γ5 =
3.8 × 107 s−1, ωp = 2.41 × 1015 s−1, and Rx=2.52×10−3 cm
[33].

Through these formulas following Eq. (4), if κ25,15 

κ03,04, |�c1,c2|2 
 |d1,3|2, and |�c2|2 � |d2d4|, then W11,22,
the second term of W12, and the first term of W21 are
all small, so we obtain W12 ≈ − κ03

d3|�c2|2 , W21 ≈ κ04
d5|�c2|2 .

Therefore, the Thirring model can be realized by choosing
suitable parameters, and the nonlinear signs can be con-
trolled by the signs of the detunings �3,5 independently.
The concrete parameters are �c1 = 5�c2 = 6.0 × 107 s−1,
κ04/c0 = 5.1κ03 = 25.5κ15,25 = 2.55 × 109 cm−1 s−1, �1 =
�4 = 3.0 × 108 s−1, �2 = 0, and �5 = ±5�3 = ∓2.0 ×
109 s−1, in which c0 is a free parameter. Substituting all these
parameters into the coefficient expressions of CNLSE (5), we
can obtain the typical diffraction length Ldiff = 1.0 cm, the
typical Rabi frequency U0 = 9 × 106 s−1, and the absorption
coefficient α1 = 15α2/c0 = 0.06 cm−1; these coefficients of
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SPM and XPM terms are

σ11 = (±6.0 − 0.3i) × 10−4,

σ22/c0 = (0.001 − 3.0i) × 10−3, (7a)

σ12 = ±1.0 − 0.04i,

σ21/c0 = ±1.0 + 0.01i, (7b)

when �5 = −5�3 = ∓2.0 × 109s−1, and

σ11 = (±6.0 − 0.3i) × 10−4,

σ22/c0 = (0.001 − 3.0i) × 10−3, (8a)

σ12 = ±1.0 − 0.04i,

σ21/c0 = ∓1.0 + 0.01i, (8b)

when �5 = 5�3 = ±2.0 × 109s−1.
According to these results, σ11,22, α1,2, and the imaginary

parts of σ12,21 can be neglected. Therefore, Eq. (5) can be
written as

i
∂u1

∂s
+ ∇2

⊥u1 + σ1|u2|2u1 = 0, (9a)

i
∂u2

∂s
+ ∇2

⊥u2 + σ2c0|u1|2u2 = 0, (9b)

where the size and sign of σ1,2 (σ1,2 = σ12,21) can be controlled
by �3,5. Equation (9) is the (2+1)-dimensional Thirring
model.

We successfully construct the Thirring model by using the
coherent atomic medium with EIT effect. And in light of
Eqs. (6)–(8), we can design four kinds of Thirring models. In
this scheme, the model can be realized only by two (or three)
beams of laser fields and single species of atoms. In Ref. [30],

if the coupled equations are completely symmetric, SPM terms
cannot be ignored. But in our system, even if Eq. (9) satisfied
by two polarized components of the probe field is completely
symmetric, SPM terms are still ignored safely. Furthermore,
the size of the SPM terms can be adjusted by the detuning �1,2

conveniently, so we can also construct the Manakov model in
our system.

IV. THE SOLITON-PAIR SOLUTIONS
OF THE THIRRING MODEL

In this part, we discuss the soliton-pair solutions of Eq. (9)
and their stability. We suppose un = ψn(ξ,η)e−iβns (n = 1,2),
where βn are the propagation constants. Then Eq. (9) becomes
the coupled steady-state equations

β1ψ1 + ∇2
⊥ψ1 + σ1|ψ2|2ψ1 = 0, (10a)

β2ψ2 + ∇2
⊥ψ2 + σ2c0|ψ1|2ψ2 = 0. (10b)

By using the Newton conjugate gradient method, the pro-
files and power Pn = ∫ +∞

−∞ |ψn|2 dξ dη or the renormalized

power Pn − P 0
n = | ∫ +∞

−∞ (|ψn|2 − |ψ0
n |2) dξ dη| (mainly for

the soliton with background) of the soliton-pair solutions are
obtained in the following sections; here ψ0

n is the amplitude
of the background. Once the soliton-pair solutions ψn are
obtained, one can analyze their linear stability by considering
a perturbation to them, i.e.,

un = {ψn + ε′[wn(ξ,η)e−λs

+ v∗
n(ξ,η)e−λ∗s]}e−iβns (n = 1,2), (11)

where wn and vn are the normal modes, and λ is the correspond-
ing eigenvalue of the perturbation. Substituting Eq. (11) into
Eq. (9), one obtains the following linear eigenvalue problem:

⎛
⎜⎜⎜⎝

L1 0 σ1ψ1ψ
∗
2 σ1ψ1ψ2

0 −L1 −σ1ψ
∗
1 ψ∗

2 −σ1ψ
∗
1 ψ2

c0σ2ψ2ψ
∗
1 c0σ2ψ2ψ1 L2 0

−c0σ2ψ
∗
1 ψ∗

2 −c0σ2ψ
∗
2 ψ1 0 −L2

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

w1

v1

w2

v2

⎞
⎟⎟⎟⎠ = iλ

⎛
⎜⎜⎜⎝

w1

v1

w2

v2

⎞
⎟⎟⎟⎠, (12)

with Ln = βn + ∇2
⊥ + c0nσn|ψ3−n|2 (n = 1,2), c01 = 1, and

c02 = c0, which can be solved numerically by using the Fourier
collocation method [34]. The soliton-pair solutions ψn are
stable if the real parts of all the eigenvalues are positive or
zero. We also prove their stability by the split-step Fourier
propagation method.

A. The soliton-pair solutions for the (1+1)-dimensional
Thirring model with σ1 = σ2 = 1

We now present the soliton-pair solutions of Eq. (10) with
σ1 = σ2 = 1 and check their stability by using the numerical
simulations. First, we show BB soliton-pair solutions of
Eq. (10). Figure 2(a) shows the power curves which are
the function of the propagation constant β1 with c0 = 1 and
β2 = −0.49. From Fig. 2(a), we find that when β1 remains
unchanged, the power of ψ1 is close to constant with the

propagation constant β1 in most regions; however, the power
of ψ2 decreases gradually. This property can also be found by
the profiles of |ψ1,2| in Figs. 2(b) and 2(c), in which the profiles
of ψ1 change a little, but the profiles of ψ2 significantly change
with β1. Compared with the Manakov system (or CNLSE), in
which the power and profiles will change with the propagation
constant itself, the power and profile depend on the propagation
constant of its cooperative partner in the Thirring model, which
is called the RI phenomenon. This result can be used to design
the optical switch. However, the RI phenomenon only exists
in a part of the β1 region, rather than the whole range as shown
in Fig. 2(a). The reason for the RI phenomenon is that when
one changes β1 but β2 remains unchanged as shown by the
small circles in Fig. 2(a), this term σ1|ψ2|2 + β1 in Eq. (10a)
can be regarded as an external potential, and the increasing
of β1 can be balanced by the decreasing peak value of ψ2

for the remaining unchanged external potential, which ensures

013829-4



SPATIAL SOLITON PAIRS OF THE VECTORIAL . . . PHYSICAL REVIEW A 95, 013829 (2017)

−0.4 −0.2 −0.01
0

7

14
(a)

β2 = −0.49

β1

P
n

P1
P2

−15 0 15
0

1

(b)

ξ

|ψ
1
|

β1 = −0.40
β1 = −0.20
β1 = −0.10

−15 0 15
0

1

(c)

ξ

|ψ
2
|

β1 = −0.40
β1 = −0.20
β1 = −0.10

−0.4 −0.2 −0.01
0

5

10

x 10−5
(d)

β1

−
R

e(
λ)

−15 0 15
0

1
(f)

ξ

|u
1
|

s = 100
s = 100

−15015
0

1

ξ

|u
2
|

s = 100
s = 100

(e) β1 = −0.2, β2 = −0.49

ξ

s u1

−15 0 15

50

100

ξ

u2

−15015
0
0.2
0.4
0.6
0.8

FIG. 2. (a) Power curves of BB soliton pairs with propagation constant β1 (β2 = −0.49). (b), (c) Profiles of BB soliton pairs with different
propagation constant β1, with corresponding parameters denoted by the small circles of (a), respectively. (d) Perturbation growth rate −Re(λ)
with propagation constant β1. (e) Propagations of BB soliton pair in the presence of the random perturbation by simulating Eq. (9) with the
complex coefficients (6), with parameters denoted by the small circle of (d). (f) The comparison between the propagation results denoted by
dot-dashed lines and the results of Eq. (13) denoted by solid lines. Here, σ1 = σ2 = c0 = 1.
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FIG. 3. (a) Power curves of DD soliton pairs with the propagation constant β = β1,2 by taking c0 = 0.4, 1, 1.8. (b) Power curves of DD
soliton pairs with the nonlinear coefficients σ = σ1,2 by taking the different propagation constants β; here c0 = 0.4. (c) Perturbation growth
rate −Re(λ) with the nonlinear coefficient σ by taking different propagation constant β. (d)–(f) Profiles of DD soliton pairs with different
propagation constants which have been marked by the small circles in (b) and (c). (g)–(i) Propagations of DD soliton pairs shown in (d)–(f) in
the presence of the random perturbation by simulating Eq. (9) with the complex coefficients (6).
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FIG. 4. (a) Power curves of DB soliton pairs with propagation constant β1 (β2 = 0.2) and (b), (c) for the profiles of DB soliton pairs with
different β1. (d) Perturbation growth rate −Re(λ) with the propagation constant β1. (e)–(g) Propagations of DB soliton pairs. (h)–(l) Analogous
results as shown in (a)–(g) with β1 = 0. Here, σ1 = −σ2 = c0 = 1.

the profile of ψ1 is invariant in Eq. (10a). But with β1 further
increasing, we not only need to consider the contribution by
the peak value of ψ2, but also must take care of the profile
of ψ2 which will induce the change of the diffraction term
∂2ψ1/∂ξ 2, so the profile of ψ1 will change, which will result
in the RI phenomenon being broken.

The stability of BB soliton pairs is checked by solving
the eigenvalue problem (12). The eigenvalues are shown in
Fig. 2(d). From the results, these soliton pairs are all stable.
Furthermore, we make a numerical propagation on Eq. (9)
with the complex coefficients (6) [these results are shown in
Figs. 2(b) and 2(c) as the initial conditions] and, adding the
random perturbations into them, i.e., we take un(s = 0,ξ ) =
ψn(1 + εf ), here ε = 0.1, f is a random variable uniformly
distributed in the interval [0, 1]. The evolution results are
shown in Fig. 2(e), in which the peak values of the soliton pair
decrease with the increasing propagation distance. The reason

for the decaying amplitude is that there exist these imaginary
parts in Eq. (9). By a rough approximation calculation, we
obtain

u1(s,ξ ) ≈ u1(s = 0,ξ ) exp [iσ1 max(|u2(s = 0,ξ )|2)s],

(13a)

u2(s,ξ ) ≈ u2(s = 0,ξ ) exp [iσ2c0 max(|u1(s = 0,ξ )|2)s].

(13b)

The comparison between the propagation result denoted by the
dot-dashed lines and the approximation solution (13) denoted
by the solid lines are shown in Fig. 2(f), from which we know
the decay is caused mainly by the imaginary parts of Eq. (9).
Though the attenuation of the amplitude is inevitable, the
profile still remains after propagating for tens of centimeters.
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FIG. 5. (a) Power curves of DD soliton pairs with propagation constant β1 (β2 = 0.1) and (b), (c) for the profiles of DD soliton pairs with
different β1. (d) Perturbation growth rate −Re(λ) with the propagation constant β1. (e)–(g) Propagations of DD soliton pairs marked by the
circle in (a) and (d) with β2 = 0.1. (h)–(l) Analogous results as shown in (a)–(g) with β1 = 0. Here, σ1 = −σ2 = c0 = 1.

B. The soliton-pair solutions for the (1+1)-dimensional
Thirring model with σ1 = σ2 = −1

In this section, we find the soliton pair solutions of Eq. (10)
with σ1 = σ2 = −1. Though there is no report about the

solution for this kind of Thirring model, according to the ex-
perience about CNLSE, there exist DD soliton-pair solutions.

In Figs. 3(a) and 3(b), one shows the power curves of DD
soliton pairs with the propagation constant β1,2 = β by taking
c0 = 0.4, 1, 1.8 and the nonlinear coefficients σ1,2 = σ with
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FIG. 6. (a) Power curves of DLD soliton pairs with propagation constant β2 (β1 = −0.2) and (b), (c) for the profiles of DLD soliton pairs
with different β2. (d) Perturbation growth rate −Re(λ) with the propagation constant β2. Here, σ1 = −σ2 = c0 = 1.
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FIG. 7. (a) Power curves of DLMD soliton pairs with propagation constant β1 (β2 = 0.1). (b) Perturbation growth rate −Re(λ) with the
propagation constant β1. (c)–(f) The profiles for DLMD soliton pairs marked by the circle in (a) and (b) with the same β1 and β2. (g)–(j)
Evolution results of DLMD soliton pairs in (c)–(f). Here, σ1 = −σ2 = c0 = 1.

different propagation constant, respectively. In these figures,
the results that the power of ψ1 changes with c0 at the same time
that one of ψ2 remains unchanged are quite counterintuitive
and are also another evidence of RI. And we also find that the
power is affected by the propagation constant and nonlinear
coefficients in Fig. 3(b). But from Fig. 3(c), the stability of DD
soliton pairs is not affected by nonlinear coefficients; it is only
affected by the propagation constant. The smaller the propa-
gation constant is, the more stable the soliton pairs become.

From the amplitudes ψ1,2 in the insets of Figs. 3(d)–3(f),
all dark solitons of soliton pairs are odd dark solitons which
have an abrupt phase shift of π at their centers and are the
antisymmetric function of space [35]. Taking the profiles in
Figs. 3(d)–3(f) as the initial conditions, the corresponding
propagation results are shown in Figs. 3(g)–3(i), respectively.
Here, we have added the perturbation and considered the imag-
inary parts as the processing in Fig. 2(e). These propagation
results further prove that DD soliton pairs become stable with
decreasing propagation constant.

C. The soliton-pair solutions for the (1+1)-dimensional
Thirring model with σ1 = −σ2 = 1

From the knowledge about the nonlinear Schrödinger
equation (NLSE) or CNLSE, we know there are bright-dark

soliton-pair solutions in the case of σ1 = −σ2 = c0 = 1, but
we only find the DB soliton-pair solutions for Eq. (10) as
shown in Fig. 4. The reason is that one field feels the nonlinear
trapping potential induced by another field, so the self-focusing
or self-defocusing nonlinear effect in one equation will be
identified by the nonlinear property in the equation of its
cooperative partner. From Fig. 4(a), the power curves are
shown. In Figs. 4(b) and 4(c), with the changing of β1, the
profiles of the DB soliton pairs are displayed. But the bright
soliton is not the ground soliton when β1 �= 0; there is a
uniform background. The background height of the bright
soliton ψ2 will decrease with the increasing of β1, until
ψ2 becomes a ground soliton. We also analyze the stability
of the DB soliton pair by numerical simulation. From the
results of linear stability analysis in Fig. 4(d) and propagations
in Figs. 4(e)–4(g), we find that the less |β1| becomes, the
more stable the DB soliton pairs are. So, there are the stable
soliton-pair solutions. The soliton pair for β1 = 0 is unstable
from Fig. 4(d), but it can steadily propagate for some distance
as shown in Fig. 4(g) [about 100 cm, which far exceeds the
size of our system (about several centimeters)]. In the case of
β1 = 0, the power curves in Fig. 4(h) and the stability curves
in Fig. 4(i) with the propagation constant β2 are shown. We
find the bright soliton components of DB soliton pairs will
degenerate into the ground soliton as shown in Fig. 4(j), and
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FIG. 8. (a) Power curves of BB soliton pairs with propagation constant β1 (β2 = −0.002). (b) Perturbation growth rate −Re(λ) with the
propagation constant β1. (a1)–(a4) The profiles and evolutions of BB soliton pairs with β1 = −0.4. (b1)–(b4) The profiles and evolutions of
BB soliton pairs with β1 = −0.01. All these insets show the profiles by taking η = 0. The dashed lines in the insets denote the propagation
results without considering the imaginary parts of Eq. (9). Here, σ1 = σ2 = c0 = 1.

they will become more stable by the linear stability analysis
result in Fig. 4(i) and the propagating results in Figs. 4(k)
and 4(l).

Are there other solutions for Eq. (10) with σ1 = −σ2 = 1?
By further numerical calculation, we find many soliton pairs.

In Fig. 5, we find DD and dark-dipole soliton-pair solutions.
Through the power curves in Fig. 5(a), the RI property becomes
more apparent. From the profiles in Figs. 5(b) and 5(c), with
the increasing of β1, the background height of ψ2 decreases
and that of ψ1 almost remains unchanged, and the soliton pairs
tend to be stable as shown in Figs. 5(d)–5(g).

In the case of β1 = 0, we also present the power curves in
Fig. 5(h) and stability curves in Fig. 5(i). From the profiles fig-
ures, we find the DD soliton pairs will degenerate into the dark-
dipole soliton pair as shown in Figs. 5(j) and 5(k), and from
Figs. 5(i) and 5(l), all these dark-dipole soliton pairs are stable;
even the imaginary parts of nonlinear coefficients appear.
These results tell us that DD soliton pairs can transform into
dark-dipole soliton pairs by adjusting the propagation constant.

We also discover another type of soliton pair composed
by a darklike soliton and a dark soliton (called DLD soliton
pair) for Eq. (10) in Fig. 6. In Fig. 6(a), the power curves are
shown. Compared with the dark solitons shown in Figs. 3–5,
the profiles of ψ1 are not the odd (or kink-type) dark solitons
because there is no phase jump in its center but rather it is an
even darklike soliton as shown in Fig. 6(b), in which we also
find the intensity at the center decreases with the decreasing of
β2 until zero. Of course, the profiles of ψ2 are still the kink-type
dark soliton as shown in Fig. 6(c). The kink-type dark soliton is
also called a black soliton [36]. This kind of DLD soliton pair

is unstable from Fig. 6(d). For finding the stable soliton pairs,
we further decrease the propagation constants |β1| and β2.

Reducing β2 to 0.0003, we obtain the soliton pairs which
comprise the odd dark soliton and even darklike soliton in
Fig. 7. In Fig. 7(a), the power curves of DLD and DLMD
soliton pairs are shown, and we find the RI property still
remains. From Fig. 7(b), these soliton pairs are all stable. The
profiles for the darklike-single-dark soliton pair in Fig. 7(c),
for the darklike-ternary-dark soliton pair in Fig. 7(d), for the
darklike-quinary-dark soliton pair in Fig. 7(e), and for the
darklike-septenary-dark soliton pair in Fig. 7(f) are obtained.
There are one, three, five, and seven dips in the profile of |ψ2|,
respectively. Furthermore, the numerical propagation shown
in Figs. 7(g)–7(j) is addressed, and we prove that all these
DLMD soliton pairs are stable again. The reason is that ψ1

provides a trapping potential for ψ2.

D. The soliton-pair solutions for the (2+1)-dimensional
Thirring model

It is well known that the solitons of the high-dimensional
NLSE are generally unstable. Is there any chance to obtain
high-dimensional soliton pairs with longer lifetime in the
Thirring model? There has been no report on the study of
high-dimensional spatial optical soliton pairs in the Thirring
model except for the remark that the 2D Thirring BB soliton
pairs suffer from a weak instability [30].

We find BB soliton pair solutions for the (2+1)-dimensional
Thirring model (10) with σ1 = c0 = σ2 = 1 in Fig. 8. From
the power curves and stability curves, the stability will be
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FIG. 9. (a) The existence domain of four types of DDL soliton pairs in the space of propagation constants β1 and β2. (b) Power curves
of DDL soliton pairs with propagation constant β2 (β1 = −0.1). (b) Perturbation growth rate −Re(λ) with the propagation constant β2.
(a1)–(a4), (b1)–(b4), (c1)–(c4), and (d1)–(d4) show the profiles and evolution results of four kinds of DDL soliton pairs, respectively. Here,
σ1 = −σ2 = c0 = 1.

strengthened with the increasing of β1 when β2 = −0.002.
After propagating s = 60 with a small randomness in the
initial profiles un (n = 1, 2) and the small imaginary parts
in the nonlinear coefficients of Eq. (9), the soliton pairs will
broaden in the transverse direction when β1 = −0.4, as shown
in Figs. 8(a3) and 8(a4). However, when β1 = −0.01, the
effect of the small imaginary part disappears, and the profiles
and amplitudes of the BB soliton pair remain unchanged after
propagating 60 cm as shown in Figs. 8(b3) and 8(b4). Though
the −Re(λ) is not equal to zero, we think the stability is enough
to experimentally realize and observe.

To seek out the more stable high-dimensional soliton-pair
solutions for the (2+1)-dimensional Thirring model (10),
we choose σ1 = −σ2 = c0 = 1. With the changing of the
propagation constants β1,2, there are different types of soliton
pairs composed by two darklike solitons. To show the detail
of the soliton existence intervals, the phase diagram of soliton
types is shown in Fig. 9(a). Here, we define the existence
ranges of four kinds of DDL soliton pairs which comprise
the different types of darklike solitons. Then the power
curves in Fig. 9(b) and stability curves in Fig. 9(c) are
shown. Through the stability curves and propagating results in
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FIG. 10. (a) Power curves of DDL soliton pairs with propagation constant β1 (β2 = 0.002). (b) Perturbation growth rate −Re(λ) with
the propagation constant β1. (a1)–(a4), (b1)–(b4), and (c1)–(c4) show the profiles and evolution results of DDL soliton pairs with different
propagation constant β1, respectively. Here, σ1 = −σ2 = c0 = 1.

Figs. 9(a3), 9(a4), 9(b3), 9(b4), 9(c3), 9(c4), 9(d3), and 9(d4),
all these soliton pairs are unstable. But such soliton pairs as
shown in Figs. 9(a1), 9(a2), 9(b1), 9(b2), 9(c1), 9(c2), 9(d1),
and 9(d2) are also worth reporting.

To stabilize these DDL soliton pairs, we reduce β2 to
0.002, and the power curves with the RI characteristic are
shown in Fig. 10(a). In Fig. 10(b), we know that the stability
will be strengthened with the increasing of β1. In this case,
there is only one kind of DDL soliton pair as shown in
Figs. 10(a1), 10(a2), 10(b1), 10(b2), 10(c1), and 10(c2). To
further prove the stability of the soliton pair, we make the
numerical propagation as above. By these propagation results
in Figs. 10(a3), 10(a4), 10(b3), 10(b4), 10(c3), and 10(c4),
the soliton pairs for β1 = −0.01 remain unchanged after
propagating 60 cm. We think the stability is enough to
experimentally realize and observe such a 2D DDL soliton
pair for the Thirring model (10).

Compared with the unstable high-dimensional soliton in
the NLSE or CNLSE, the reason for the high-dimensional

Thirring-type BB and DDL soliton pairs being stable is that
each soliton can provide an effective trapping potential for
its cooperative partner; in particular, the darklike soliton
trapped by this type of “even” darklike soliton in Fig. 9(a1) or
Figs. 10(a1), 10(b1), and 10(c1) is more stable.

V. CONCLUSION AND SUMMARY

In this article, we have constructed a (2+1)-dimensional
vectorial Thirring model satisfied by two polarized
components of a probe field via EIT. The system we consider is
a cold, resonant atomic gas having a six-level configuration and
interacting with the probe and control fields. In this scheme,
we only need one species of atom and two (or three) beams
of laser fields. The constructed Thirring model is completely
symmetric and has tunable nonlinear coefficients; that is, we
can design four kinds of Thirring models. Based on these mod-
els, we have also discussed their soliton-pair solutions and their
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stability. The nonlinear potentials are provided by XPM terms,
so there are many distinctive properties. We not only discover
the RI property of soliton pairs for the Thirring model which
can be used to design all optical switching devices, but also find
many kinds of stable soliton pairs, i.e., DB soliton pairs and
DLMD soliton pairs in the same Thirring model. In addition,
we also obtain the stable high-dimensional soliton pair for
the (2+1)-dimensional Thirring model. All in all, the less the
absolute value of propagation constant is, the more stable the
corresponding soliton pairs are. All these properties point to

the potential application of Thirring-type solitons for optical
communication systems and optical processing systems.
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APPENDIX: EQUATIONS IN SEC. III

These equations for A
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