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We propose related schemes to generate arbitrarily shaped single photons, i.e., photons with an arbitrary
temporal profile, and coherent state superpositions using simple optical elements. The first system consists
of two coupled cavities, a memory cavity and a shutter cavity, containing a second-order optical nonlinearity
and electro-optic modulator (EOM), respectively. Photodetection events of the shutter cavity output herald
preparation of a single photon in the memory cavity, which may be stored by immediately changing the optical
length of the shutter cavity with the EOM after detection. On-demand readout of the photon, with arbitrary
shaping, can be achieved through modulation of the EOM. The second scheme consists of a memory cavity
with two outputs, which are interfered, phase shifted, and measured. States that closely approximate a coherent
state superposition can be produced through postselection for sequences of detection events, with more photon
detection events leading to a larger superposition. We furthermore demonstrate that no-knowledge feedback can
be easily implemented in this system and used to preserve the superposition state, as well as provide an extra
control mechanism for state generation.
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I. INTRODUCTION

Nonclassical states of light are an essential resource in
optical quantum information processing. Single photons are
ideally suited for transmission along a quantum network [1],
are used for secure communication in quantum cryptography
[2,3], and with only linear optical components can be used
to implement scalable and robust quantum computing [3–6].
Superpositions of coherent states are another important class
of nonclassical states, which are not only useful for quantum
information processing [7,8], but also allow for fundamental
tests of quantum mechanics and the mechanism of decoherence
[9,10].

There has been much experimental effort into generating
these states in a variety of physical systems. In the opti-
cal domain, the production of propagating coherent-states
superpositions (CSSs) requires some type of non-Gaussian
operation, which can be achieved by hybrid strategies [11,12]
that combine techniques from the fields of continuous and
discrete variable quantum optics [13–18]. Schemes have
also been implemented in the microwave domain [19], with
the system in Ref. [19] deterministically preparing arbitrary
quantum states in a superconducting resonator by carefully
controlling its interaction with an auxiliary qubit.

In the case of single photons, sources are categorized as
either heralded or on-demand. The former generate photons
probabilistically, but signal this production to the observer.
These generally use the process of spontaneous parametric
down conversion, which can operate at a wide range of
frequencies, including those best suited for long-range com-
munication [20]. The resulting states are well defined with
a high level of purity, at the expense of the efficiency of pair
production. In contrast there are on-demand sources, including
quantum dots, NV centers, and trapped ions [6], which excite

a physical energy level that emits a photon as it relaxes,
eliminating the probabilistic aspect. In general, these sources
present limitations due to the low efficiency for collecting
emitted photons, although recent progress in quantum dots
[21] allowed for the production of a highly pure and bright
single photon source.

There is also interest in generating shaped single photon
sources [22,23], where by the shape of a single photon we
mean the probability distribution of the time of emission.
These can allow for exciting atoms and cavities with unit
efficiency [24–26], minimizing errors due to mode mismatch-
ing in interference experiments [27], better transmission along
optical fibers [28,29], and ultimately building a framework for
quantum information based on photonic temporal modes [30].

Inspired by the recent on-demand single photon source
demonstrated in an optical setup [31], in this article we outline
a scheme to produce shaped single photon pulses and CSS
using standard optical components and measurement-based
feedback. We begin in Sec. II with a brief overview of the
theory of open quantum systems, and use this to describe a
model of the source from Ref. [31]. In Sec. III we propose a
method for generation of shaped single photons and analyze
its optimal regimes of operation. In Sec. IV we modify the
detection scheme to produce CSS in the optical cavity, and
show how one can increase the storage time by implementing
no-knowledge feedback [32].

II. MODEL OF THE SCHEME

We show in Fig. 1 the general state preparation scheme,
consisting of two coupled cavities, the memory cavity (MC)
and shutter cavity (SC). The MC supports two photon modes,
âh and âe, called heralding and emission with frequencies ωh
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FIG. 1. (a) The scheme consists of two coupled cavities, memory
cavity (MC) and shutter cavity (SC). The former supports two
modes, âh (heralding) and âe (emission), with frequencies ωh and
ωe, respectively. Pairs of photons â

†
hâ

†
e are created by pumping of an

optical nonlinearity χ (2) with a laser. SC supports a single mode b̂

of frequency ωsc(t), which may be tuned by the EOM. The output
channels of the two cavities may be monitored in a number of ways,
and based on this we vary ωsc(t) and the pumping �(t) of χ (2).

and ωe, respectively, as well as a χ (2) optical nonlinearity [33],
which when pumped with a coherent field �(t) produces pairs
of photons â

†
hâ

†
e . The time dependence signifies that the pump

field is either switched on or off, depending on the stage of
the scheme. We will later use superscripts to distinguish if
the nonlinearity is nondegenerate (χ (2,n)), producing modes at
different frequencies, or degenerate (χ (2,d)), where the modes
have the same frequency but orthogonal polarizations. The
SC supports a single mode b̂ whose frequency ωsc(t) may
be varied using an electro-optic modulator (EOM) [33]. The
cavity outputs are measured, with the results used to control
the EOM and the driving field of the nonlinearity.

The Hamiltonian describing the dynamics of the nonlinear
crystal and the interaction between cavity modes is given by

Ĥ = �ωhâ
†
hâh + �ωeâ

†
e âe + �ωsc(t)b̂†b̂

+ ��(t)(âhâe + â
†
hâ

†
e)

+ �g(âhb̂
† + â

†
hb̂ + âeb̂

† + â†
e b̂), (1)

where g is the coupling between cavities. To complete our
description, we need to include the loss of photons from
the cavities, which can be done by considering the master
equation [34]

dρ̂

dt
= − i

�
[Ĥ ,ρ̂] +

∑
j

D[L̂j ]ρ̂, (2)

where ρ is the density matrix for the state of the system, D is
the Lindblad superoperator defined as

D[r̂]ρ̂ = r̂ ρ̂r̂† − r̂†r̂

2
ρ̂ − ρ̂

r̂†r̂

2
, (3)

and {L̂j } are operators representing the decoherence processes.
Assuming that the photon losses occur for the emission,
heralding, and shutter cavity modes at rate κe, κh, and κsc,
respectively, the decoherence operators are

L̂e = √
κeâe, L̂h = √

κhâh,

L̂sc = √
κscb̂. (4)

We can combine and measure the decoherence channels in
different ways, and in the following sections we will show
how this can be used to generate specific states in the emission
mode of the MC.

A. Modeling the detection

As already mentioned, our state preparation scheme is based
on continuous monitoring of the output fields of the cavities.
Since Eq. (2) describes the average behavior of the system,
we briefly present the model describing stochastic evolution
conditioned on the measurements results. In the case where a
single output channel L̂ is monitored by a photodetector, the
stochastic master equation (or quantum filter) describing the
dynamics is given by [34]

dρ̂(t) =
(

dtH
[
− i

�
Ĥ − L̂†L̂

2

]
+ dN(t)G[L̂]

)
ρ̂(t), (5)

where we define the superoperators

H[r̂]ρ̂ = r̂ ρ̂ + ρ̂r̂† − Tr{r̂ ρ̂ + ρ̂r̂†}ρ̂,

G[r̂]ρ̂ = r̂ ρ̂r̂†

Tr{r̂ ρ̂r̂†} − ρ̂, (6)

with Tr{r̂} denoting the trace of the operator r̂ .
Equation (5) is an Itô stochastic differential equation for

the density matrix, which gives the increment to ρ̂ in an
infinitesimal time interval dt . The second term represents the
action of a detection event on the state and is proportional to
the stochastic increment dN(t), which can take the values 0
(no detection) or 1 (detection). When a detection takes place,
which happens with probability 〈L̂†L̂〉(t)dt in the time interval
dt , we say the system undergoes a quantum jump: ρ̂ is instanta-
neously replaced with L̂ρ̂L̂† and normalized, according to the
definition of G in Eq. (6). The first term in Eq. (5) corresponds
to evolution in the lack of detection. From the definition of H,
this leads to the Hamiltonian unitary evolution − i

�
[Ĥ ,ρ̂], as

well as a conditioning term, − 1
2 ρ̂L̂†L̂ − 1

2 L̂†L̂ρ̂ + Tr{L̂†L̂ρ̂}.
The conditioning occurs because a lack of clicks in the
photodetector also provides us with information about the
system, e.g., a long period without photodetections indicates
that the cavity is likely empty. Note that if we average over
many realizations of the stochastic trajectories described by
Eq. (5), we recover the dynamics given by the master equation,
Eq. (2).

III. SHAPED SINGLE PHOTONS

To generate shaped, single photon states we use the scheme
shown in Fig. 2, which is based on the experiment performed
in Ref. [31]. The MC and SC are coupled via a semitransparent
mirror with coupling constant g. The MC is assumed perfect
(κe = κh = 0) and the nonlinearity it contains nondegenerate,
so that the frequencies of the generated photons ωh and ωe are
well separated. The SC allows leakage at a rate κsc, with the
output field b̂out continuously monitored by a photodetector.
We take �(t) and g to be real. The generation of shaped single
photon occurs in two stages: creation and readout.
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FIG. 2. The scheme for shaped single photon generation consists
of two cavities coupled by a semitransparent mirror. MC contains
a χ (2,n) optical nonlinearity, pumped by a coherent field �(t). SC
contains an EOM, which allows us to control its resonant frequency.
MC is perfect while SC allows leakage at a rate κsc, with the output
field continuously monitored by a photodetector.

A. Creation

We first create a single âe photon state in MC by waiting for
a photodetection from SC. An intuitive picture for this follows
from the experiment in Ref. [31]. We tune ωsc(t) = ωh, and
pump the nonlinearity until it generates a photon pair. Since
the âh mode is resonant with the SC it will leak out and be
detected. This heralds that we have a single âe mode in the
MC, and we cease pumping before further pairs are created.
The optimal regime will thus involve ωsc(t) = ωh, g, and κsc

large relative to �(t) to lower the multiphoton components of
the final state in the MC, and κsc � g so that the dynamics of
the coupling do not play a significant role.

Since the detuning |ωh − ωe| is large, we can disregard
coupling of âe into the SC. As the coherent field �(t) is
constant during this stage, we will denote this as �. Moving to a
frame rotating with respect to �ωhâ

†
hâh + �ωeâ

†
e âe + �ωhb̂

†b̂,
the system is described by the Hamiltonian

Ĥ = ��(âhâe + â
†
hâ

†
e) + �g(âhb̂

† + â
†
hb̂), (7)

and loss operator

L̂ = √
κsc b̂. (8)

The aforementioned parameter regime will cause the
dynamics of b̂ and âh to be rapidly damped compared to
those of âe, so we may simplify our picture by performing
an adiabatic elimination [35] of these modes, the details of
which are provided in Appendix. This shows that in the regime
g,κsc � �, κsc � g, and 4g2/κsc � �, the system Eqs. (7)
and (8) are equivalent to a single mode âe evolving under a
Hamiltonian and loss operator:

Ĥ = 0, L̂ = √
γ â†

e, (9)

where

γ = �2κsc

g2
. (10)

If we consider the evolution of Eq. (9) under Eq. (5), we
see that a photodetection from the SC loss channel will
indeed create a single emission mode in the MC. Before this

photodetection, the first term generates deterministic evolution
−dt

γ

2 H[â†
e âe]ρ̂, which, provided the system begins in the

vacuum, will have no effect on the dynamics. However, this is
only true in the ideal adiabatic limit. In any experimental im-
plementation the dynamics of b̂ and âh are not instantaneous.
The final state after photodetection will thus be a superposition
of single and multiphoton components, which gets closer to a
single photon as we approach the adiabatic limit.

It may not be immediately clear why we require 4g2/κsc �
�. With the adiabatic elimination it is derived as a sufficient
rather than necessary constraint, however numerical simu-
lations demonstrate that if we fix g and � then increase
κsc outside of this regime, the result is slower generation
of the emission mode. This can be understood in terms of
overdamped harmonic oscillation. If we consider the simple
case with the nonlinearity unpumped [�(t) = 0] and a photon
pair âh, âe in the MC, the Heisenberg equation of motion for
the heralding mode is

¨̂ah + κsc

2
˙̂ah + g2âh = 0. (11)

We see that κsc gives the damping rate of âh, and it is this
damping that heralds the creation of âe. If κsc grows too large
we enter an overdamped regime, slowing the rate of production
of âe.

After the output from the SC has been detected, we cease
pumping χ (2,n), leaving the âe mode stored in the MC for later
on-demand retrieval. Note that in our model we assumed no
loss in the emission mode and therefore perfect storage, in
reality the photon readout needs to happen within the cavity
lifetime.

B. Readout

To release the âe mode stored in the MC, we can tune
ωsc(t) = ωe, allowing the photon to couple into the SC and
be emitted [31]. Furthermore, we can control the strength of
this interaction with the detuning �(t) := ωsc(t) − ωe. To see
this we consider the system in Fig. 2 with χ (2,n) unpumped
(�(t) = 0), a single âe mode in the MC, and no âh mode. In
a frame rotating at ωeâ

†
e âe + ωeb̂

†b̂, the system Hamiltonian
and decoherence operators are then

H = ��(t)b̂†b̂ + �g(âeb̂
† + â†

e b̂), L = √
κscb̂. (12)

To simplify the picture we adiabatically eliminate the strongly
damped b̂ mode using the same method as in Appendix. The
result is a system in terms of the âe mode only, which has
Hamiltonian and decoherence operator

Ĥ = 2�g2�(t)â†
e âe,

L̂ =
√

2g2κsc

4�(t)2 + κ2
sc

âe.
(13)

The only assumption required in deriving (13) is that κ2
sc � g2,

which follows from the κsc � g needed in Sec. III A. The
Hamiltonian leads to an oscillation in phase, which may be
neglected for our purposes, and so we see that the net effect of
the SC in this regime is to provide a loss channel for âe whose
strength depends on the detuning �(t).
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Since the output photon is not continuously monitored but
rather used as input to some other system, we are interested in
the behavior described by the master equation Eq. (2):

d

dt
ρ̂e = −2ig2�(t)[â†

e âe,ρ̂e] + 2g2κsc

4�(t)2 + κ2
sc

D[âe]ρ̂e. (14)

For a decaying system ρ obeying the equation of motion

d

dt
ρ̂ = λ(t)D[â]ρ̂, (15)

if the coefficient λ(t) can be controlled arbitrarily, then we
can generate any desired output shape [36]. To achieve this
we define a function ξ (t) such that |ξ (t)|2 gives the desired
temporal profile, with normalization

∫ ∞
−∞ |ξ (t)2|dt = 1. For

the output of the cavity to match this, we require

λ(t) = ξ (t)√∫ ∞
t

|ξ (t ′)2|dt ′
. (16)

Our system in Eq. (14) approximates that of Eq. (15), with
2g2κsc/(4�(t)2 + κ2

sc) playing the role of λ(t). There are,
however, two differences, the first being that while we can
make the loss rate arbitrarily small by increasing �(t), it
cannot grow larger than 2g2

κsc
, which occurs when �(t) = 0.

To approximate some desired λ(t) we thus choose

�(t) =
⎧⎨
⎩

1
2

√
2g2κsc

λ(t) − κ2
sc λ(t) <

2g2

κsc
,

0 λ(t) � 2g2

κsc
,

(17)

with the output pulse shape growing closer to |ξ (t)|2 as the
ratio 2g2

κsc
increases.

The other difference is the time-dependent phase term
−2ig2�(t)a†

eae, which is present in Eq. (14) but not Eq. (15).
This simply rotates the phase of the output field, and should
not have an effect on the pulse shape (though it may need
to be taken into account if the generated pulse will be used
in interference experiments). This is confirmed by numerical
simulations [37–39] in Fig. 3, which show Gaussian and
rising exponential pulse shapes generated by choosing �(t)
according to Eq. (17). Using Eq. (13), the emission probability
density of a photon from the system is given by

〈L̂†L̂〉(t) = 2g2κsc

4�(t)2 + κ2
sc

〈â†
e âe〉(t). (18)

IV. GENERATION OF COHERENT-STATE
SUPERPOSITIONS

Figure 4(a) shows the changes in the setup needed to
generate coherent-state superpositions. The nonlinearity is
now degenerate, creating pairs of photons âe, âh at the same
frequency ω but orthogonal polarizations, indicated by the
dashed and solid lines. The pump field has constant amplitude
�, which we take to be real. We have a single cavity, MC,
and polarization-sensitive mirrors cause the heralding and
emission modes to be emitted from separate cavity outputs
at rates κh and κe respectively. We also allow for a coherent
field β(t) to be introduced to the cavity. This is zero during
state preparation, and we will later use it to perform feedback
during the storage phase. As in the previous section we choose

FIG. 3. Simulations of Eq. (14) during readout stage, with �(t)
chosen according to Eq. (17) in order to generate (a) Gaussian
and (b) rising exponential pulse shapes. The dashed line shows the
desired temporal profile |ξ (t)|2, while the solid region is the emission
probability density Eq. (18). We begin with a single photon in the âe

mode, and choose parameters g = 100γ and κsc = 10g (with � = 0
during readout).

parameters so that the dynamics of âh are short lived, and
adiabatically eliminate this mode. Defining

γ = 4�2

κh

(19)

and choosing κe = γ , the loss operators L̂i corresponding to
output immediately after the κi mirror become

L̂e = √
γ âe, L̂h = √

γ â†
e . (20)

We can intuitively understand Eq. (20) by considering what
information a photodetection from each cavity would provide.
Detection of a photon from κe indicates loss of an emission
mode, hence L̂e ∝ âe. A photodetection from κh indicates that
a heralding mode has been emitted. As the modes are created in
pairs, this informs us that there must be a corresponding emis-
sion mode in the MC, and so L̂h ∝ â

†
e in the eliminated regime.

The two cavity outputs differ only by polarization. A wave
plate is used to render them indistinguishable, and they are
interfered through a beam splitter. If only heralded CSS state
generation is required, the two resulting channels may be
monitored by photodetectors. However, later we will discuss
storage of the CSS state with no-knowledge feedback (NKF)
[32]. NKF requires Hermitian decoherence channels and
homodyne measurement. Thus we introduce a relative phase
shift of π

2 , and then direct the outputs towards measurement
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FIG. 4. (a) The system for generation of CSS consists of a
single cavity, MC, containing a χ (2,d) optical nonlinearity, pumped
by a coherent field of constant amplitude �. Polarization-sensitive
semitransparent mirrors control which mode is emitted from each
mirror, and a wave plate λ matches the polarisations so that the
two fields are indistinguishable. They are interfered through a 50:50
beam splitter, then have a relative phase of π

2 introduced leading
to two Hermitian decoherence channels, which are measured by
detection blocks (DBs). During the no-knowledge feedback stage,
a coherent field with frequency ωe and complex amplitude β(t)
proportional to the measurement signal is introduced into the cavity.
(b) A schematic of each DB, which allows us to choose between
photodetection and homodyne measurement. During state generation
(1.) the decoherence channel is directed along the path indicated by
the solid arrows to the photodetector, where the grey block denotes a
mirror of controllable reflectivity, and a simple switch in the bottom
left controls which signal is received by the controller. For storage
via no-knowledge feedback, the mirror is made transmissive and the
channel follows the dashed arrows towards a homodyne measurement
(2.), where it is interfered with a local oscillator (LO) and the two
beam splitter outputs are subtracted. The corresponding photocurrent
is used to modulate β(t) incident on the MC, which has the effect of
removing the decoherence channel from the system dynamics [32].

blocks [Fig. 4(b)], which allow for switching to a homodyne
measurement after the required state has been prepared.

Let us first consider state generation. If we were to monitor
the channels Eq. (20) with photodetectors placed immediately

after the semitransparent mirrors, a detection from the L̂j

channel, where j ∈ {h,e}, would correspond to acting L̂j

on the state in the MC. Beginning from the vacuum, these
operators would prepare n-photon states. In order to generate
CSS we interfere the channels as shown in Fig. 4(a), resulting
in

L̂+ =
√

γ

2
(âe + â†

e), L̂− = i

√
γ

2
(âe − â†

e). (21)

We can recognize these in terms of the quadrature operators:

x̂
1√
2

(â + â†), p̂ = i√
2

(â† − â). (22)

Direct photodetection of the L̂± corresponds to the in-
stantaneous action of the corresponding operator on the
system, thus leading to quantum jumps proportional to field
quadratures [40].

Let us suppose we begin from the vacuum and have n

photodetections from the L̂+ channel in quick succession,
so that we may neglect the evolution of the system in
between jumps (the effect of this will be considered later).
We will show that this produces, to a good approximation, a
superposition of coherent states in the MC. The cavity state
after n photodetections from the L̂+ channel will be

|ψ̃n〉 = L̂n
+|0〉 = γ

n
2 x̂n|0〉, (23)

where the tilde represents unnormalized states. The normalized
version |ψn〉 in the position basis can be written as

|ψn〉 = 1√
�

(
n + 1

2

)
∫ ∞

−∞
dxxne− x2

2 |x〉, (24)

where �(z) is the Euler gamma function. Note that the wave

function xne− x2

2 is symmetric (antisymmetric) about x = 0 if
n is even (odd), with peaks at

x = ±√
n. (25)

To show that |ψn〉 is approximately a Schrödinger cat state,
we consider an ansatz where the peaks of the CSS coincide
with Eq. (25). For a coherent state |α〉, the peak in the position
basis is located at

x =
√

2α, (26)

where we assume α to be real. Equating (25) and (26), we make
the ansatz that |ψn〉 is approximated by the superposition of
coherent states:

|φ̃n〉 =
∣∣∣∣
√

n

2

〉
+ (−1)n

∣∣∣∣−
√

n

2

〉
. (27)

The fidelity F = |〈ψn|φn〉| between our generated state
Eq. (23) and the CSS (27) can be readily evaluated to be

F =

⎧⎪⎪⎨
⎪⎪⎩

�( n+1
2 )1F1(− n

2 , 1
2 ,− n

4 )
π

1
4
√

cosh( n
2 )�(n+ 1

2 )
n even,

√
n�( n

2 +1)1F1(− n−1
2 , 3

2 ,− n
4 )

π
1
4
√

sinh( n
2 )�(n+ 1

2 )
n odd,

(28)

where 1F1(a,b,c) is Kummer’s confluent hypergeometric
function. In Fig. 5(a) the solid (black) line plots the fidelities of
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FIG. 5. We plot in (a) the fidelity F of the state generated by
n consecutive detections from the L̂+ channel with the normalized
version of the CSS in Eq. (27). The solid (black) line shows the ideal
fidelity given by (28), if the jumps occurred instantaneously with
negligible evolution in-between. We see that this rapidly approaches a
value of around 0.97. The effect of the no-jump evolution is shown by
the vertical series, which simulate 1000 trajectories for a time tγ = 5
and plot the average fidelity of the postselected states with Eq. (27).
The error is taken to be the variance, and indicated by the range of the
brackets. The numbers accompanying each series give the percentage
of trajectories that survived postselection, which we interpret as the
probability of the state being generated. The dashed (brown) series
denotes postselection only for the correct jump sequence, while the
solid (orange) series also selects for a maximum time between jumps
of tγ = 1

2 . In (b) we show a histogram of the fidelities of the ideal
state Eq. (27) with the generated CSS states for n = 6, where we
postselect only on jump sequence. We see that this is concentrated at
the ideal value of 0.97.

our generated state with the ansatz coherent state superposition
for n � 10. This rapidly approaches a constant value of
approximately 0.97. Finally, we note that if we instead consider
L̂n

−|0〉 we arrive at a similar result, with α for the coherent
superposition now lying along the imaginary axis.

Other sequences of jumps can also prepare interesting
states. We show in Fig. 6 two examples of this: Fig. 6(a),
a superposition of Fock states, and Fig. 6(b), a state approxi-
mating a four-component cat state. While the latter is shown
to require a sequence of fourteen jumps, different sequences
can generate similar states (often with rotated phase), and we
can generate a lower amplitude state with fewer jumps.

So far there are two factors that we have neglected in
our discussion. The first is the stochastic nature of the

detections. Jumps occur randomly from either channel, and
so to observe a particular sequence we must postselect for
favorable trajectories. For example, if we wish to generate
the state L̂3

+|0〉, we begin with an empty cavity and wait for
three successive detections from the L̂+ channel. Before this
happens, if we register a photodetection from L̂−, we empty
the cavity and begin again.

The efficiency of this solution decreases for large n. This is
shown in Fig. 5(a) by the lower (brown) series of percentages,
which denote the fraction of 1000 simulated trajectories
that registered n successive jumps from L̂+. We make the
observation that the percentages are greater than 2−n, which
one might naively expect for two jump channels with equal
probability. For example, the state L̂10

+ |0〉 was generated 3.1%
of the time, which is much larger than 2−10 ≈ 0.1%. This
is because the jumps do not have equal probability. The
probability of a click from the L̂+ channel in a time interval
dt is given by the expectation value 〈L̂†

+L̂+〉dt , which will
generally be different from 〈L̂†

−L̂−〉dt .
The second factor is the dynamics between jumps, which

will reduce fidelity with the target state. To understand this we
can look at the equation of motion for the state of the cavity in
the absence of jumps. By considering only the deterministic
first term of Eq. (5), now summing over the L̂±, we find that
in the absence of photodetections the state evolves as

dρ̂

dt
= −

∑
j∈{+,−}

H
[

L̂
†
j L̂j

2

]
ρ̂,

= γ (2〈n̂〉ρ̂ − n̂ρ̂ − ρ̂n̂), (29)

where n̂ = â
†
e âe is the number operator for the cavity mode.

Over time this will drive a superposition towards the Fock
state with the smallest n present at a rate proportional to γ .
The probability of a photodetection in the time interval dt is
also proportional to γ :

〈L†
jLj 〉dt ∝ γ dt, (30)

so we cannot mitigate the effect of Eq. (29) by increasing the
rate at which photodetections occur.

The influence of the no-jump evolution on the fidelity of the
generated states is shown by the dashed (brown) vertical series
in Fig. 5(a). This plots the mean fidelity of states generated
by postselection on 1000 simulated trajectories with the ideal
state in (28), with the error taken to be the variance. We see
that the no-jump evolution does lead to a reduction in fidelity,
however, as seen in Fig. 5(b) the distribution is concentrated on
the ideal value. Furthermore, the solid (orange) vertical series
shows that by selecting for successive jump times less than
tγ = 1

2 , we can create states with a very high average fidelity
without significantly reducing the percentage of trajectories
which survive postselection.

While mostly detrimental, this no-jump evolution can also
be used to improve the generation of particular states. Take for
example the Fock state superposition in Fig. 6(a). If one wished
to move from this state to an equal superposition 1√

2
(|0〉 + |4〉),

we could postselect on the lack of jumps over a time interval
to balance the coefficients of the |0〉 and |4〉 components.
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FIG. 6. We show Wigner functions and Fock basis expansions for (a) a superposition of the Fock states |1〉 and |4〉 and (b) a CSS, which
approximates a four-component coherent state superposition, both generated through sequences of detections from the scheme in Fig. 4. In (c)
we shown an actual Schrödinger’s cat coherent states superposition (the Fock basis expansion is shown up to n = 14), where α = 2.825ei π

4 .
The CSS approximates this state with a fidelity of 0.98. In the top plots color denotes the height of the Wigner function. For the bottom plots
color and the series labels denote the complex phase of the Fock basis coefficients.

Once the desired state has been prepared, for heralded
release we cease pumping χ (2,d), and redirect the output from
κe for readout in the desired direction. Alternatively, we can
store the state in the MC for on-demand release at a later time
by use of a a recently proposed feedback technique to suppress
decoherence [32]. This no-knowledge feedback (NKF) allows
us to cancel the effect of any Hermitian decoherence channel
L̂ by performing a homodyne measurement at an angle of
π
2 , as shown in Fig. 4(b). Such a measurement yields no
information about the system, however, the system dynamics
under this continuous measurement become unitary, generated
by an effective Hamiltonian

Ĥeff = Ĥ − L̂j (t), (31)

where j (t) is the homodyne photocurrent, with no effective
decoherence channel. The effect of this can be canceled by
feeding back the measured signal into the system, modifying
the Hamiltonian by

Ĥ → Ĥ + L̂j (t). (32)

We may apply this principle to individually cancel out both
the Hermitian L̂± channels. This corresponds to feeding back
terms of the form â + â† and i(â − â†) into the MC, which can
be achieved by a coherent field into the cavity, as indicated by
β(t) in Fig. 4.

This ability to freeze decoherence channels at will can also
be used to prepare different kinds of states. For example, if we
apply NKF to the L− channel, then only L+ jumps will occur
and the dynamics between jumps changes from Eq. (29) to

dρ̂

dt
= γ

2
(2〈x̂2〉ρ̂ − x̂2ρ̂ − ρ̂x̂2). (33)

Note that even though the sequence of jumps is now
completely deterministic, CSS are not produced in this case
due to the change in the no-jump term. In fact, numerical
simulations show that this new dynamics rapidly generates
squeezed states. Other useful states could be generated with
NKF, which may be considered in future work.

No-knowledge feedback is not the only way in which
storage of the CSS may be achieved. Instead of the mirror
κe leading directly to the detection scheme, we could adopt a
method similar to the scheme in Sec. III and place a shutter
cavity (SC) in between containing an EOM, which is initially
made resonant with the MC, and whose parameters are chosen
so that the SC mode may be adiabatically eliminated. Once the
CSS has been created we cease pumping the χ (2,d) and detune
the SC from the MC, trapping the âe mode until the state is
required.

V. CONCLUSION

We have outlined a state generation scheme that can be used
for on-demand production of various nonclassical states of
light. It allows for the production of on-demand shaped single
photon states, with very little modification from the already
implemented scheme from Ref. [31]. We also showed how to
generate coherent-state superpositions by exploring different
detection strategies and using postselection. The CSS state
can be stored in the cavity using a no-knowledge feedback
scheme for later on-demand release. The main limitation to
this is decoherence effects between detections, which can be
minimized by another layer of postselection based on time
between detection events.
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The scheme outlined in Sec. IV can be expanded in many
ways. Using combinations of beam splitters and phase shifts,
we could manufacture other loss channels than the L̂±, allow-
ing for generation of a wider class of states. Implementing the
phase shifts via an EOM could allow for loss channels, which
change dynamically depending on the sequence of jumps that
have occurred. States that are reasonably robust against the
evolution in Eq. (33) could also be prepared deterministically
using no-knowledge feedback.

Given the similarity with the optical setup in Ref. [31], both
schemes can be implemented in an experiment. For on-demand
shaped single photon generation, the primary challenge is to
store the state for a time period comparable to the rate of
pair production in the nonlinearity. In Ref. [31] the cavity
storage time was around 1μs while pair production occurred on
average every 3ms, however, the authors noted much potential
for closing this gap. For a NKF scheme when preparing CSS
states, the primary limitation would be implementation of the
feedback on the system with minimal noise and time delay.
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APPENDIX: ADIABATIC ELIMINATION IN SEC. III A

In this section we provide an outline of the adiabatic
elimination performed in Sec. III A, which follows the method
outlined in Ref. [35]. The system is described in a rotating
frame by a Hamiltonian Ĥ and loss operator L̂:

Ĥ = ��(âhâe + â
†
hâ

†
e) + �g(âhb̂

† + â
†
hb̂),

L̂ = √
κscb̂, (A1)

with the assumption g,κsc � � and κsc � g. We perform
this calculation using the master equation for an unmonitored
system [Eq. (2)] with a single decoherence operator:

d

dt
ρ̂ = − i

�
[Ĥ ,ρ̂] + D[L̂]ρ̂, (A2)

from which we can later extract Ĥ and L̂.
We begin by partially expanding the density matrix for the

entire system, ρ̂MC⊗SC , over the Hilbert space corresponding
to b̂:

ρ̂MC⊗SC =ρ̂00|0〉〈0| + ρ̂10|1〉〈0| + ρ̂01|0〉〈1|
+ ρ̂20|2〉〈0| + ρ̂02|0〉〈2| + o(ζ 3), (A3)

where

ζ = g

κsc

, (A4)

kets |i〉 exist in the Hilbert space Hb̂ of b̂, and ρ̂ij acts on
HMC := Hâh⊗âe

.
We substitute Eq. (A3) into the master equation Eq. (A2),

which we use to find equations of motion for the ρ̂ij by acting
〈i| · |j 〉. To the first order in ζ we derive

d

dt
ρ̂20 = −i

√
2gâhρ̂10 − κscρ̂20 + o(ζ 2). (A5)

The assumption that κsc � g corresponds to d
dt

ρ̂20 ≈ 0, which
can be justified mathematically by considering the solution
to Eq. (A5), ρ̂20(t) = −i

√
2g

∫ t

0 e−κsc(t−t ′)âhρ̂10(t ′)dt ′, in the
limit κsc � g. With this Eq. (A5) yields

ρ̂20 ≈ −i
√

2
g

κsc

ρ̂10. (A6)

Using Eq. (A6) and proceeding similarly for ρ̂10 we find

ρ̂10 = −2i
g

κsc

(âhρ̂00 − ρ̂11âh). (A7)

We can use Eq. (A7) to find an expression for ρ̂MC , the density
operator over HMC . As d

dt
ρ̂10 = d

dt
ρ̂20 = 0:

d

dt
ρ̂MC = d

dt
(ρ̂00 + ρ̂11)

= −i[�(âeâh + â†
e â

†
h),ρ̂MC] + 4g2

κsc

D[âh]ρ̂MC,

(A8)
where in the last line we approximateD[âh]ρ̂00 + D[a†

h]ρ̂11] ≈
D[âh]ρ̂, as in the adiabatic regime the component ρ̂00 will be
much more significant than ρ̂11.

The form of Eq. (A8) matches that of the master equation
Eq. (A2), and from it we can extract the parameters for the
system with the dynamics of b̂ eliminated. Abbreviating � =
4g2

κsc
:

Ĥ = �(âeâh + â†
e â

†
h), L̂ =

√
�âh. (A9)

We now perform a second adiabatic elimination, this time of
âh, which will also be rapidly damped given its strong coupling
to the SC. Proceeding as before we derive

d

dt
ρ̂20 ≈ −

√
2�i

�
â†

e ρ̂10, (A10)

where now ρ̂ij act on Hâe
. Substituting this into the equation

for d
dt

ρ̂10 and considering the regime � � � leads to

d

dt
ρ̂10 = −2�i

�
(â†

e ρ̂00 − ρ̂11â
†
e), (A11)

and hence, if we let ρ̂e denote the density matrix of the âe

mode,

d

dt
ρ̂e = �2κsc

g2
D[a†

e]ρ̂e. (A12)

Comparing Eq. (A12) with Eq. (2), we extract that in the
regime g,κsc � �, κsc � g and � = 4g2

κsc
� �, the evolution

of âe is described by the Hamiltonian and decoherence
operator:

Ĥ = 0, L̂ = √
γ â†

e, (A13)

where we have defined γ = �2κsc

g2 .
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