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Geometric phase and fractional orbital-angular-momentum states in electron vortex beams
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We study here fractional orbital-angular-momentum (OAM) states in electron vortex beams (EVBs) from the
perspective of the geometric phase. We consider the skyrmionic model of an electron, where it is depicted as a
scalar electron orbiting around the vortex line, which gives rise to the spin degrees of freedom. The geometric
phase acquired by the scalar electron orbiting the vortex line induces the spin-orbit interaction. This leads to
the fractional OAM states when we have a nonquantized monopole charge associated with the corresponding
geometric phase. This involves a tilted vortex in EVBs. The monopole charge undergoes renormalization-group
flow, which incorporates a length scale dependence making the fractional OAM states unstable upon propagation.
It is pointed out that when EVBs move in an external magnetic field, the Gouy phase associated with the
Laguerre-Gaussian modes modifies the geometric phase factor and a proper choice of the radial index helps to
have a stable fractional OAM state.
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I. INTRODUCTION

It is now well known that optical vortex beams [1] carrying
orbital angular momentum (OAM) exhibit an azimuthal
phase structure exp(i�φ), where � is an integer number
implying an OAM of �� per photon [2]. These can be
produced in the laboratory using spiral phase plates [3] or
computer generated holograms [4,5]. Such optical beams are
the Laguerre-Gaussian (LG) modes, which imprint a 2πl

step in the phase of the electromagnetic field. However, it
is also possible to generate a situation such that the phase
step is not an integer multiple of 2π . This corresponds to
fractional OAM. Light emerging from a fractional phase step
in general is unstable on propagation. Götte et al. [6] have
pointed out that fractional OAM can be produced through a
generic superposition of light modes with different values of
� and LG beams with a minimal number of different Gouy
phases increase propagational stability. These states can be
decomposed into basis of integer OAM states.

In recent times electron vortex beams (EVBs) with OAM
have been produced experimentally [7–9]. An EVB is gen-
erally visualized as a scalar electron orbiting around the
vortex line. Bliokh et al. [10] studied the relativistic EVBs
representing the angular momentum eigenstate of a free Dirac
equation and constructed an exact Bessel beam solution. In a
recent paper [11] it was argued that in the skyrmionic model
of an electron, where it is depicted as a scalar electron rotating
around a direction vector (vortex line), which is topologically
equivalent to a magnetic flux line corresponding to the spin
degrees of freedom, EVBs appear as a natural consequence.
Evidently, the vortex here is a spin vortex. Apart from this,
when the orbiting electron carries OAM, EVBs exhibit an
azimuthal phase structure exp(i�φ).

It has been observed that optical and electron vortex beams
carrying OAM share many similarities in their behavior.

*Retired; b_pratul@yahoo.co.in
†sribbasu@gmail.com
‡Present address: Department of Physics, Ben-Gurion University,

Beer Sheva 84105, Israel; debashreephys@gmail.com

Indeed, just like EVBs, the dynamics of the optical vortex
beams (OVBs) can also be studied from the perspective of the
geometric phase acquired by the beam field orbiting around
the vortex line [12]. In this paper we study the situation when
EVBs carry fractional OAM. When the scalar electron in an
EVB orbiting around the vortex line acquires the Berry phase,
which involves a quantized monopole charge, we have screw
or edge dislocation [11,12]. The screw dislocation essentially
corresponds to paraxial beams, where the vortex line is parallel
to the wave-front propagation direction, whereas for edge
dislocation, the vortex line is orthogonal to the wave-front
propagation direction. In addition, there are situations when
we have a tilted vortex, where the vortex line makes an angle
θ with respect to the wave-front propagation direction such
that 0 < θ < π/2, which corresponds to the mixed screw-edge
dislocation. In this case the associated Berry phase involves
a nonquantized monopole charge and incorporates spin-orbit
interaction (SOI), which effectively induces fractional OAM.
It is here argued that for EVBs the structural stability arises
when these beams move in an external magnetic field, where
we can have LG modes such that the monopole charge of
the Berry phase is modified by the Gouy phase [13]. This
analysis suggests that fractional OAM in vortex beams is a
natural phenomenon and can be visualized properly from the
perspective of the Berry phase.

In Sec. II we recapitulate certain features of the Berry phase
in EVBs and its association with the spin-orbit interaction
leading to fractional OAM states. In Sec. III we discuss the
fractional OAM states from the viewpoint of the monopole
harmonics. In Sec. IV we consider EVBs with fractional OAM
moving in an external magnetic field and study its stability and
relevant consequences.

II. ELECTRON VORTEX BEAMS WITH FRACTIONAL
ORBITAL ANGULAR MOMENTUM AND

THE BERRY PHASE

In a recent paper [11] the geometrodynamics of EVBs were
analyzed from the point of view of the geometric phase. To
this end, we have considered the skyrmionic model of an
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electron, where it is depicted as a scalar electron orbiting
around a direction vector (vortex line), which gives rise to the
spin degrees of freedom [14]. Evidently, the scalar electron
moving around the vortex line acquires the Berry phase after
forming a closed loop. It has been pointed out that for paraxial
beams, the Berry phase is vanishing. For nonparaxial beams,
corresponding to the edge dislocation, where the vortex line is
orthogonal to the wave-front propagation direction, the Berry
phase involves a quantized monopole. However, for a tilted
vortex, where the vortex line makes an arbitrary angle with
the wave-front propagation direction, the corresponding Berry
phase involves a nonquantized monopole charge. It is noted
here that in this case the electron carries fractional OAM.
The situation involves SOI and fractional OAM appears as a
consequence of this.

The Berry phase acquired by the scalar electron encircling
the vortex line is 2πμ [15], where μ is the monopole charge.
In terms of the solid angle subtended by the closed circuit at
the origin of the unit sphere, where the monopole is located,
the Berry phase is given by μ�(C), where �(C) is the solid
angle given by

�(C) =
∫

C

(1 − cos θ )dφ = 2π (1 − cos θ ). (1)

Here θ is the polar angle of the vortex line with the quantization
axis (z axis) and μ corresponds to the monopole charge,
which effectively represents the spin. Indeed, the total angular
momentum of a charged particle in the field of a magnetic
monopole of charge μ is given by �J = �L − μ�̂r , where �L is
the OAM. In the case where OAM is vanishing, μ corresponds
to the total angular momentum of the particle, i.e., the spin
angular momentum (SAM) with sz = ±μ. One may note that
for μ = 1/2, the corresponding Berry phase derived from (1)
is

φB = π (1 − cos θ ). (2)

If one considers a reference frame where the scalar electron in
the EVB is taken to be fixed and the vortex state moves in the
field of a magnetic monopole around a closed path, evidently,
φB in (2) will correspond to the Berry phase acquired by the
vortex state (spin state) in an EVB. The angle θ represents the
deviation of the vortex line from the z axis. Equating this phase
φB with 2πμ, which is the Berry phase acquired by the scalar
electron moving around the vortex line in the closed path, we
find that the effective monopole charge associated with the
corresponding vortex line having polar angle θ with the z axis
is given by

μ = 1
2 (1 − cos θ ). (3)

Equation (3) suggests that the paraxial beams with θ = 0 and
orthogonal nonparaxial beams with θ = π/2 correspond to
a quantized monopole charge. However, for the continuous
range 0 < θ < π

2 , the corresponding monopole charge μ is
nonquantized and involves tilted vortices. Nonparaxial beams
in general incorporate SOI, which modifies the OAM 〈 �L〉
as well as spin 〈�S〉. Introducing the mapping �L = lẑ and
�S = sẑ, we note that EVBs having a tilted vortex, which
are characterized by the Berry phase associated with the
nonquantized monopole charge, the OAM as well as SAM

is modified as

〈 �L〉 = (l − μ)ẑ, 〈�S〉 = (s + μ)ẑ. (4)

This suggests that the OAM in such a situation can take
any arbitrary fractional value, as the factor μ can take any
value between 0 and 1. It is observed that the specific
case for the quantized fractional value μ = 1

2 corresponds
to the nonparaxial beam, where the vortex is orthogonal to
the wave-front propagation direction. In analogy with the
central charge of conformal field theory, the monopole charge
undergoes renormalization-group (RG) flow [16,17]. When μ

depends on a certain parameter λ, for certain fixed points λ∗,
μ takes quantized values. However, for other values of λ, μ

is nonquantized. The RG flow suggests that μ is a decreasing
function such that L

∂μ

∂L
� 0, where L is the length scale. Thus

we observe that for a nonquantized value of μ, it changes with
a characteristic length scale. This implies that EVBs carrying
fractional OAM will be unstable on propagation. However,
we show here that when EVBs move in an external field, the
stability of these states may be attained. Indeed, in this case
the Berry phase factor μ is changed through the incorporation
of the Gouy phase associated with the corresponding LG
modes. The stability of the fractional OAM state is attained
by choosing an appropriate value of the radial index, which
essentially corresponds to the choice of a fixed value of the
length scale L.

III. MONOPOLE HARMONICS AND FRACTIONAL
ORBITAL ANGULAR MOMENTUM

It has been shown in some earlier papers [12,18,19] that the
presence of the spin vector elevates the localization region of
a relativistic massive particle as well as a massless one from
S2 to S3. Indeed, noting that S3 is equivalent to SU(2), we
can write S2 = SU(2)

U(1) so that S3 can be constructed from S2

by Hopf fibration. The Abelian field U(1) corresponds to the
monopole field, which gives rise to the spin of the system. The
magnetic flux line associated with this represents the vortex
line. The vortex in an EVB corresponds to the spin vortex.
Thus the introduction of the vortex line, which gives rise to the
spin degrees of freedom, extends the localization region from
S2 to S3 and incorporates an angle χ corresponding to the
orientation around the vortex line. The situation is exhibited
clearly in the skyrmion model of an electron, where it is
considered that a scalar electron rotates around a direction
vector (vortex line), which gives rise to the spin degrees of
freedom [14,15]. This leads to the introduction of a field
function of the form φ(xμ,ξμ), where �x is the spatial coordinate
and �ξ is the 3-vector representing the direction vector. In
this case the wave function takes into account the polar
coordinates (r,θ,φ) for the spatial coordinate �x and an angle χ

to specify the rotational orientation around the direction vector
�ξ . The eigenvalue of the operator i ∂

∂χ
represents the internal

helicity [15]. For an extended body represented by the de Sitter
group SO(4,1), θ , φ, and χ just represent the Euler angles. In
three space dimensions these three Euler angles correspond to
an axisymmetric system, where the anisotropy is introduced
along a particular direction and the components of the linear
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momentum satisfy a commutation relation of the form

[pi,pj ] = iμεijk

xk

r3
. (5)

Evidently μ represents the charge of a magnetic monopole.
The monopole harmonics incorporating the term μ have been
extensively studied by Fierz [20], Hurst [21], and Wu and
Yang [22]. Following them we can write

Y
m,μ

l = (1 + x)(m−μ)/2(1 − x)−(m+μ)/2

×dl−m

dl−m
x

[(1 + x)l−m(1 − x)l+μ]eimφe−iμχ , (6)

where x = cos θ . Here l is the orbital angular momentum of
a charged particle in the field of a magnetic monopole having
charge μ and m is the eigenvalue of the z component of L.

For specific values of l = 1/2, m = ±1/2, and μ = ±1/2,
the above expression yields, for Y

m,μ

l ,

Y
1/2,1/2
1/2 = sin

θ

2
ei(φ−χ)/2,

Y
−1/2,1/2
1/2 = cos

θ

2
e−i(φ+χ)/2,

Y
1/2,−1/2
1
2

= cos
θ

2
ei(φ+χ)/2,

Y
−1/2,−1/2
1/2 = sin

θ

2
e−i(φ−χ)/2.

(7)

This represents the monopole harmonics for half-integral
OAM l = 1/2 with μ = ±1/2. The doublet

φ =
(

φ1

φ2

)
, (8)

with φ1 = Y
1/2,1/2
1/2 and φ2 = Y

−1/2,1/2
1/2 , corresponds to a two-

component spinor. The charge conjugate state is given by

φ̄ =
(

φ̄1

φ̄2

)
, (9)

with φ̄1 = Y
−1/2,−1/2
1/2 and φ̄2 = Y

1/2,−1/2
1/2 . This shows that

a fermion can be viewed as a scalar particle moving with
half-integral OAM in the field of a magnetic monopole
and represents a skyrmion. This suggests that fractional
OAM states have their relevance in the context of magnetic
monopoles.

The expression (6) is valid when μ is quantized having
values 0,±1/2,±1, . . . so that we have integer and fractional
values of OAM. However, when μ is nonquantized, OAM
can take any arbitrary fractional value. A quantum state with
fractional OAM with a nonquantized monopole charge is
given by |M〉 with M = � + μ, where � is an integer and
μ is the fractional part lying between 0 and 1. It should be
mentioned that we have considered the state |M〉 such that
it is applicable to the quantized value of μ = 1/2 also. The
monopole harmonics contain the term involving μ in the form
e−iμχ , where χ denotes the orientation of the vortex line, i.e.,
the position of the discontinuity. The angle χ takes the value
0 < χ < 2π . Generalizing this to the nonquantized values of
μ, we note that the term containing the value of μ in the state
|M〉 is of the form e−iμχ . Indeed, a generalized expression for
the fractional OAM state |M〉 with M = � + μ, �(μ) being

an integer (fraction), can be derived where these states are
decomposed into the basis of integer OAM states. This is
given by [6,23]

|M(χ )〉 =
∑
�
′

c�
′ |M(χ )||�〉, (10)

where the coefficients c�
′ |M(χ )| are given by

c�
′ |M(χ )| = exp(−iμχ )

i exp[i(M − �
′
)θ0]

2π (M − �
′)

× exp[i(M − �
′
)χ ][1 − exp(iμ2π )], (11)

with �
′ ∈ Z. It is noted that the expression (11) contains the

term e−iμχ as we have in the monopole harmonics, given by
the expression (6). In fact, such a term arises here from the
consideration of the single-valuedness criterion derived from
the position of the branch cut χ from the multivalued function
eiμθn , where θn = θ0 + 2πn

2�+1 varying from −�,−� + 1, . . . ,+�,
θ0 being the starting point of the interval [θ0,θ0 + 2π ]. Thus
we have the dependence of the fractional OAM states on the
dislocation χ .

A characteristic feature of the state |M(χ )〉 is that the
probabilities P�′(M) of observing the fractional OAM state
for specific values of �′ given by the modulus square of the
probability amplitudes are independent of the angle χ [23]. In
fact, we have

Pl′ (M) = |cl′M(χ )|2 = sin2(μπ )

(M − l′)2π2
. (12)

For M = l ∈ Z and l − l′ �= 0, the fractional part μ = 0, so
we have vanishing OAM probability. For l′ we can write

Pl′(M) = lim
μ→0

P�′(l + μ) = 1

2π2
lim
μ→0

1 − cos(2πn)

(l + μ − l′)2
= δii .

(13)

This means that for integer M the OAM distribution is singular
and is equipped with a single nonvanishing probability at M =
l′. For fractional values of M , the probabilities are peaked
around the nearest integer to M .

In the case of light beams, in cylindrical coordinates the
field amplitude of the Laguerre-Gaussian mode is given by

u�
p(ρ,φ,z) = c�p√

w(z)

(
ρ
√

2

w(z)

)|�|
exp

(
− ρ2

w2(z)

)
L|�|

p

(
2ρ2

w2(z)

)

× exp

(
i

ρ2

w2(z)

z

zR

)
exp(i�φ)

× exp

[
−i(2p + |�| + 1) tan−1

(
z

zR

)]
, (14)

where w(z) is the Gaussian spot size

w(z) =
√

2
z2
R + z2

kzR

= w0

√
1 + z2

z2
R

. (15)

Here k denotes the wave number, zR is the Rayleigh range, w0

is the beam waist, and L
|�|
p are the Laguerre polynomials. The
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normalization constants are given by

c�p =
√

2p!

π (|�| + p)!
. (16)

The Gouy phase exp[−i(2p + |�| + 1) tan−1( z
zR

)] describes
the phase change as the beam moves through the beam waist
situated at z = 0. As it has been observed that the finite
superposition of the LG modes is centered around the nearest
integer to M , we can write

ψM(χ)(ρ,φ,z) =
�max∑

�
′=�min

c�
′ |M(χ )|u�

′

p (ρ,φ,z). (17)

Indeed, the distribution of the coefficients |c�|2 shows that
modes with an OAM index �′ very different from M contribute
only a little to the superposition and for all practical purposes
we can take the finite superposition of the LG modes, which is
centered around the nearest integer to M . It is noted here that
for every mode the sum (2p + |�| + 1) is equal to |�max| + 1
or �max.

It should be mentioned that when the fractional OAM state
is decomposed into the basis of integer OAM states, it is not
possible to have the same Gouy phase for all modes. This
follows from the fact that the superposition involves odd and
even values of �, but p has to be an integer. However, we can
restrict the number of Gouy phases to two such that one is for
even � and the other is for odd �. Indeed, when OVBs having
fractional OAM states are generated from the superposition of
LG modes, the instability of these states leading to the change
upon propagation arises from the interference between the LG
modes with different Gouy phases. By choosing proper radial
indices p, for each value of �, the instability of the fractional
OAM states can be suppressed [6]. It is noted that when the
fractional value of μ is associated with the monopole charge,
the instability arises due to the variation of μ with length
scale L according to the RG flow equation. We relate this
length scale to the radial index p in the Gouy phase so that the
change in L induce fluctuation in the Gouy phase factor. Due
to the constraint that the radial index p must be an integer, it
is not possible to have the same Gouy phase for all modes in
the superposition. Thus we note that in OVBs the change in
the monopole charge μ with the length scale effectively leads
to the interference between the LG modes with different Gouy
phases giving rise to the instability. A proper choice of p for
each value of L helps to make the OVBs with fractional OAM
states stable upon propagation.

IV. FRACTIONAL OAM STATES AND ELECTRON
VORTEX BEAMS IN AN EXTERNAL MAGNETIC FIELD

Here we consider the fractional OAM states in EVBs when
these propagate in an external magnetic field. As mentioned
above, fractional OAM states arise when we have a tilted vortex
associated with the nonquantized value of the monopole charge
μ. The states become unstable upon propagation, since the RG
flow suggests that μ changes with the length scale L. However,
stability of the beam can be attained when fractional OAM
states are generated from EVBs propagating in a magnetic
field. We consider that the magnetic field B(r) is generated by

a monopole of strength α situated at the origin of a unit sphere.
The flux passing through the surface � is given by

�|� =
∫

�

�B d �S = 2πα. (18)

This effectively corresponds to the Berry phase attained by
a particle moving around the flux in a closed contour C

corresponding to the holonomy

�B =
∫

C

�A d�r. (19)

If the magnetic field B(r) is an axially symmetric longitudinal
one, the vortex vector potential can be chosen as

�A(�r) = B(r)r

2
�̂eφ, (20)

where �B = �∇ × �A. For the magnetic flux φ, we can write the
vortex vector potential as

�A(�r) = φ

2πr
�̂eφ = α

r
�̂eφ, (21)

with α = φ

2π
being defined as the magnetic field parameter.

It may be mentioned here that Bliokh et al. [24] considered
EVBs in the presence of a single magnetic flux line corre-
sponding to an infinitely thin shielded solenoid directed along
the z axis and containing the flux φ. The situation involves
the vortex vector potential given by �A(�r) = φ

2πr
�ea = α

r
�ea ,

where α represents the vortex charge of the vector potential
�A. This gives rise to Bessel beams in contrast to the LG

beams. However, the Bessel beams here are characterized by
the fact that the Bessel function order is shifted by α, so the
wave function involves Jl−α(kr) instead of Jl(kr). Indeed, the
expectation value of OAM yields

〈Lz〉 = (l − α). (22)

This resembles the SOI, but here it is caused by the Zeeman-
type interaction between OAM and magnetic field. However,
this does not give rise to Zeeman energy since the wave
function with 〈Lz〉 �= 0 is localized outside the area of the
magnetic field. In fact, the situation here involves the Dirac
phase instead of the Berry phase when the magnetic field is
associated with the monopole charge. The Dirac phase is given
by

φ|D =
∫

C

�A · d�r = 2πα, (23)

where C is a closed loop characterized by C = r = const,
φ ∈ [0,2π ].

It is noted that in the sharp point limit of the skyrmionic
model of an electron, we can consider the nonrelativistic
situation. The Schrödinger equation in cylindrical coordinates
for an electron in the magnetic field is given by

− �
2

2m

[
1

r

∂

∂r

(
r

∂

∂r

)
+ 1

r2

(
∂

∂φ
+ ig

2r2

w2
m

)2

+ ∂2

∂z2

]
ψ = Eψ,

(24)

where wm = 2
√

�

|eB| is the magnetic length parameter and g =
sgnB = ±1 indicates the direction of the magnetic field. The
parameter 2r2

w2
m

here essentially represents the monopole charge
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that follows from (20) and (21). The solution of Eq. (24) has
the form of nondiffracting LG beams given by [24]

ψL
�,p �

(
r

wm

)|�|
L|�|

p

(
2r2

w2
m

)
exp

(
− r2

w2
m

)
exp[i(�φ + kzz)].

(25)

It is noted that Landau LG modes yield an exact solution. The
wave numbers satisfy the dispersion relation

E = k2

2m
− �� + |�|(2p + |�| + 1), (26)

where � = eB
2m

is the Larmor frequency. Here E|| = k2

2m
is the

energy of the free longitudinal motion. The transverse motion
energy is given by E⊥ = EZ + Eg , where EZ = �� represents
the Zeeman energy and Eg = |�|(2p + |�| + 1), p being the
radial quantum number, is associated with the Gouy phase of
the diffractive LG modes. For the Landau state, the expected
value of OAM corresponds to

〈Lz〉 = � + g

〈
2r2

ω2
m

〉
, (27)

where g = ±1 is the sign factor and 〈 2r2

ω2
m
〉 is given by

〈
2r2

ω2
m

〉
=

〈ψ | 2r2

ω2
m
|ψ〉

〈ψ |ψ〉 = 2p + |�| + 1. (28)

This determines the squared spot size of the LG beams. From
this we have the relation

〈α〉 =
〈

2r2

w2
m

〉
= 2p + |�| + 1, (29)

where p = 0,1,2, . . . is the radial quantum number and |�|
is the azimuthal quantum number. So fractional OAM states
given by � + μ, where μ corresponds to the fractional value
μ ∈ [0,1] representing the monopole charge in the free case,
is now modified as

μeff = μ + g(2p + |�| + 1). (30)

As mentioned, the instability in the fractional OAM states
arises due to the change of μ upon propagation. However, an
appropriate choice of the radial quantum number p essentially
fixes a length scale, so in this case these states become stable.
Indeed, when we use the modified monopole charge the state
|M(χ )〉 will be transformed to |M̃(χ )〉, where M̃(χ ) = � +
μeff. When M̃(χ ) is decomposed into the basis of integer OAM
states, from Eq. (12) we find that the probability P�(M̃) is now
changed to

P�(M̃) = |c�′[M̃(α)]2| = sin2[μeffπ ]

(M̃ − �′)2π2

= sin2[μ + (2p + |�| + 1)π ]

[l + μ + (2p + |�| + 1) − �′]2π2
. (31)

Now noting that sin2[(N + μ)π ] = sin2[μπ ], when N is an
integer, we finally can write

P�(M̃) = sin2[μπ ]

[� + μ + (2p + |�| + 1) − �′]2π2
. (32)
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FIG. 1. Probability P (M̃) for various values of μ and p for (a)
� = 2 and �′ = 1 and (b) � = −2 and �′ = 1.

As is evident from this equation, this probability P�(M̃)
vanishes for integer OAM states (μ = 0). From Eq. (32)
we note that for various values of p, Pl(M̃) changes and
as p increases this approaches zero. Thus with increasing
values of p we have the situation such that the contribution
of the fractional part to the state |M̃(χ )〉 gradually vanishes
and it approaches an integer OAM state, leading to a stable
configuration. Thus with the appropriate choice of p, we
can achieve stability. Thus we find that when EVBs move
in an external magnetic field, the change in μ as depicted in
Eq. (30) effectively makes the corresponding fractional OAM
states stable upon propagation, when a proper radial index p

is chosen.
It should be noted that, unlike OVBs, here we need

not require a superposition of LG modes to have a stable
fractional OAM state. This suggests that for EVBs moving
in an axisymmetric longitudinal magnetic field, we can have
stable fractional OAM states. We have plotted the probability
P (M̃) for various values of μ and p in Fig. 1(a) with � = 2
and �′ = 1 and in Fig. 1(b) with � = −2 and �′ = 1.

As the Gouy phase factor 2p + |�| + 1 essentially corre-
sponds to the expectation value of the magnetic field parameter,
the stability of these states can be achieved by properly tuning
the magnetic field. This makes the situation of EVBs different
from OVBs having stable fractional OAM states.

V. DISCUSSION

The EVBs carrying fractional OAM have the specific
feature that the geometric phase acquired by the scalar electron
orbiting around the vortex line involves a nonquantized
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monopole charge. Fractional OAM states arise due to the
spin-orbit coupling associated with the generation of the
geometric phase. The RG flow of the monopole charge induces
a length scale dependence in it, which makes the EVBs
unstable on propagation. However, when EVBs propagate in
an external magnetic field, the change in the Berry phase factor
due to incorporation of the Gouy phase makes the fractional
OAM states stable, with a proper choice of the radial index.
This makes the situation different from OVBs, where fractional
OAM states become stable when these are generated by the
synthesis of the LG modes with a minimal number of different
Gouy phases.

We have already pointed out in an earlier paper [11] that
the temporal variation of the monopole charge in an EVB
in free space leads to the spin Hall effect. This arises from
the anomalous velocity caused by the Berry curvature. In the
presence of an external magnetic field, the modified Berry
curvature leads to spin filtering such that either positive
or negative spin states emerge in spin Hall currents with
clustering of spin-1/2 states [13].

To consider the vortex structure of beams with fractional
OAM states we note that we have considered the vortex here
to be a spin vortex, so the system of vortices in vortex beams
may be viewed as a spin system. When the two adjacent
spins (vortices) have opposite orientations we have a pair
of entangled spins (vortices). A tilted vortex represents a

uniaxial anisotropy axis that can have various orientations
when the wave-front propagation direction is the z axis. As the
vortices are tilted in nature, an entangled pair of alternating
vortices corresponds to a hairpin configuration, implying that
the two vortices converge at a common turning point. Thus the
vortex structure in EVBs will correspond to a chain of pairs
of alternating vortices leading to a hairpin configuration as
observed in OVBs [25,26].

It may be noted that fractional OAM states in OVBs and
EVBs occur only in nonparaxial beams. Götte et al. [23] have
shown that by using a decomposition of Bessel beams rather
than LG modes in OVBs, we can achieve a paraxial solution.
It is observed that the paraxial solution approaches the exact
solution for z → ∞. However, it does not show the formation
of the chain of vortices.

Finally, we may add here that fractional OAM states have
already been studied in entangled photon pairs [27,28]. Indeed,
as fractional OAM states involve nonquantized monopole
charge, we have to take into account the effect of the Dirac
string. However, the observability of the Dirac string can be
avoided when we take into account an entangled state [17].
In view of this, we note that just like OVBs, it is expected
that these states in EVBs can also be exhibited for entangled
electron pairs. A stable fractional OAM state thus become
potentially important in the study of quantum information and
foundation.
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