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Propagation of coupled dark-state polaritons and storage of light in a tripod medium
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We consider slow-light propagation in an atomic medium with a tripod level scheme. We show that the
coexistence of two types of dark-state polaritons leads to the propagation dynamics, which is qualitatively
different from that in a � medium, and allows therefore for very efficient conversion of signal photons into spin
excitations. This efficiency is shown to be very close to 1 even for very long signal light pulses, which could not
be entirely compressed into a � medium at a comparable strength of the control field.
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I. INTRODUCTION

The phenomenon of electromagnetically induced trans-
parency (EIT) based on the creation of a coherent superposition
of long-living quantum states in a medium irradiated by a two-
laser light field has been known for a long time (see, e.g., the
review in Ref. [1]). The EIT has become especially interesting
and promising for quantum memory applications [2] since the
discovery of the method to “stop the light” by conversion of
photons of the weak (signal) into spin excitations of a medium
by adiabatically turning off the second (control) field [3,4].
Experimental realizations followed the publication of the idea
[3] immediately and employed as the EIT medium ultracold
atoms [5], hot atomic vapor in a cell [6], and doped crystal [7].

The � scheme containing three quantum levels coupled
to a laser radiation is the simplest one that admits coherent
population trapping and the light propagation in a medium in
the EIT regime. The tripod scheme that contains three low-
energy, stable (or metastable) sublevels supports two different
quantum superpositions that are decoupled from coherent
three-component laser radiation resonant to the optically
excited state. Various aspects of the slow-light propagation
and storage in a tripod medium have been theoretically studied
[8–14]. There are numerous experimental studies of the EIT
in media with the tripod-level scheme [15–20], culminating in
the demonstration of the storage and retrieval of light pulses
at a single-photon level [21].

The dynamical coupling between dark-state polaritons of
the two types arising due to the time dependence of the control
fields was introduced in Ref. [11] but not fully investigated.
Indeed, the Hong-Ou-Mandel interferometer operation in a
tripod medium [11] requires the change of the control field
parameters during the time interval of no signal photon
coming. In this paper we consider the situation of signal
photons interacting with a tripod medium where the coupling
between the two types of dark-state polaritons is present.

The signal laser pulse can be fully converted into spin
excitations in a conventional � medium only if the medium
is long enough to accommodate the whole slowed-down
incoming pulse (spatially compressed in proportion to the ratio
of its group velocity in the EIT regime and in the vacuum)
[5–7]. In a tripod medium the existence of two coupled
dark-state modes allows for a conversion of almost the whole
signal light field into spin excitations under less restrictive
conditions. Note that in a similar case a conventional �-type

medium irradiated by a control field of comparable strength
and characterized by a comparable slow group velocity would
accommodate only a part of the signal pulse.

II. BASIC EQUATIONS

We consider a medium consisting of atoms with the level
scheme shown in Fig. 1. The ground-state sublevels |0〉, |1〉,
and |2〉 are coupled to an excited state |e〉 by three coherent
fields. The control fields driving the transitions |1〉 ↔ |e〉 and
|2〉 ↔ |e〉 are characterized by Rabi frequencies �1 ≡ � cos β

and �2 ≡ � sin β, respectively. These fields are phase locked
or obtained from a common source by an acousto-optical
modulator in order to provide perfect cross-correlation of their
noise and to prevent thus a noise-induced decay of the quantum
coherence between the states |1〉 and |2〉 [22]. The transition
|0〉 ↔ |e〉 is driven by a quantized signal field. We can consider
a field propagating freely through the atomic sample [21] or in
a nanofiber [23,24]; the propagation direction of the signal field
defines the axis z. The quantum field for the signal photons
can be expressed as Ê(z,t) exp[−iωe0(t − z/c)], where Ê is its
slowly varying amplitude subjected to the standard bosonic
commutation rules, ωe0 is the resonance frequency of the
|0〉 ↔ |e〉 atomic transition, and c is the speed of light (in
vacuum or in the nanofiber, depending on the type of the setup).

In contrast to Ref. [11], we assume the amplitudes of the
two control fields to be constant, and instead we introduce the
detuning of the second field ν(t), which is time dependent in a
general case (see Fig. 1). It is convenient to express the atomic
collective spin variables through bosonic fields f̂α(z,t), where
f̂α(z,t) annihilates an atom in the state |α〉, α = 0,1,2,e, at the
point z at time t . The set of equations for these bosonic fields
and the signal photons is

∂

∂t
Ê = −c

∂

∂z
Ê + iκf̂

†
0 f̂e, (1)

∂

∂t
f̂0 = iκ Ê †f̂e, (2)

∂

∂t
f̂e = iκ Ê f̂0 + i�(cos βf̂1 + sin βf̂2), (3)

∂

∂t
f̂1 = i� cos βf̂e, (4)

∂

∂t
f̂2 = iν(t)f̂2 + i� sin βf̂e, (5)
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FIG. 1. Tripod scheme of atomic levels.

which is an obvious generalization from the case of EIT in
a � medium [25] to the case of a tripod medium. The atom-
field coupling constant κ = de0

√
ωe0/(2�ε0A), where de0 is

the electric dipole moment of the transition |0〉 ↔ |e〉 and A is
the effective area of the signal beam, can be expressed through
the optical density s of the medium for the resonant signal light
as κ = √

γ sc/(2N ), where N is the number of atoms inside
the interaction volume AL and L is the atomic sample length
in the propagation direction. The radiative decay rate γ arises
due to the coupling of the |0〉 ↔ |e〉 transition to side modes
of the electromagnetic field, which is not explicitly written,
for the sake of brevity, in Eq. (3). Integrating out the vacuum
modes of the electromagnetic field, we would get, instead of
Eq. (3),

∂

∂t
f̂e = iκ Ê f̂0 + i�(cos βf̂1 + sin βf̂2) − γ f̂e + ς̂e(z,t),

(6)

where ς̂e(z,t) is a δ-correlated Langevin-type operator [3,4]
that describes vacuum quantum noise and is needed to preserve
bosonic commutation properties of f̂e after introducing the
decay term −γ f̂e.

We work in the weak-pulse limit; i.e., we assume that the
linear density of dark-state polaritons is always much less than
the linear density of atoms, n1D = N/L, which are initially
all in the state |0〉 [25,26]. Then we linearize Eqs. (1)–(5)
by replacing f̂0 by a number

√
n1D and find in a standard

way [3,4,11], i.e., by adiabatic elimination of excitation modes
separated from the dark-state polaritons by large energy gaps,
the equations of motion(

∂

∂t
+ vg

∂

∂z

)
�̂ = iν̃(t) sin β̃(sin β̃�̂ + cos β̃ϒ̂), (7)

∂

∂t
ϒ̂ = iν̃(t) cos β̃(sin β̃�̂ + cos β̃ϒ̂), (8)

for two dark-state polariton fields

�̂ = cos θ Ê − sin θ (cos βf̂1 + sin βf̂2), (9)

ϒ̂ = sin βf̂1 − cos βf̂2. (10)

The mixing angle in Eq. (9) is defined by the usual expression
tan θ = κ

√
n1D/�, and vg = c cos2 θ [3,4]. Also we get ν̃(t) =

(sin2 θ sin2 β + cos2 β)ν(t) and tan β̃ = sin θ tan β.
We assume the slow-light regime, � � κ

√
n1D, and, hence,

sin θ ≈ 1, vg � c. In this limit, ν̃(t) ≈ ν(t) and β̃ ≈ β. In what
follows, we do not distinguish therefore between the values
with or without a tilde and omit this symbol over ν and β.

Before specifying the initial and boundary conditions
to Eqs. (7) and (8), we reformulate them for classi-
cal complex variables � and ϒ . This may be done
for coherent states of the dark-state polariton fields as
well as for single quantum states. In the latter case, we
use the Schrödinger representation and write the wave
function of the system as |�(t)〉 = ∫ L

0 dz [�(z,t)�̂†(z,t) +
ϒ(z,t)ϒ̂†(z,t)]|vac〉 + |�ph(t)〉, where |vac〉 is the vacuum
state of excitations (all atoms being in their internal state |0〉),
and |�ph(t)〉 describes a single photon either before entering
the medium (at z < 0) or after leaving it (at z > L). The
evolution of |�ph(t)〉 is not interesting for us, and the evolution
of the remaining component of |�(t)〉 is given by Eqs. (7)
and (8) with the operators �̂ and ϒ̂ replaced by the complex
fields � and ϒ , respectively.

It is convenient to introduce new variables, τ = t − z/vg

and ζ = z/vg. Then ν(t) = ν(τ + ζ ) and the equations of
motion for dark-state polaritons become

∂

∂ζ
� = iν sin β(sin β� + cos βϒ), (11)

∂

∂τ
ϒ = iν cos β(sin β� + cos βϒ). (12)

The boundary and initial conditions are

�(0,τ ) = �0(τ ), ϒ(ζ,0) = 0, (13)

where the function �0(τ ) is determined by the shape of
the incoming signal light pulse. We assume that �0(τ ) = 0
for τ � 0.

III. PROPAGATION DYNAMICS

The main features of the dark-polariton dynamics can be
determined from the solution of Eqs. (11)–(13) in the case
of constant two-photon detuning, ν ≡ ν0 = const. A simple
phase transformation

�(ζ,τ ) = eiχ(ζ,τ )� ′(ζ,τ ), ϒ(ζ,τ ) = eiχ(ζ,τ )ϒ ′(ζ,τ ),

χ (ζ,τ ) = ν0(sin2 β ζ + cos2 β τ ), (14)

casts Eqs. (11) and (12) into the form

∂

∂ζ
� ′ = iν0 sin β cos βϒ ′, (15)

∂

∂τ
ϒ ′ = iν0 sin β cos β� ′. (16)

A similar set of equations was derived in Ref. [11] for a
different driving protocol of the tripod medium where the
coupling between the two dark-state polaritons was induced
by changing the angle β in time. We note that the influence of
this coupling on the pulse propagation was not studied there.

Equations (15) and (16) can be easily solved by means of
Laplace’s transform. Also we can note that after elimination of
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one of the fields the equation for the remaining one is reduced
to the relativistic Klein-Gordon equation

∂

∂ζ

∂

∂τ
� ′ = 1

4

(
∂2

∂T 2
− ∂2

∂X2

)
� ′ = −(ν0 sin β cos β)2� ′,

(17)

where ∂
∂T

≡ ∂
∂τ

+ ∂
∂ζ

and ∂
∂X

≡ ∂
∂τ

− ∂
∂ζ

. The Green’s function
for the Klein-Gordon equation is well known [27] and can be
used to solve Eqs. (15) and (16).

Finally, we obtain the solutions,

�(ζ,τ ) = eiν0 sin2 β ζ

[
�0(τ ) − ν0 sin β cos β

×
∫ τ

0
dτ ′ �0(τ − τ ′)eiν0 cos2 β τ ′

×
√

ζ

τ ′ J1(2ν0 sin β cos β
√

ζ τ ′)
]
, (18)

ϒ(ζ,τ ) = iν0 sin β cos β eiν0 sin2 β ζ

∫ τ

0
dτ ′ �0(τ − τ ′)

× eiν0 cos2 β τ ′
J0(2ν0 sin β cos β

√
ζ τ ′), (19)

where J0 and J1 are Bessel functions of the zero and first order,
respectively.

First we analyze Eq. (18). The first term in its right-hand
side describes, apart from gaining a ζ -dependent phase shift,
pulse propagation at the group velocity vg. However, this
regime holds only for small values of ζ , where the integrand in

the second term is small because of the small values taken by
the Bessel function J1(2ν0 sin β cos β

√
ζ τ ′). This propagation

picture is typical for dark-state polaritons in a � medium.
However, it will be distorted at larger distances, when the
second term becomes important. What happens then, one can
see from the analysis of the dynamics of the ϒ field.

This field corresponds to spin excitations, which possess
zero group velocity and are induced by coupling to the
�-type polaritons through the finite two-photon detuning ν0.
Equations (15) and (16) together with the initial condition
ϒ(ζ,0) = 0 yield a simple conservation law

∫ ζL

0
dζ |ϒ(ζ,τ )|2 =

∫ τ

0
dτ ′|�(0,τ ′)|2 −

∫ τ

0
dτ ′|�(ζL,τ ′)|2,

(20)

where ζL = L/vg. It relates the total population of the ϒ-type
mode inside the medium of length L to the loss of the output
pulse energy at the exit from the medium compared to the case
of propagation in a � medium at the group velocity vg. We
define the efficiency of the conversion of signal photons to
ϒ-type spin excitations as

η(τ ) =
∫ ζL

0 dζ |ϒ(ζ,τ )|2∫ ∞
0 dτ ′|�(0,τ ′)|2 . (21)

From Eq. (19) we can evaluate the enumerator of Eq. (21)
if we recall the formula for the integral of a product of two
Bessel functions [28]:

∫ ζL

0
dζ |ϒ(ζ,τ )|2 = ν0 sin β cos β

∫ τ

0
dτ1

∫ τ

0
dτ2 �0(τ1)�∗

0 (τ2)e−iν0 cos2 β(τ1−τ2) 1

τ1 − τ2
{√τ − τ2

× J0[2ν0 sin β cos β
√

ζL(τ − τ1)]J1[2ν0 sin β cos β
√

ζL(τ − τ2)]

−√
τ − τ1J0[2ν0 sin β cos β

√
ζL(τ − τ2)]J1[2ν0 sin β cos β

√
ζL(τ − τ1)]}. (22)

Let τp be the typical time scale of the incoming signal light
pulse and consider Eq. (22) for τ � τp. In this case the time
integrals practically converge to their final values on the scale
τ1,2 � τ . Assume that

|ν0 sin β cos β|
√

ζLτ � 1. (23)

In this case we can recall the asymptotic expression [29] for
the Bessel function of order n of a large argument x → ∞,
Jn(x) = √

2/(πx) cos(x − nπ
2 − π

4 ), and find an approxima-
tion for Eq. (22):

∫ ζL

0
dζ |ϒ(ζ,τ )|2 = ν0 sin β cos β

∫ τ

0
dτ1

∫ τ

0
dτ2�0(τ1)

×�∗
0 (τ2)e−iν0 cos2 β(τ1−τ2)

× sin[|ν0 sin β cos β|√ζL/τ (τ1 − τ2)]

π (τ1 − τ2)
.

(24)

If we consider asymptotically long times, such that

|ν0 sin β cos β|
√

ζL/τ � 1

τp
, (25)

we immediately see that asymptotically

∫ ζL

0
dζ |ϒ(ζ,τ )|2|τ→+∞ ≈ ν0 sin β cos β

π

√
ζL

τ

×
∣∣∣∣
∫ ∞

0
dτ ′ �0(τ ′)e−iν0 cos2 β τ ′

∣∣∣∣
2

.

(26)

This means that the spin excitations in the medium, being
coupled to the �-type dark-state polariton mode via the two-
photon detuning ν0, decay in a very slow, nonexponential way,
namely, proportionally to 1/

√
τ .

What occurs for τ larger than but close to τp requires
further analysis. Recall that we are interested in long pulses,
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which cannot be entirely fit into the medium. Therefore, we
assume τp � ζL = L/vg. Also we need, in order to satisfy
condition (23), to have values of β not too close to 0,
±π

2 , or π . In other words, we assume that cos β and sin β

are of the same order. If the incoming signal photons are
tuned exactly in resonance with the |0〉 ↔ |e〉 transition, then
|ν0 sin β cos β|√ζL/τ � |ν0| cos2 β, the convergence of the
integrals in Eq. (24) is achieved on the time scale of about
1/(|ν0| cos2 β), and Eq. (26) remains a satisfactory estimation.
The conversion efficiency η thus remains well below 1.
However, if the detuning of the signal pulse from the reso-
nance is chosen such that �0(τ ) = |�0(τ )| exp(iν0 cos2 βτ )
then, in order to determine the time scale of convergence
of the time integrals in Eq. (24), we have to compare
|ν0 sin β cos β|√ζL/τ ∼ |ν0 sin β cos β|√ζL/τp with the spec-
tral width of |�0|, i.e., with 1/τp. By taking |ν0| large enough,
one may attain |ν0 sin β cos β|√ζLτp � 1. In this case,
the function sin [|ν0 sin β cos β|√ζL/τ (τ1 − τ2)]/[π (τ1 − τ2)]
can be approximated by a δ function, δ(τ1 − τ2). Therefore, the
efficiency of conversion of signal photons into spin excitations
of the ϒ type is

η(τ ) ≈
∫ τ

0 dτ ′|�(0,τ ′)|2∫ ∞
0 dτ ′|�(0,τ ′)|2 . (27)

For τ � τp (say, τ ≈ 3τp) this efficiency may get very close
to 1. Of course, at very large times η(τ ) decays, as we have
shown, in proportion to 1/

√
τ . But one can prevent such a

long-time decay of the spin excitations by radiating photons
out of the medium by suddenly switching off the control
fields (or by suddenly changing ν from ν0 to zero and thus
decoupling the �-type and ϒ-type polaritons). This means
that the use of a tripod medium permits one to trap and convert
into spin excitations very long signal light pulses, which would
be only partially fit into a medium with a standard � scheme
of atomic levels. The retrieval of the stored quanta may be
implemented using the standard protocol [11] (note also the
observed modulation of the retrieved pulse shape [21]). For
example, one may retrieve stored signal photons by applying
the two control fields with the new amplitudes �new

1 = sin β �

and �new
2 = − cos β � and zero detuning, νnew(t) = 0. Then

the spin excitation stored in the medium turns into a dark-state
polariton that moves at the group velocity vg and leaves the
medium without coupling to the dark-state polariton of the
other type.

The numerical evaluation of the efficiency of conversion
of signal photons into spin excitations based on Eq. (19) is
presented in Figs. 2 and 3. The incoming pulse used here
is slightly (at the level of 1 × 10−4) modified in comparison
to a Gaussian in order to formally provide its continuity at
τ = 0, since �0(0) = 0 by our assumption. We can see from
Fig. 2 that for a perfectly resonant signal light the maximum
efficiency is always appreciably below 1. On the contrary, if
the probe light is detuned by −ν0 cos2 β from the frequency
ωe0, then the values of η very close to 1 can be attained [see
Fig. 3(a)]. Note that for L/(vgτp) equal to 1.0 and 0.5 the
maximum fraction of the Gaussian incident pulse that can
be simultaneously contained inside the medium is 0.843 and
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FIG. 2. Efficiency η of the conversion of the signal photons into
spin excitations of the ϒ type as a function of the retarded time
τ for the boundary condition �0(τ ) = �0 A{exp[−(τ − 3τp)2/τ 2

p ] −
exp[−(τ + 3τp)2/τ 2

p ]} for τ � 0 (|�0 A|2 determines the pulse en-
ergy). Units on the axes are dimensionless, and the time τ is scaled
to the characteristic time τp of the pulse duration. β = π/4 for all
plots. The detuning ν0 is (a) ν0 = 1/τp , (b) 5/τp , and (c) 10/τp .
On each panel the length L of the medium is 1.0vgτp (solid line),
0.5vgτp (long-dashed line), 0.25vgτp (short-dashed line), and 0.1vgτp

(dot-dashed line). The decrease of the dot-dashed line in (b) and (c)
is very slow and can bee seen on a time scale τ/τp ∼ 102.

0.521, respectively, while the maximum values of η in Fig. 3(a)
for the respective lengths are 0.999 (solid line) and 0.990
(long-dashed line).
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FIG. 3. The same as in Fig. 2, but for �0(τ ) = �0 A{exp[−(τ −
3τp)2/τ 2

p ] − exp[−(τ + 3τp)2/τ 2
p ]} exp(iν0 cos2β τ ) for τ � 0. The

values of ν0 assigned to (a)–(c) and of L assigned to the lines of
different type as well as β are the same as in the previous plot. Note
that for a properly detuned signal pulse η ≈ 1 can be attained.

IV. DISCUSSION

Now we examine the effects of the signal light absorption
on the propagation regime considered in the previous section.
Equation (23) ensures highly efficient conversion of signal
photons into spin excitations on intermediate time scales of
about a few incoming pulse duration times τp. This high
efficiency implies a large optical density of the medium, s �
1. Also we consider β ≈ π

4 . Since vg ≈ c�2/(κ2n1D) � c

and κ2n1DL = γ cs/2, we can rewrite Eq. (23) as

|ν0|
√ √

sτp

�ωEIT
� 1, (28)

where

�ωEIT = �2

γ
√

s
(29)

is the width of the EIT transmission window in an optically
dense medium [4,30] (see also the review in Ref. [31]). To
minimize the signal pulse absorption, we have to assume its
duration to be much longer than 1/�ωEIT:

τp = Kp

�ωEIT
, Kp � 1. (30)

Also the two-photon detuning must be small compared to the
width of the EIT window, |ν0| � �ωEIT. This means that for
a large optical depth and long enough pulses,

√
sKp �

∣∣∣∣�ωEIT

ν0

∣∣∣∣
2

, (31)

condition (23) is satisfied.
To summarize, we investigated theoretically the propaga-

tion of weak signal pulses in a medium with a tripod scheme of
atomic levels in the slow-light regime. Dark-state polaritons of
two kinds exist in such a medium [11]. When they are mutually
coupled via nonzero detuning ν(t) of one of the control fields,
the propagation becomes nontrivial. In the case of constant
detuning, ν(t) ≡ ν0, the propagation bears analogy with the
relativistic physics because its Green’s function is formally
identical to that of the Klein-Gordon equation [27]. The light
pulse leaving the medium has a very long “tail” decreasing as
1/

√
τ . Under certain conditions [Eq. (31) together with the de-

tuning of the signal pulse by −ν0 cos2 β from the single-photon
resonance] it is possible to trap temporally almost the entire
incoming pulse even if it is so long that it cannot be accommo-
dated in a � medium characterized by a comparable reduction
of the group velocity, vg/c = �2/(κ2n1D) � 1. Fast switching
off of the control fields or setting ν(t) to zero prevents the spin
excitations from decay through the radiation of photons in the
forward direction and leads to their storage in the medium.
Note that the proposed scheme may be termed “passive,” since
it, unlike the conventional one [3–7], does not require gradual
tuning of the control field during the signal pulse propagation
in the medium but implies instead rapid switching off of both
the control fields or a fast change of ν(t) to zero, as soon as
the maximum conversion efficiency is achieved.
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Nat. Commun. 5, 5542 (2014).

[21] Sheng-Jun Yang, Xiao-Hui Bao, and Jian-Wei Pan, Phys. Rev.
A 91, 053805 (2015).

[22] B. J. Dalton, R. McDuff, and P. L. Knight, Opt. Acta 32, 61
(1981).

[23] E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins,
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