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We theoretically explore the quantum correlation properties of a dissipative Bose-Hubbard dimer in the presence
of a coherent drive. In particular, we focus on the regime where the semiclassical theory predicts a bifurcation
with a spontaneous spatial symmetry breaking. The critical behavior in a well-defined thermodynamical limit
of large excitation numbers is considered and analyzed within a Gaussian approach. The case of a finite boson
density is also examined by numerically integrating the Lindblad master equation for the density matrix. We
predict the critical behavior around the bifurcation points accompanied by large quantum correlations of the
mixed steady state, in particular, exhibiting a peak in the logarithmic entanglement negativity.
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I. INTRODUCTION

In recent years there has been a growing interest in
driven-dissipative photonic systems for the realization of
correlated quantum states (see, for example, Refs. [1–5] for
recent comprehensive reviews). One direction of research
of particular relevance is the study of dissipative phase
transitions and quantum criticality in these out-of equilibrium
systems [6–16]. In particular, a recent study by Carmichael
has emphasized that critical phenomena can emerge in the
thermodynamical limit defined by a large number of photons
even with no spatial degrees of freedom (only one cavity) [17].
The simplest system where there can be an interplay between
spatial degrees of freedom and interactions is the two-cavity
dimer. The driven-dissipative Bose-Hubbard dimer has been
the subject of recent investigations and can be realized, e.g., in
a system of two coupled nonlinear optical cavities (see the inset
in Fig. 1 for a sketch). Already at the semiclassical level a very
rich behavior is predicted, with parametric instabilities [18]
and spontaneous symmetry breaking [19,20].

Recently, an experimental setup with coupled photonic-
crystal lasers nicely revealed this spontaneous symmetry
breaking [11]. The driven-dissipative Bose-Hubbard dimer has
also been realized with various other experimental platforms
such as semiconductor microcavities [21–24] and supercon-
ducting circuits [10,25]. A Bose-Hubbard dimer has also
been studied for the realization of unconventional photon
blockade effects in systems with weak nonlinearity [26,27].
The closed-system analog is the bosonic Josephson junction
for which the semiclassical approach also predicts a symmetry
breaking [28,29], observed experimentally with ultracold
gases [30]. For this system various theoretical efforts have
been devoted to providing a quantum description that goes
beyond the semiclassical approximation (see, for example,
Refs. [31–34]).

In this paper, we explore the physics of the driven-
dissipative Bose-Hubbard dimer in the region where the
semiclassical approach predicts two bifurcation points and
a spontaneous spatial symmetry breaking. An analytical
quantum description of the critical behavior is provided by
considering the Gaussian fluctuations around the semiclassical
result. This gives an exact description in a thermodynamical

limit of large excitation numbers, which is carefully defined.
In particular, we determine the critical behavior of the von
Neumann entropy and of the logarithmic negativity, which
is a measure of entanglement for mixed states. The finite-size
behavior (finite number of bosons) is examined by numerically
integrating the master equation for the density matrix.

In Sec. II the driven-dissipative Bose-Hubbard model is
introduced and the semiclassical prediction of spontaneous
symmetry breaking is discussed. Furthermore, in Sec. II the
concept of a well-defined thermodynamic limit with an infinite
number of photons is introduced. In Sec. III the role of the
quantum fluctuations around the semiclassical prediction is
examined up to quadratic order analytically and compared with
numerical simulations which reveal the presence of a quantum
critical region for a finite photon number. Then, in Sec. IV,
the behavior of the von Neumann entropy and the logarithmic
negativity is examined. Finally, in Sec. V, the conclusions and
perspectives are presented.

II. SEMICLASSICAL PREDICTION OF SPONTANEOUS
SYMMETRY BREAKING

We start by considering the following Hamiltonian (with
� = 1):

ĤBH = −J (â†
1â2 + â

†
2â1) +

∑
j=1,2

(ωcâ
†
j âj + Uâ

†
j â

†
j âj âj ), (1)

where â
†
j (âj ) is the creation (destruction) operator of a boson

at site j ∈ ˜{1,2}. The first term represents the hopping
between the two sites at rate J . The second term describes
the energy of the boson modes whose frequency is ωc. The
boson-boson interaction is quantified by the on-site energy
U (we consider a repulsive interaction with U > 0). The
corresponding linear system (U = 0) consists of two normal
modes typically denoted the bonding (+) and the antibonding
(−) modes. The corresponding bosonic operators are â± =
(â1 ± â2)/

√
2 and the corresponding mode frequencies are

ω± = ω0 ∓ J .
The dimer is considered to be driven coherently with an

amplitude Fi at site i and frequency ωp, which is the same
on both sites. This is described by adding the following drive
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term to the Hamiltonian:

Ĥp(t) =
∑
j=1,2

(
Fje

−iωpt â
†
j + F ∗

j eiωpt âj

)
. (2)

The total system Hamiltonian is Ĥ = ĤBH + Ĥp. In the
quantum optical context, this Hamiltonian can be implemented
by two coupled cavity resonators with Kerr photon-photon
nonlinearity. For the sake of simplicity we work in the frame
rotating at the drive frequency ωp, which eliminates the time
dependence of the Hamiltonian. The relevant parameter is the
detuning � = ωp − ωc. The boson losses are described per-
turbatively within the Born-Markov approximation, resulting
in the Lindblad-master equation for the dimer reduced density
matrix ρ̂

i
∂ρ̂

∂t
= [Ĥ ,ρ̂] + i

γ

2

∑
j=1,2

[2âj ρ̂â
†
j − â

†
j âj ρ̂ − ρ̂â

†
j âj ], (3)

where γ is the loss rate.
The semiclassical approach is achieved by replacing the

operators âi with complex amplitudes αi = 〈ai〉 satisfying the
following nonlinear equations:

i
∂α1

∂t
=

(
−� − i

γ

2
+ 2U |α1|2

)
α1 − Jα2 + F1 = 0,

i
∂α2

∂t
=

(
−� − i

γ

2
+ 2U |α2|2

)
α2 − Jα1 + F2 = 0. (4)

Henceforth we consider a spatial driving configuration that
excites selectively the antibonding mode, i.e., J > 0 and
F = F1 = −F2 (see inset in Fig. 1). In this case the Lindblad-
master equation (3), has discrete Z2 symmetry described by
the transformation â1 ↔ −â2. At the semiclassical level this
corresponds to the symmetry α1 ↔ −α2 of Eqs. (4). We
consider this particular driving scheme to obtain a regime with
only two stable solutions that exhibit spontaneous symmetry
breaking. An alternative possibility for obtaining such a regime
is a negative hopping parameter J < 0 and F = F1 = F2

(see inset in Fig. 1), as is the case in the experimental setup
presented in Ref. [11].

The mean-field equations (4), become exact in the limit
of an infinite number of photons. A simple scaling analysis
of Eqs. (4) reveals that taking the limit F → +∞, while
keeping the product

√
UF fixed, results in an infinite number

of photons (|αi |2 → +∞ with i ∈ {1,2}) and a well-defined
thermodynamical limit. This can be seen by substituting α′

i =√
Uαi in Eqs. (4), which makes the rescaled equations depend

only on
√

UF,�, J and γ . Keeping
√

UF fixed, we clearly
have that |αi |2 = |α′

i |2/U → +∞ in the limit U → 0, hence
this is the thermodynamical limit in our problem. Therefore we
present the results as a function of the dimensionless quantity√

UF/γ 3/2.
For the considered spatial driving configuration and a

frequency below the antibonding resonance and sufficiently
blue detuned with respect to the bonding mode resonance
(ω+ + √

3γ /2 < ωp < ω−), there is a range of values for the
drive amplitude F for which Eqs. (4) admit three solutions.
Two of these are dynamically stable and exhibit spontaneous
symmetry breaking. To examine this further, we introduce the
operator Ô = â1 + â2. Note that the expectation value of Ô is
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FIG. 1. Semiclassical mean-field results describing the spatial
symmetry breaking in the driven-dissipative Bose-Hubbard dimer.
The rescaled order parameter |〈Ô〉|√U/γ , with |〈Ô〉| = |〈â1 + â2〉|,
is depicted (solid line) as a function of the dimensionless quantity√

UF/γ 3/2. These results become exact in the thermodynamic limit
with an infinite number of photons, obtained for

√
UF fixed and

F → +∞. There are two bifurcation points (indicated by dotted
lines): in between, the symmetry is broken (non-zero-order parameter
|〈Ô〉|). Dashed lines are fits to a square root dependence in the
symmetry-broken phase around the two bifurcation points. Other
parameters: J = 2.5γ and � = −1.5γ . Inset: Sketch of the driven-
dissipative Bose-Hubbard dimer and the two possible equivalent
configurations: the first is characterized by a positive hopping (J > 0)
and a π phase difference between the driving fields; the second,
equivalent configuration has a negative hopping strength (J < 0) and
the same driving phase at the two sites.

0 for states which are symmetrical with respect to the transfor-
mation â1 ↔ −â2 of the Lindblad-master equation (3). This
shows that the expectation value of Ô can be used as an order
parameter signaling a spatial symmetry breaking. In Fig. 1 the
semiclassical prediction for |〈Ô〉| is presented as a function of√

UF/γ 3/2 for a detuning � = −1.5γ and hopping strength
J = 2.5γ . In particular, the normalized quantity |〈Ô〉|√U/γ

is considered because due to the scaling properties of the
mean-field equations the corresponding universal behavior
does not depend on U alone, but only on

√
UF/γ 3/2, which

is well defined in the considered thermodynamical limit.
The calculations show two bifurcation points between which
the symmetry is broken. Close to the bifurcation points,
in the symmetry-broken phase the order parameter has
the power-law behavior |〈Ô〉|√U/γ ∝ (

√
UF − Ac)1/2 (see

dashed lines in Fig. 1), where Ac is a constant depending on the
detuning �/γ . In other words, there is a critical exponent 1/2
for the order parameter. The two stable symmetry-breaking
solutions of Eqs. (4) have the same value of |〈Ô〉| and
are related by the transformation {α1,α2} ↔ −{α2,α1}. We
emphasize that the results presented in the following are the
same for the two symmetry-breaking solutions.

III. QUADRATIC FLUCTUATIONS
AND NUMERICAL SIMULATIONS

Systematic corrections to the semiclassical predictions
can be obtained through an expansion of the fields around
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the mean-field amplitudes. Truncating this expansion at the
quadratic order allows us to solve the resulting equations
of motion for the system exactly. We express the fields
as âi = αi + δ̂i , where δ̂i is the operator describing the
correction to the mean-field result. In general a Gaussian
system is completely described by the covariance matrix which
contains the quadratic correlation functions (see, for example,
Ref. [35]). We note that for a photonic system all the considered
quadratic correlation functions are experimentally accessible,
e.g., through a homodyne detection scheme [36,37]. The
equations of motion for these quadratic correlation functions
form a closed set which, for the considered case of two coupled
modes, corresponds to six linear independent equations. This is
in stark contrast to the general case of a nonlinear system with
an infinite hierarchy of coupled equations of motions for the
correlation functions at all orders [38]. Within the Gaussian
truncation, the equations of motion for the local quadratic
correlation functions for site 1 are

i∂t 〈δ̂†1δ̂1〉 = −iγ 〈δ̂†1δ̂1〉 + 2Uα2
1

〈
δ̂
†2
1

〉 − 2Uα∗2
1

〈
δ̂2

1

〉
− J (〈δ̂†1δ̂2〉 − 〈δ̂†2δ̂1〉); (5)

i∂t

〈
δ̂2

1

〉 = 2

(
� + 4U |α1|2 − i

γ

2

)〈
δ̂2

1

〉

+ 2Uα2
1(1 + 2〈δ̂†1δ̂1〉) − 2J 〈δ̂1δ̂2〉. (6)

Similarly, the equations of motion for the local second-order
expectation values for site 2 are obtained by the substitution
1 ↔ 2. For the nonlocal expectation values we obtain

i∂t 〈δ̂†1δ̂2〉 = (4U |α2|2 − 4U |α1|2 − iγ )〈δ̂†1δ̂2〉 + 2Uα2
2〈δ̂†1δ̂†2〉

− 2Uα∗2
1 〈δ̂1δ̂2〉 − J (〈δ̂†1δ̂1〉 − 〈δ̂†2δ̂2〉), (7)

i∂t 〈δ̂1δ̂2〉 = (2� + 4U |α2|2 + 4U |α1|2 − iγ )〈δ̂1δ̂2〉
+ 2Uα2

2〈δ̂1δ̂
†
2〉 + 2Uα2

1〈δ̂†1δ̂2〉 − J
(〈
δ̂2

2

〉 + 〈
δ̂2

1

〉)
.

(8)

Note that as for the semiclassical Eqs. (4) the substitution
α′

i = √
Uαi removes the explicit dependence on the

nonlinearity U for these equations of motion. This results
in an effective description for the system dynamics with
Gaussian states, which becomes exact in the thermodynamic
limit. Henceforth we consider the steady state of the system,
which corresponds to setting the time derivatives in the
equations of motion equal to 0.

In Fig. 2, we start by looking at fluctuation properties.
In particular, we analyze the variance of the order param-
eter, namely, V (Ô) = 〈|Ô|2〉 − |〈Ô〉|2 = 〈δ̂†1δ̂1〉 + 〈δ̂†2δ̂2〉 +
2Re[〈δ̂†1δ̂2〉]−|〈δ̂1 + δ̂2〉|2, as a function of

√
UF for the same

parameters as in Fig. 1. We also show the results obtained
from a numerical integration of the full master equation (3),
with different values of the nonlinearity U . These results
have been obtained by determining the steady-state solution
of the master equation (3), in the Fock number state basis
of the fluctuation operators {δ̂i}, with a maximal considered
cutoff of 16 excitations per site. In particular, the steady-state
solution is obtained by diagonalization of the Liouvillian linear
superoperator associated with the master equation, where the
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FIG. 2. Variance of the order parameter V (Ô) as a function of√
UF/γ 3/2. The dashed curve is the Gaussian approach, which is

exact in the thermodynamic limit (
√

UF fixed and U → 0). Solid
lines depict numerical solutions of the full master equation (3), for
U/γ = 0.1, 0.25, 0.5, and 1 (from top to bottom). Inset: Inverse of the
variance V (Ô)−1 as a function of

√
UF/γ 3/2 in the thermodynamic

limit; dashed linesare fits to V (Ô) ∝ (
√

UF − Ac)−1 around the
bifurcation points, where Ac is a constant. Other parameters: J = 2.5γ

and � = −1.5γ .

steady-state solution corresponds to the zero eigenvalue. From
the behavior far from the symmetry-breaking region, we see
that the numerical results indeed tend to the Gaussian descrip-
tion as the interaction strength U is decreased, while keeping√

UF constant. In the thermodynamic limit the variance of the
order parameter diverges at the bifurcation points, as expected
from the general theory for phase transitions. This can be
seen more clearly in the inset in Fig. 2 where the inverse
of the variance is presented. In particular, at the bifurcation
points the divergence of the variance follows the power
law V (Ô) ∝ (

√
UF − Ac)−1, thus with a critical exponent

1. We would like to stress again that the variance of the
order parameter V (Ô) is experimentally accessible through
a homodyne quantum optical detection scheme [36,37].

The numerical results with a finite photon density reveal the
presence of a quantum critical region around the bifurcation
points where the quantum fluctuations are not captured by the
Gaussian approach. In this case the higher order terms beyond
the quadratic approximations become relevant. We note that
since the numerical integration scheme relies on a cutoff for the
maximal number of photons it is unfortunately not possible to
fully explore numerically the transition to the thermodynamic
limit. Note that for U → 0 the numerical calculation is most
challenging at the bifurcation points, because the fluctuations
diverge and one would have to take an arbitrary large cutoff. In
the region between the two bifurcation points, convergence is
much easier (the Gaussian result is finite) and we have indeed
verified (not shown) that the numerical results tend well to the
Gaussian theory.

IV. VON NEUMANN ENTROPY AND LOGARITHMIC
ENTANGLEMENT NEGATIVITY

For a two-mode Gaussian system analytical expressions
exist for many physical properties. We consider two that
play an important role in the theory of quantum information:
the logarithmic entanglement negativity EN and the von
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FIG. 3. The logarithmic entanglement negativity EN as a function
of

√
UF/γ 3/2. The dashed curve is the result for the Gaussian

approach, which is valid in the thermodynamic limit (U → 0 with√
UF fixed). Solid curves correspond to finite values of the

nonlinearity, U/γ = 0.1, 0.25, 0.5, and 1 (from top to bottom). Other
system parameters are the same as in Fig. 1.

Neumann entropy S. The entanglement negativity is defined as
N = ∑

i (|λi | − λi)/2, where the λi are the eigenvalues of the
operator which is obtained by performing a partial transposi-
tion of the density matrix ρ̂ with respect to one of the sub-
systems (one of the two sites for the present dimer system). A
finite value of the entanglement negativityN [39] is a sufficient
condition for bipartite entanglement and is used as a measure
of it. We consider the closely related logarithmic negativity
EN = ln(2N + 1). The von Neumann entropy is defined as
S = −Tr[ρ̂ ln[ρ̂]] and measures the mixed character of the
steady state. In the case of a two-mode Gaussian system an
exact analytical expression in terms of the second-order expec-
tation values has been derived in Ref. [40] for the entanglement
negativity and in Ref. [41] for the von Neumann entropy.

In Fig. 3 the logarithmic entanglement negativity EN is
presented as a function of

√
UF/γ 3/2. Both the Gaussian

result for the thermodynamic limit and numerical results with
finite photon densities are presented. At each of the bifurcation
points, a cusp emerges in the thermodynamic limit. A max-
imum value close to 0.35 is predicted at the first bifurcation
point. The results for a finite nonlinearity U exhibit a single
peak around the first bifurcation point and a weak shoulder
around the second one. Note that the entanglement increases in
the thermodynamical limit (U → 0 with

√
UF fixed), proving

that criticality enhances the quantum correlations as well.
In Fig. 4 the von Neumann entropy S is presented as a

function of
√

UF/γ 3/2. Again, both the Gaussian prediction
for the thermodynamic limit and the numerical results for a
finite nonlinearity are presented. In the thermodynamic limit
two narrow peaks are observed at the bifurcation points with a
finite maximum. This indicates that the system becomes highly

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.00.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

U F Γ3 2

S

FIG. 4. von Neumann entropy S as a function of
√

UF/γ 3/2.
The dashed curve is the Gaussian result, which is valid in the
thermodynamic limit (U → 0 with

√
UF fixed). Solid curves

correspond to finite values of the nonlinear interaction U/γ = 0.1,
0.25, 0.5, and 1 (from top to bottom). Other system parameters are
the same as in Fig. 1.

mixed at the bifurcation points. The results for finite nonlin-
earity exhibit a single peak in the critical quantum regime.

V. CONCLUSIONS AND PERSPECTIVES

We have presented a theoretical investigation of the driven-
dissipative Bose-Hubbard dimer in the regime where a phase
transition with spontaneous spatial symmetry breaking occurs.
It is shown that a thermodynamic limit is well defined
by letting the nonlinear interaction U → 0 and the driving
amplitude F → ∞, while keeping the product

√
UF fixed.

In this thermodynamic limit a second-order phase transition
with spatial symmetry breaking is well defined. We predict
a large quantum entanglement of the mixed steady state,
which is maximized in the thermodynamical limit. Numerical
solutions for finite excitation numbers confirm these results
and show the finite-size deviations from the Gaussian theory.
Our results demonstrate that quantum entanglement occurs
also in dissipative phase transitions and is enhanced by critical
behavior. The behavior of entanglement and criticality in
driven-dissipative Bose-Hubbard lattices (and other physical
models) with many sites is an intriguing problem to explore in
the future.
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