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Theoretical studies and experimental implementations of quantum correlation are the important contents of
continuous variables quantum optics and quantum information science. There are various systems for the study
of quantum correlation. Here, we study an experimental scheme for generating three quantum correlated beams
based on phase-sensitive cascaded four-wave-mixing (FWM) processes in rubidium vapor. Quantum correlation
including intensity difference or sum squeezing, two other combinatorial squeezing, and quantum entanglement
among the three output light fields are theoretically analyzed in this paper. Also, the comparison of the quantum
correlations have been made between the phase-sensitive cascaded FWM processes and the phase-insensitive
cascaded FWM processes. By changing the phases and intensities of the input beams, it is interesting to find
that the maximum degrees of various combinatorial squeezing are equal when the two FWM processes share
a common intensity gain. When the common intensity gain of the two FWM processes changes, the maximum
degrees of different combinatorial squeezing will be synchronously controlled. At last we discuss the genuine
tripartite entanglement and steering in our phase-sensitive cascaded scheme, and compare them with the cases
of the phase-insensitive cascaded scheme.
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I. INTRODUCTION

Multimode quantum states, which are quantum correlations
shared and distributed among multiple parties, have attracted
considerable attention because of their fundamental scientific
significance [1,2] and potential applications in future quantum
technologies [3,4]. A number of different techniques for its
generation have been proposed and experimentally imple-
mented. For example, one approach pursued in this area is
to use independent single mode squeezed beams generated by
optical parametric oscillators (OPOs), together with multiple
beamsplitters to generate a continuous variable (CV) quantum
network [5]. Such linear beamsplitter network has been
experimentally realized by several groups [6–8]. Other groups
have experimentally followed another promising approach
with a single multimode nonlinear process using different
spatial regions of a single beam [9], multiple longitudinal [10],
or temporal modes [11]. Recent advances in this respect
include the ultralarge-scale quantum networks generated in
both the time [12] and the frequency domains [13,14].

In 2007, Paul Lett’s group at NIST experimentally gen-
erated a pair of intensity-correlated beams based on the
nondegenerate four-wave-mixing (FWM) process in a hot
rubidium vapor [15]. This system has several advantages for
practical implementations, e.g., no need of a cavity due to the
strong nonlinearity of the system, a spatial multimode nature
due to no mode constraint, spatial separation of the generated
nonclassical beams, etc. These advantages explain the rapidly
growing popularity of such a system in many applications,
including quantum information processing and quantum
metrology, such as entangled images [16], tunable delay
of EPR entanglement [17], nonlinear quantum interferometer
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[18–20], high purity narrow-bandwidth single photons [21],
ultrasensitive measurement of microcantilever displace-
ment [22], and the localized multispatial mode quadrature
squeezing for quantum imaging [23].

Due to these advantages, it is a good candidate for
generating multiple quantum correlated beams which have
potential applications in quantum communication [3,4,24–28].
For example, theoretical proposals based on FWM in hot vapor
have been proposed to realize CV cluster state generation
over a spatial comb through the FWM process [29] and
versatile quantum network generation by cascading several
FWM processes [30]. In 2014, our group has experimentally
generated three bright strongly quantum correlated beams by
phase-insensitive cascaded FWM processes in hot vapors [19].

The gain and noise of the phase-insensitive amplification
process are independent of the phases of the input signals. The
output of such a process necessarily has a lower signal-to-noise
ratio (SNR) than the input. In contrast, the gain and noise of
the phase-sensitive amplification process are dependent of the
phases of the input signal. The phase-sensitive amplification
process will not degrade the SNR with a correct choice of
the phases of the input signals. For this reason, in this paper,
we mainly study an experimental scheme for generating three
quantum correlated beams based on phase-sensitive cascaded
FWM processes in Rb vapor. Compared with the linear beam-
splitter network [5–8] that passively mixes squeezed states, our
cascaded FWM processes based scheme actively constructs
and even enhances quantum correlation among the output
modes. Quantum correlation including intensity difference
or sum squeezing, two other combinatorial squeezing, and
genuine tripartite entanglement and steering among the three
output light fields are theoretically analyzed. Compared with
the degree of intensity difference squeezing of the twin output
beams obtained with phase-sensitive single FWM process [31]
or the three output beams obtained with phase-insensitive
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cascaded FWM processes [32], the degree of intensity
difference squeezing of the three beams output from the
current phase-sensitive cascaded FWM processes can be
largely enhanced. No matter what kind of combination, it
is worth noting that the maximal squeezing levels would
always be equal when the two FWM processes share a
common intensity gain. When the common intensity gain
of the two FWM processes changes, the maximum degree
of different combinatorial squeezing will be synchronously
controlled. Then we discuss the tripartite entanglement in
our phase-sensitive cascaded FWM processes by using the
single-condition criterion and the two-condition criterion [33],
and compare them with the cases of the phase-insensitive
cascaded FWM processes. Further, we investigate the
multipartite steering [34,35] based on our cascaded FWM
processes. We find that there exists genuine tripartite steering
in our cascaded scheme. Additionally, not only the light
intensity of the output probe beam but also the signal-to-noise
ratio (SNR) of it can be improved by changing the phases and
intensities of the input beams.

This paper is organized as follows. In the second section,
phase-sensitive cascaded FWM processes are briefly intro-
duced. The amplification and deamplification of the input
probe field is briefly described in Sec. III. In Sec. IV, the
noise properties of the system are also discussed. The ratio
of the variance of the output probe field to the variance at
the standard quantum limit (SQL) and the noise figure (NF)
of the system are included in Sec. IV. Various combinatorial
squeezing among the triple beams output from the current
cascaded phase-sensitive FWM processes is deduced and the
influences of the phases and the intensity ratios of the input
beams are also theoretically analyzed in this section. The
genuine tripartite entanglement and steering in cascaded FWM
processes is discussed in Sec. V. Finally, a brief conclusion is
given in Sec. VI.

II. PHASE-SENSITIVE CASCADED FWM PROCESSES

We use a double-λ FWM process in Rb atomic vapor as
shown in Fig. 1(b). As shown in Fig. 1(a), two coherent fields,

the probe (â0) and conjugate (b̂0) beams, are simultaneously
and symmetrically crossed with a strong pump beam (ĉ1) in
the first atomic vapor. Probe (â1) and conjugate (b̂1) beams are
created via the FWM scheme in the first Rb vapor. Then the
probe beam (â1) is fed into a second FWM process with an ad-
ditional phase θx caused by the distance between the two FWM
processes. The probe beam (â1e

iθx ) and the coherent conjugate
beam (b̂′

0) are also simultaneously and symmetrically crossed
with a strong pump beam (ĉ2) in the second Rb vapor. Then
the probe (â2) and conjugate (b̂2) beams are created after the
second Rb vapor. Viewing the two FWM processes as a whole
system, there are three output light beams, which are the probe
â2 (Ô1), conjugate b̂2 (Ô2), and another conjugate b̂1 (Ô3).

The FWM process involves the annihilation of two pump
photons, and the creation of a single probe and a conjugate
photon. Labeling the annihilation operator of the probe (â),
conjugate (b̂), and pump (ĉ) respectively, the Hamiltonian (Ĥ1)
and (Ĥ2) corresponding to the interaction of the first and the
second FWM processes can be written by [36,37]

Ĥ1 = i�ζ1e
−iθ1 b̂†â† + H.c., (1)

Ĥ2 = i�ζ2e
−iθ2 b̂†â† + H.c., (2)

where the ζ1 and ζ2 are the interaction strength of the first and
second FWM processes respectively that depend on the length
of the interaction and are proportional to the intensities of
pump light beams (ĉ1) and (ĉ2) respectively. The phases of the
pump fields (ĉ1) and (ĉ2) can be shown as φc1 and φc2 respec-
tively. Here θ1 is equal to 2φc1 and θ2 is equal to 2φc2 . From
Eq. (1), the time evolution of the first FWM process is given by

â1(t) =
√

G1â0 + eiθ1
√

G1 − 1b̂
†
0, (3)

b̂
†
1(t) =

√
G1b̂

†
0 + e−iθ1

√
G1 − 1â0. (4)

From Eq. (2), the time evolution of the FWM process is given
by

â2(t) =
√

G2â1e
iθx + eiθ2

√
G2 − 1b̂

′†
0 , (5)

b̂
†
2(t) =

√
G2b̂

′†
0 + e−iθ2

√
G2 − 1â1e

iθx , (6)

FIG. 1. Phase-sensitive cascaded FWM processes in hot 85Rb vapor. (a) The experimental arrangement. (b) Double-λ energy level of 85Rb
D1 line: � and δ stand for the one-photon detuning and the two-photon detuning respectively. The interaction strength depends strongly on
the one-photon detuning � and the two-photon detuning δ.
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FIG. 2. The relation among Geff,probe, ϕ1 and ϕ2 under the β1 = β2 = 1 condition. (a) The entire picture for Geff,probe. (b) The local picture
for Geff,probe > 1. (c) The local picture for Geff,probe < 1. Panel (b) shows the probe beam amplified. In addition, panel (c) shows the probe beam
deamplified.

where θx represents the additional phase of the probe beam (â1) depending on the distance between the two FWM processes.
Here G1 = coshζ1t and G2 = coshζ2t depend on the strength of the interaction. G1 and G2 are the intensity gain of the first
and second FWM processes respectively. Through the use of Eqs. (3)–(6), the input-output relation of the whole system can be
shown as Eq. (7):⎛

⎜⎝
â2(t)

b̂
†
2(t)

b̂
†
1(t)

⎞
⎟⎠ =

⎛
⎜⎝

√
G1G2e

iθx
√

(G1 − 1)G2e
iθ1+iθx

√
G2 − 1eiθ2

√
G1(G2 − 1)eiθx−iθ2

√
(G1 − 1)(G2 − 1)eiθ1+iθx−iθ2

√
G2√

G1 − 1e−iθ1
√

G1 0

⎞
⎟⎠

⎛
⎜⎝

â0

b̂
†
0

b̂
′†
0

⎞
⎟⎠. (7)

III. AMPLIFICATION AND DE-AMPLIFICATION
OF THE SYSTEM

The mean value of photon number operator (〈N̂a2,out〉)
for the output probe mode (â2) is 〈N̂a2,out〉 = 〈â†

2â2〉, which
through use of Eqs. (3) and (5) becomes〈

N̂a2,out
〉 = G1G2

〈
N̂a0

〉 + (G1 − 1)G2
〈
N̂b0

〉
+ (G2 − 1)

〈
N̂b′

0

〉 + (G1G2 − 1)

+ 2
√

G1(G1 − 1)G2

√〈
N̂a0

〉〈
N̂b0

〉
cosϕ1

+ 2
√

G1G2(G2 − 1)
√〈

N̂a0

〉〈
N̂b′

0

〉
cosϕ2

+ 2
√

(G1 − 1)G2(G2 − 1)
√〈

N̂b0

〉〈
N̂b′

0

〉
× cos(ϕ1 − ϕ2), (8)

where 〈N̂a0〉 and 〈N̂b0〉 represent the average input photon
number of the probe and conjugate fields fed in the first
Rb vapor cell respectively. 〈N̂b′

0
〉 represents the average input

photon number of the conjugate field injected in the second Rb
vapor cell. The phases of the probe field (â0) and the conjugate
field (b̂0) can be denoted as φa and φb respectively. φb′

represents the phase of another conjugate field (b̂′
0). ϕ1 is equal

to θ1 − φa − φb and ϕ2 is equal to θ2 − θx − φa − φb′ . The
term (G1G2 − 1) in Eq. (8), which is due to the spontaneous
emission during the FWM processes, can be ignored when
the probe beam (â0) is bright. When the conjugate ports (b̂0)
and (b̂′

0) are seeded with vacuum, which means 〈N̂b0〉 = 0 and
〈N̂b′

0
〉 = 0, the average output photon number of the probe is

thus given by 〈N̂a,out〉 = G1G2〈N̂a0〉. This agrees well with

the result of the PIA shown in Ref. [32]. When the second
Rb vapor cell is absent, that is to say, 〈N̂b′

0
〉 = 0 and G2 = 1,

we can then calculate the average output photon number of
the probe beam. Obviously, it conforms to the conclusion that
Ref. [31] has drawn.

From Eq. (8) we can see that the intensity of output probe
field depends not only on the phase ϕ1 and ϕ2 but also on
the intensity of the three input fields â0, b̂0, and b̂′

0. Then we
define the intensity ratio 〈N̂b0〉/〈N̂a0〉 as β1 and 〈N̂b′

0
〉/〈N̂a0〉 as

β2. We can simplify Eq. (8) when β1 = β2 = 1,〈
N̂a2,out

〉 = 2
√

G1(G1 − 1)G2
〈
N̂a0

〉
cosϕ1 + (2G1G2 − 1)

〈
N̂a0

〉
+ 2

√
G1G2(G2 − 1)

〈
N̂a0

〉
cosϕ2

+ 2
√

(G1 − 1)G2(G2 − 1)
〈
N̂a0

〉
cos(ϕ1 − ϕ2). (9)

Then we can consider the effective gain for probe
light, Geff,probe = 〈N̂a,out〉/〈N̂a0〉, to study the amplification
(Geff,probe > 1) and deamplification (Geff,probe < 1) of the
probe beam. The effective gain Geff,probe is given by

Geff,probe = 2
√

G1(G1 − 1)G2cosϕ1

+ (2G1G2 − 1) + 2
√

G1G2(G2 − 1)cosϕ2

+ 2
√

(G1 − 1)G2(G2 − 1)cos(ϕ1 − ϕ2). (10)

We assume that the intensity gain of the first and second
FWM processes is equal to 3, G1 = G2 = 3, which results
in Geff,probe changing with ϕ1 and ϕ2 [Fig. 2(a)]. As the phase
ϕ1 and ϕ2 vary, the effective gain Geff,probe can vary between
Geff,probe > 1 [Fig. 2(b)] and Geff,probe < 1 [Fig. 2(c)]. As
shown in Fig. 2(b) [local image of Fig. 2(a)], it means the
amplification of the probe beam. Another case is shown in
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Fig. 2(c) [partial enlargement of Fig. 2(a)], where the probe
beam is deamplified.

If we consider the two FWM processes as a whole system,
we can treat the amplification or deamplification of the probe
beam as constructive and destructive interference of input light
beams respectively [31]. The two effective gain valleys as
show in Fig. 2(c) that describe relatively complete destructive
interference can be obtained with two sets of (ϕ1,ϕ2) in
the case of G1 = G2 = 3 and β1 = β2 = 1. In fact, the two
effective gain valleys are not a minimum value of effective
gain in the case of G1 = G2 = 3. When the intensity gain
of the two FWM processes is fixed, the effective gain of
the probe beam will change with four variables: ϕ1, ϕ2, β1,
and β2. That is to say, we can always find a minimum value
of the effective gain by changing values of ϕ1, ϕ2, β1, and
β2. In the situation of G1 = G2 = 3, the minimum value of
effective gain can be achieved when ϕ1 = ϕ2 = π, β1 = 0.54,
and β2 = 0.72. From the point of interference phenomena,
the most complete destructive interference in the case of
G1 = G2 = 3 is available when it meets the requirements of
ϕ1 = ϕ2 = π, β1 = 0.54, and β2 = 0.72. Of course, the probe
beam is maximally deamplified here.

IV. NOISE PROPERTIES OF THE SYSTEM

As discussed above, the probe beam could be amplified
or deamplified under different conditions. However, some
noise will thereby be introduced after the amplification or
deamplification process [38]. It is useful to characterize the
noise level of the probe beam by the ratio of the variance of
the output to the variance at the SQL. The variance of the
output mode is Var(N̂a,out) = 〈â†

2â2â
†
2â2〉 − 〈â†

2â2〉〈â†
2â2〉 and

Var(N̂a,out)SQL is equal to the mean value of the output photon
number. Through use of Eqs. (3) and (5), the noise level of
probe beam becomes

Var(N̂a,out)

Var(N̂a,out)SQL
= 2G1G2 − 1. (11)

This equation shows that the noise on the probe beam can
become arbitrarily large for large values of the intensity gain
G1 and G2. It is interesting to find this kind of additive noise is
independent of the phases or the intensities of the input beams.
Therefore this kind of system always introduces excess noise
to the input signal [39]. In addition, we will show the noise
properties of this system by means of its NF [38,40]. The NF
(represented below as Z) is defined as the square of the ratio
of signal-to-noise ratios of the input and output fields [41]

Z = (S/N )2
a0

(S/N )2
a2

, (12)

where

(S/N )2
a0

=
〈
N̂a0

〉2〈� N̂2
a0

〉 (13)

and

(S/N )2
a2

=
〈
N̂a2

〉2〈� N̂2
a2

〉 . (14)

FIG. 3. 1
Z

plotted as a function of the input phase ϕ1 and ϕ2.
(a) The entire picture for 1

Z
varies with phase ϕ1 and ϕ2. (b) The local

picture for 1
Z

< 0.1.

It is interesting to examine how this NF varies with the phase
ϕ1 and ϕ2. For convenience, we plot the inverse of NF, i.e.,
1
Z

. In order to be consistent with earlier calculation, we set
G1,G2 equal to 3 and β1, β2 equal to 1.

In Fig. 3, the 1
Z

is plotted as a function of the phase ϕ1 and ϕ2

for the case in which G1 = G2 = 3 and β1 = β2 = 1. Because
of constructive interference, the NF of this phase-sensitive
process can be less than 1 ( 1

Z
> 1), meaning that the SNR is

enhanced by this whole process. The NF will become quite
large ( 1

Z
< 1) due to destructive interference, meaning that the

SNR is getting worse. Furthermore, in Fig. 3(b), there are two
valleys of 1

Z
, which correspond to the two relatively complete

destructive interference.
Let us now consider the quantum variances of intensity

difference or sum squeezing and other combinatorial
squeezing among the three output light fields. The degree
of squeezing [DS (represented below as D)] of the intensity
difference among the three output light fields with respect to
the SQL is given by

DN̂a2 −N̂b2 −N̂b1
= 10log10

(
Var

(
N̂a2 − N̂b2 − N̂b1

)
Var

(
N̂a2 − N̂b2 − N̂b1

)
SQL

)
.

(15)

Here one can easily calculate the term Var(N̂a2−N̂b2−N̂b1 )
from Eq. (7), and Var(N̂a2 − N̂b2 − N̂b1 )SQL is just the sum of
the mean value of the output photon number. In order to be
consistent with earlier calculation, we set the intensity gain
to satisfy the relationship G1 = G2 = 3. Then the quantum
variances of intensity difference squeezing among the three
output light fields is simplified as

DN̂a2 −N̂b2 −N̂b1
= 10log10

(
1 + β1 + β2

γ

)
, (16)

where γ is equal to 17 + 13β1 + 5β2 + 12
√

6
√

β1cos(ϕ1) +
12

√
2
√

β2cos(ϕ2) + 8
√

3
√

β1β2cos(ϕ1 − ϕ2). When we seed
vacuum fields to the conjugate ports b̂0 and b̂′

0 (β1 = β2 = 0),
the degree of intensity difference squeezing of the output
beams is given by −12.3 dB (10log10

1
17 dB), which agrees

with the result 10log10( 1
2G2−1 ) dB of a phase-insensitive

cascaded scheme in Ref. [32]. Equation (16) shows that the
degree of squeezing varies with the phase ϕ1, ϕ2 and the
intensity ratio β1, β2. We can find the maximal squeezing
by changing ϕ1, ϕ2, β1, and β2. In the current situation,
the maximal squeezing is −15.311 dB which corresponds
to β1 = 0.75, β2 = 0.25, and ϕ1 = ϕ2 = 0,2π . Similarly, we
can also find that the maximal squeezing levels of intensity
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FIG. 4. The squeezing levels of intensity difference
D(N̂a2 −N̂b2 −N̂b1 ) vary with β1 and β2 when ϕ1 = ϕ2 = 0/2π .
(a) G1 = G2 = 2: The squeezing level becomes maximal when
β1 = 0.667 and β2 = 0.333. (b) G1 = G2 = 3: The squeezing level
becomes maximal when β1 = 0.75 and β2 = 0.25. (c) G1 = G2 = 4:
The squeezing level becomes maximal when β1 = 0.8 and β2 = 0.2.
(d) G1 = G2 = 5: The squeezing level becomes maximal when
β1 = 0.833 and β2 = 0.167.

difference are −11.439, −17.923, and −19.913 dB which
correspond to G1 = G2 = 2,4,5 respectively. The maximal
squeezing levels of intensity difference can be obtained when
β1,β2 are certain values and ϕ1 = ϕ2 = 0,2π . Then we plot
the squeezing levels of intensity difference in decibels as a
function of the ratio β1, β2 when ϕ1 = ϕ2 = 0,2π for intensity
gains of 2, 3, 4, 5 as shown in Fig. 4. When ϕ1 = ϕ2 = 0,2π ,
the maximal squeezing for different gains can be achieved
when the intensity ratio β1 and β2 are certain values given in the
caption of Fig. 4. In Fig. 4, as β1 and β2 decrease to zero, which
is equivalent to seeding vacuum fields to the conjugate ports in
the phase-insensitive cascaded scheme, the squeezing levels of
intensity difference for different intensity gains will decrease
nearly about 3 dB. That is to say, nearly 3 dB enhancement on
the squeezing levels of intensity difference among the three
output beams can be achieved in this phase-sensitive cascaded
scheme compared to the phase-insensitive cascaded scheme
with the same gain value [32]. Compared with the degree of
intensity difference squeezing of the twin beams obtained with
a single cell in the PSA configuration (see Fig. 4 in [31]), the
degree of intensity difference squeezing of the triple beams has
also been enhanced clearly. As shown in Fig. 5, we can also plot
the squeezing levels of intensity difference for different gains
of 2, 3, 4, 5 in decibels as a function of ϕ1 and ϕ2 when β1 and β2

are certain values. When the phase ϕ1 and ϕ2 are close to 0,2π ,
the maximal squeezing levels can be achieved. Otherwise,
when they are close to π , the noise levels are even higher than
SQL (D(N̂a2 −N̂b2 −N̂b1 ) = 0 dB), i.e., they are antisqueezed. It is
clear that with higher gain, a higher squeezing level of intensity
difference can be obtained as shown in both Figs. 4 and 5.

Then, we consider the more general situation when the
intensity gain G1 = G2 = G (G � 1). Here one can easily

FIG. 5. (a) G1 = G2 = 2: The squeezing level of intensity differ-
ence D(N̂a2 −N̂b2 −N̂b1 ) varies with the phase ϕ1 and ϕ2 when β1 = 0.667
and β2 = 0.333. (b) G1 = G2 = 3: The squeezing level varies with
the phases when β1 = 0.75 and β2 = 0.25. (c) G1 = G2 = 4: The
squeezing level varies with the phases when β1 = 0.8 and β2 = 0.2.
(d) G1 = G2 = 5: The squeezing level varies with the phases when
β1 = 0.833 and β2 = 0.167. All of the squeezing levels for different
gains become maximal when ϕ1 = ϕ2 = 0/2π .

calculate the DN̂a2 −N̂b2 −N̂b1
from Eq. (7). The maximal squeez-

ing can be easily calculated, which is thus given by

Dmax 1 = 10log10

(
1

2G2 − 1 + 2G
√

G2 − 1

)
. (17)

This value can be achieved when β1 = G
G+1 , β2 = 1

G+1 , and
ϕ1 = ϕ2 = 0,2π .

We can also consider the squeezing level of the intensity
sum. The degree of squeezing of the intensity sum among the
three output light fields with respect to the SQL is given by

DN̂a2 +N̂b2 +N̂b1
= 10log10

(
Var

(
N̂a2 + N̂b2 + N̂b1

)
Var

(
N̂a2 + N̂b2 + N̂b1

)
SQL

)
.

(18)
Through the use of Eq. (7), we can easily calculate the term
Var(N̂a2 + N̂b2 + N̂b1 ), and Var(N̂a2 + N̂b2 + N̂b1 )SQL is just
the sum of the mean value of the photon numbers of the
three output light fields. The squeezing level of intensity
sum D(N̂a2 +N̂b2 +N̂b1 ) also changes with ϕ1, ϕ2, β1, and β2.
We find that the maximal squeezing levels of intensity sum
are −11.439, −15.311, −17.923, and −19.913 dB which
correspond to G1 = G2 = 2,3,4,5 respectively. In the cases
of G1 = G2 = 2,3,4,5, the maximal squeezing degrees can
be achieved when intensity ratio β1 and β2 are certain values
and ϕ1 = ϕ2 = π . In Fig. 6, we plot the squeezing levels of
intensity sum in decibels as a function of the intensity ratio β1

and β2 when ϕ1 = ϕ2 = π for G1 = G2 = 2,3,4,5. In the case
of ϕ1 = ϕ2 = π , the maximal squeezing for different gains
can be achieved when the intensity ratio β1 and β2 are certain
values as given in the caption of Fig. 6. As shown in Fig. 7,
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FIG. 6. The squeezing levels of intensity sum D(N̂a2 +N̂b2 +N̂b1 ) in
decibels as a function of β1 and β2 when ϕ1 = ϕ2 = π . (a) G1 =
G2 = 2: The squeezing level becomes maximal when β1 = 0.667 and
β2 = 0.333. (b) G1 = G2 = 3: The squeezing level becomes maximal
when β1 = 0.75 and β2 = 0.25. (c) G1 = G2 = 4: The squeezing
level becomes maximal when β1 = 0.8 and β2 = 0.2. (d) G1 =
G2 = 5: The squeezing level becomes maximal when β1 = 0.833 and
β2 = 0.167.

we plot the squeezing levels of intensity sum in decibels for
different intensity gains as a function of ϕ1 and ϕ2 when β1 and
β2 are certain values. When the phase ϕ1 and ϕ2 are close to π ,
the maximal squeezing can be achieved. It can be seen from
both Figs. 6 and 7 that the squeezing levels below the SQL can
only be observed within very narrow ranges for both intensity
ratios and phases. Also the squeezing levels of intensity sum

FIG. 7. (a) G1 = G2 = 2: The squeezing level of intensity sum
D(N̂a2 +N̂b2 +N̂b1 ) varies with the phase ϕ1 and ϕ2 when β1 = 0.667
and β2 = 0.333. (b) G1 = G2 = 3: The squeezing level varies with
the phases when β1 = 0.75 and β2 = 0.25. (c) G1 = G2 = 4: The
squeezing level varies with the phases when β1 = 0.8 and β2 = 0.2.
(d) G1 = G2 = 5: The squeezing level varies with the phases when
β1 = 0.833 and β2 = 0.167. All of the squeezing levels for different
gains become maximal when ϕ1 = ϕ2 = π .

increase with the increase of intensity gains. However, the
ranges of intensity sum squeezing for both intensity ratios and
phases will become narrower with the increase of intensity
gains. Similarly, we consider the more general situation of
intensity sum squeezing when G1 = G2 = G. Here one can
easily calculate D(N̂a2 +N̂b2 +N̂b1 ) from Eq. (7). We can also find
the maximal squeezing which is given by

Dmax 2 = 10log10

(
1

2G2 − 1 + 2G
√

G2 − 1

)
. (19)

This equation can be obtained under the conditions of
β1 = G

G+1 , β2 = 1
G+1 , and ϕ1 = ϕ2 = π .

From Eqs. (17) and (19) it is clear that the values of
maximum intensity difference squeezing and maximum inten-
sity sum squeezing are equal to each other. That is to say,
we can always find the common maximal squeezing level
between squeezing of intensity sum and intensity difference by
changing phase ϕ1 and ϕ2 based on phase-sensitive cascaded
FWM processes.

We now consider the two other combinatorial squeezing
D(N̂a2 −N̂b2 +N̂b1 ) and D(N̂a2 +N̂b2 −N̂b1 ) among the three output light
fields. The squeezing levels D(N̂a2 −N̂b2 +N̂b1 ) and D(N̂a2 +N̂b2 −N̂b1 )

are given by

DN̂a2 −N̂b2 +N̂b1
= 10log10

(
Var

(
N̂a2 − N̂b2 + N̂b1

)
Var

(
N̂a2 − N̂b2 + N̂b1

)
SQL

)
(20)

and

DN̂a2 +N̂b2 −N̂b1
= 10log10

(
Var

(
N̂a2 + N̂b2 − N̂b1

)
Var

(
N̂a2 + N̂b2 − N̂b1

)
SQL

)
.

(21)
Through use of Eq. (7), we can easily calculate these two
squeezing levels. We also set G1 = G2 = 2,3,4,5 to study
the influence of ϕ1, ϕ2, β1, and β2 on these two degrees
of intensity squeezing. The values of maximum intensity
squeezing −11.439, −15.311, −17.923, and −19.913 dB
for gain 2, 3, 4, 5 respectively can be achieved when ϕ1 =
π, ϕ2 = 0,2π , and β1, β2 are certain values in the case of
intensity combination of N̂a2 − N̂b2 + N̂b1 . In Fig. 8, we set
the phases of input beams ϕ1 as π and ϕ2 as 0/2π to study
how the intensity ratio β1 and β2 affect the degrees of intensity
squeezing. In the case of ϕ1 = π, ϕ2 = 0,2π , the maximal
squeezing levels of N̂a2 − N̂b2 + N̂b1 for gain 2, 3, 4, 5 can be
achieved when the intensity ratio β1 and β2 are certain values
as given in the caption of Fig. 8. We find that the noises of
the intensity combination N̂a2 − N̂b2 + N̂b1 for gain 2, 3, 4, 5
respectively could be well below the SQL within wide intensity
ratio ranges. In Fig. 9, we set β1 and β2 as certain values to
study the influence of the phases on the degrees of intensity
squeezing. As ϕ1 = π and ϕ2 = 0/2π , the maximal squeezing
for different intensity gains can be achieved. In addition,
another case is the intensity combination of N̂a2 + N̂b2 − N̂b1 .
The maximal squeezing −11.439, −15.311, −17.923, and
−19.913 dB for gain 2, 3, 4, 5 respectively can be achieved
when β1, β2 are certain values and ϕ1 = ϕ2 = π . In Fig. 10,
the squeezing levels vary with the intensity ratios for ϕ1 =
ϕ2 = π . In the case of ϕ1 = ϕ2 = π , the maximal squeezing
levels of N̂a2 + N̂b2 − N̂b1 for gain 2, 3, 4, 5 can be achieved
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FIG. 8. The squeezing levels of N̂a2 − N̂b2 + N̂b1 in decibels as a
function of the intensity ratios when ϕ1 = π and ϕ2 = 0/2π . (a) G1 =
G2 = 2: The squeezing level becomes maximal when β1 = 0.988 and
β2 = 0.012. (b) G1 = G2 = 3: The squeezing level becomes maximal
when β1 = 0.997 and β2 = 0.003. (c) G1 = G2 = 4: The squeezing
level becomes maximal when β1 = 0.998 and β2 = 0.002. (d) G1 =
G2 = 5: The squeezing level becomes maximal when β1 = 0.999 and
β2 = 0.001.

when the intensity ratio β1 and β2 are certain values given
in the caption of Fig. 10. In Fig. 11, we set β1 and β2

are certain values to study the influence of the phases on
the degrees of intensity squeezing. Obviously, the maximal
squeezing levels can be achieved when ϕ1 = ϕ2 = π . As

FIG. 9. (a) G1 = G2 = 2: The squeezing level of N̂a2 − N̂b2 +
N̂b1 varies with the phases when β1 = 0.988 and β2 = 0.012.
(b) G1 = G2 = 3: The squeezing level varies with the phases when
β1 = 0.997 and β2 = 0.003. (c) G1 = G2 = 4: The squeezing level
varies with the phases when β1 = 0.998 and β2 = 0.002. (d) G1 =
G2 = 5: The squeezing level varies with the phases when β1 = 0.999
and β2 = 0.001. All of the squeezing levels for different gains become
maximal when ϕ1 = π and ϕ2 = 0/2π .

FIG. 10. The squeezing levels of N̂a2 + N̂b2 − N̂b1 in decibels as
a function of the ratios when ϕ1 = ϕ2 = π . (a) G1 = G2 = 2: The
squeezing level becomes maximal when β1 = 0.301 and β2 = 0.699.
(b) G1 = G2 = 3: The squeezing level becomes maximal when
β1 = 0.564 and β2 = 0.436. (c) G1 = G2 = 4: The squeezing level
becomes maximal when β1 = 0.69 and β2 = 0.31. (d) G1 = G2 =
5: The squeezing level becomes maximal when β1 = 0.761 and
β2 = 0.239.

shown in both Figs. 10 and 11, the squeezing levels below
the SQL can only be observed within very narrow ranges
for both intensity ratios and phases. The squeezing levels of
intensity combination of N̂a2 + N̂b2 − N̂b1 will increase and
the ranges of intensity squeezing for both intensity ratios and

FIG. 11. (a) G1=G2=2: The squeezing level of N̂a2+N̂b2−N̂b1

in decibels as a function of the phases when β1 = 0.301 and β2 =
0.699. (b) G1 = G2 = 3: The squeezing level varies with the phases
when β1 = 0.564 and β2 = 0.436. (c) G1 = G2 = 4: The squeezing
level of varies with the phases when β1 = 0.69 and β2 = 0.31.
(d) G1 = G2 = 5: The squeezing level varies with the phases when
β1 = 0.761 and β2 = 0.239. All of the squeezing levels for different
gains become maximal when ϕ1 = ϕ2 = π .
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phases will become narrower with the increase of intensity
gains.

Then, we consider the general situation when the intensity
gain G1 = G2 = G. The maximal squeezing of N̂a2−N̂b2+N̂b1

and N̂a2 + N̂b2 − N̂b1 can be calculated, which through use of
Eqs. (7), (20), and (21) becomes

Dmax 3 = 10log10

(
1

2G2 − 1 + 2G
√

G2 − 1

)
. (22)

The maximal squeezing values of these two combinations
are equal to each other. In the case of N̂a2 − N̂b2 + N̂b1 , the
maximal squeezing can be achieved when

β1 = G(−3 − 4G + 8G2) + 4G(2G − 1)
√

G2 − 1

1 + G(−3 − 4G + 8G2) + 4G(2G − 1)
√

G2 − 1
,

(23)

β2 = 1

1 + G(−3 − 4G + 8G2) + 4G(2G − 1)
√

G2 − 1
,

(24)

ϕ1 = π , and ϕ2 = 0,2π . Then in the case of N̂a2 + N̂b2 − N̂b1 ,
the maximal squeezing can be achieved when

β1 = G(−3 − 4G + 8G2) − 4G(2G − 1)
√

G2 − 1

1 + G(−3 − 4G + 8G2) − 4G(2G − 1)
√

G2 − 1
,

(25)

β2 = 1

1 + G(−3 − 4G + 8G2) − 4G(2G − 1)
√

G2 − 1
,

(26)

and ϕ1 = ϕ2 = π . It is clear that the values of various combi-
natorial maximum squeezing are equal when the intensity gain
of the two FWM processes is fixed. That is to say, by changing
the phases and intensities of the input beams, we can always
get the same maximum squeezing level for any combination
of the intensity of the output fields.

It is interesting to examine how this maximum squeezing
level varies with the gain parameter G1 = G2 = G (G � 1).
These results are summarized in Fig. 12. For G = 1 (no gain),
the maximal squeezing level is equal to zero, showing that there
is no squeezing. When the gain is greater than 1, the degree of
the maximum squeezing can be improved. For the special cases
when the intensity gain G = 2,3,4,5, the maximal squeezing
degrees are −11.439, −15.311, −17.923, and −19.913 dB
respectively. This is consistent with the results of our earlier
calculations in this paper.

We also consider losses that occur in the two Rb cells
(atomic absorption) and after mixing (imperfect optical
transmission and detection efficiency). The losses that occur
after mixing are modeled by a beamsplitter with an empty
port [42] whose output state is a combination of the input
and vacuum modes. For simplicity, we also consider the
atomic absorption in two Rb cells as a beamsplitter with an
empty port, contributing vacuum fluctuations to the transmitted
beams. Denoting the vacuum modes introduced by losses
on the probe and conjugate by the annihilation operators
v̂i (i = 1−8) respectively [43], the standard beamsplitter

FIG. 12. Value of maximum squeezing degree as predicted by
Eqs. (17), (19), and (22) plotted against the intensity gain G when
only G � 1 is considered.

input-output relations give

â1(t) → √
η1(

√
L1â1 +

√
1 − L1v̂1) +

√
1 − η1v̂2,

b̂1(t) → √
η2(

√
L2b̂1 +

√
1 − L2v̂3) +

√
1 − η2v̂4,

â2(t) → √
η3(

√
L3â2 +

√
1 − L3v̂5) +

√
1 − η3v̂6,

b̂2(t) → √
η4(

√
L4b̂2 +

√
1 − L4v̂7) +

√
1 − η4v̂8. (27)

Here η1, η2, η3, and η4 are the transmission ratios of the light
beam intensities due to the imperfect optical transmission
and detection efficiency. L1, L2, L3, and L4 stand for the
transmission ratios in the two Rb cells for probe and conjugate
fields. For simplicity, we consider all the transmission ratios
η1, η2, η3, η4 after mixing as η and all the transmission
ratios L1, L2, L3, L4 in two Rb cells as L. Then we can
easily calculate the maximal squeezing levels of different
intensity combinations followed by optical losses. The val-
ues of maximum squeezing degrees of different intensity
combinations corresponding to our phase-sensitive cascaded
scheme followed by optical losses are similar. In Fig. 13, we
plot the maximum squeezing level in decibels as a function
of the gain parameter G followed by optical losses in the
system. The blue curve shows the maximal squeezing level
when the transmission ratio η and L are equal to 1, meaning

FIG. 13. Values of maximum squeezing degree followed by
optical losses plotted against the intensity gain G.
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that there are no losses. As shown in Fig. 13, the values of
maximum squeezing degree decrease when η = 0.95, L = 0.9
(green curve) or η = 0.9, L = 0.85 (red curve). When the
transmission ratio η is equal to 0.95 and L is equal to 0.9, the
maximal squeezing is −6.58, −7.48, −7.78, and −8.09 dB for
intensity gain G = 2,3,4,5 respectively. When η decreases to
0.9 and L decreases to 0.85, the maximal squeezing decreases
to −4.99, −5.53, −5.76, and −5.88 dB for intensity gain
G = 2,3,4,5 respectively.

V. GENUINE TRIPARTITE ENTANGLEMENT
AND STEERING

In the above sections, we have discussed the intensity
quantum correlations between the three output fields from the
cascaded FWM processes. Multipartite entanglement is the
fundamental ingredient for the future quantum networks [3].
Therefore, it is worth studying the possibility of generating
tripartite entanglement from our cascaded FWM processes.
Here we will use the single-condition and two-condition
criteria [33] to characterize the tripartite entanglement of our
system in the continuous variable regime. The amplitude and
phase quadrature operators of the fields are defined by

X̂i = 1√
2

(Ô†
i + Ôi), Ŷi = i√

2
(Ô†

i − Ôi). (28)

First, let us discuss the condition for the tripartite entanglement
in our phase-sensitive cascaded FWM processes by using
the single-condition criterion [33]. Using our quadrature
definitions above, the single-condition criterion gives a set
of formulas

V123 = V

(
X̂1 − 1√

2
(X̂2 + X̂3)

)
+ V

(
Ŷ1 + 1√

2
(Ŷ2 + Ŷ3)

)
,

V213 = V

(
X̂2 − 1√

2
(X̂1 + X̂3)

)
+ V

(
Ŷ2 + 1√

2
(Ŷ1 + Ŷ3)

)
,

V312 = V

(
X̂3 − 1√

2
(X̂1 + X̂2)

)
+ V

(
Ŷ3 + 1√

2
(Ŷ1 + Ŷ2)

)
.

(29)

If one of the formulas in Eq. (29) is less than 1, we could claim
that there exists genuine tripartite entanglement in our system.
The dependence of V123 on the gains G1,G2 and phase θ ′

1
(equal to θ1 + θx), θ2 can be written as

V123 = 3G1G2 − 1 + 2
√

G1(G1 − 1)(G2 − 1) cos(θ ′
1 − θ2)

− 2
√

2
√

G1G2(G1 − 1) cos θ ′
1

− 2
√

2G1

√
G2(G2 − 1) cos θ2. (30)

Let us set G1 = G2 = 2,3,4,5 respectively to study the
influence of θ ′

1 and θ2 on the tripartite entanglement in our
phase-sensitive cascaded system. The contour plot of V123 is
shown in Fig. 14, the values of V123 for intensity gain 2, 3, 4,
5 are less than 1 (shown as white region) when the θ ′

1 and θ2

are close to 0 and 2π . The ranges of tripartite entanglement
for phase θ ′

1 and θ2 will become narrower with the increase
of intensity gain G. Then we set θ ′

1 = θ2 = 0/2π to study
the influence of G1 and G2 on the tripartite entanglement in
our phase-sensitive cascaded system. The V123 can be written

FIG. 14. Contour plot for V123 when the intensity gains G1 =
G2 = 2 (a), G1 = G2 = 3 (b), G1 = G2 = 4 (c), and G1 = G2 = 5
(d) respectively. The white regions (V123 < 1) are the regions of the
existence of tripartite entanglement.

as

V123 = 3G1G2 − 1 + 2
√

G1(G1 − 1)(G2 − 1)

− 2
√

2
√

G1G2(G1 − 1) − 2
√

2G1

√
G2(G2 − 1).

(31)

Its contour plot is shown as Fig. 15. The values of most of the
region are less than 1 as shown in Fig. 15, which correspond to
the existence of entanglement for the three output light beams
in our phase-sensitive cascaded system when θ ′

1 = θ2 = 0/2π .
It is already sufficient for proving the existence of tripartite
entanglement for the three output light beams as shown in
both Figs. 14 and 15. In addition, when the conjugate ports b̂0

FIG. 15. Contour plot for V123 as a function of G1 and G2 when
θ ′

1 = θ2 = 0/2π .
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and b̂′
0 are seeded with vacuums, the phase-sensitive cascaded

scheme will be translated into the phase-insensitive cascaded
scheme. It is interesting to find that the dependence of V123

on the gains G1 and G2 in the phase-insensitive cascaded
scheme through the use of Eq. (29) is consistent with Eq. (31).
That is to say, there also exists multipartite entanglement
for the three output light beams in the phase-insensitive
cascaded system. Therefore, its contour plot is also shown
as Fig. 15.

Then we discuss the condition for the tripartite entan-
glement in our phase-sensitive cascaded FWM processes by
using the two-condition criterion [33]. Using our quadrature
definitions in Eq. (28), the two-condition criterion can give a

set of formulas

V12 = V (X̂1 − X̂2) + V (Ŷ1 + Ŷ2 + F3Ŷ3),

V13 = V (X̂1 − X̂3) + V (Ŷ1 + F2Ŷ2 + Ŷ3). (32)

Here Fi (i = 2,3) are arbitrary real numbers. It is sufficient
to demonstrate genuine tripartite entanglement in our phase-
sensitive cascaded system when both of the above formulas in
Eq. (32) are less than 2. We can optimize the two-condition
criterion using the freedom allowed in the choice of the Fi .
Through the direct differentiation for Eq. (32) with respect to
the Fi , we get the expressions of optimal Fi which are given by

F2 = cos θ2G1
√

G2(G2 − 1) − cos(θ ′
1 − θ2)

√
G1(G1 − 1)(G2 − 1)

G1G2 − G1 + 0.5
,

F3 = cos θ ′
1

√
G1G2(G1 − 1) − cos(θ ′

1 − θ2)
√

G1(G1 − 1)(G2 − 1)

G1 − 0.5
. (33)

We set G1 = G2 = 2,3,4,5 to study the dependence of V12 and
V13 on θ ′

1 and θ2 in our phase-sensitive cascaded system. In
Fig. 16, we study the influence of θ ′

1 and θ2 on the V12 for G1 =
G2 = 2,3,4,5 respectively. The white regions are the regions
of V12 < 2. In Fig. 17, we study the influence of θ ′

1 and θ2 on the
V13 for G1 = G2 = 2,3,4,5 respectively. We can see that there
exists the region of V13 < 2 only for G1 = G2 = 2. So there
will be overlapped regions of V12 < 2 and V13 < 2 only when
G1 = G2 = 2 as shown in both Figs. 16(a) and 17(a), meaning
that the genuine tripartite entanglement is present only for
G1 = G2 = 2 by using the two-condition criterion. The over-
lapped regions of V12 < 2 and V13 < 2 exist when θ ′

1 and θ2 are
close to 0/2π . Therefore we set θ ′

1 = θ2 = 0/2π to study the

FIG. 16. Contour plot for V12 in Eq. (32) when the intensity gains
G1 = G2 = 2 (a), G1 = G2 = 3 (b), G1 = G2 = 4 (c), and G1 =
G2 = 5 (d) respectively. The white regions are the regions of V12 < 2.

dependence of V12 and V13 on G1 and G2 in our phase-sensitive
cascaded scheme. As shown in Figs. 18(a) and 18(b), the
V12 and V13 are plotted as a function of the G1 and G2

when θ ′
1 = θ2 = 0/2π . In Fig. 18(c), we give the overlapped

regions of V12 < 2 and V13 < 2 when θ ′
1 = θ2 = 0/2π . The

overlapped region (white region) shows that the genuine tri-
partite entanglement is present in our phase-sensitive cascaded
system. As mentioned above, the phase-sensitive cascaded
scheme will be translated into the phase-insensitive cascaded
scheme when the conjugate ports b̂0 and b̂′

0 are seeded with
vacuums. Similarly, we can find that the dependence of V12 and
V13 on the gains G1 and G2 in the phase-insensitive cascaded
system through use of Eq. (32) is consistent with the cases of
the phase-sensitive cascaded system when θ ′

1 = θ2 = 0/2π .

FIG. 17. Contour plot for V13 in Eq. (32) when the intensity gains
G1 = G2 = 2 (a), G1 = G2 = 3 (b), G1 = G2 = 4 (c), and G1 =
G2 = 5 (d) respectively.
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FIG. 18. The values of V12 (a) and V13 (b) in Eq. (32) vary with G1

and G2 when θ ′
1 = θ2 = 0/2π . (c) The white region is the overlapped

region of V12 < 2 and V13 < 2.

That is to say, there also exists genuine tripartite entanglement
in the phase-insensitive cascaded system.

Further, due to the importance of multipartite steering
for understanding entanglement distribution and constructing
quantum networks [4], we investigate the possibilities of
the existence of genuine multipartite steering in our phase-
sensitive cascaded FWM scheme. To confirm genuine tripartite
steering, let us calculate the following formulas [34,35]:

St123 = �inf(X̂1)�inf(Ŷ1), (34)

St213 = �inf(X̂2)�inf(Ŷ2), (35)

St312 = �inf(X̂3)�inf(Ŷ3). (36)

St123 < 1
2 , St213 < 1

2 , and St312 < 1
2 imply steerings Ô2Ô3 →

Ô1, Ô1Ô3 → Ô2, and Ô1Ô2 → Ô3 respectively. Here

�inf(X̂i) and �inf(Ŷi) are the uncertainty in the prediction
of amplitude quadrature X̂i and phase quadrature Ŷi of one
light beam [[X̂i,Ŷi] = i, which can be deduced from Eq. (28)]
based on measurements of the other two light beams [44–46],
and they are given by

�inf(X̂i) = �(X̂i + gopt,X̂j
X̂j + gopt,X̂k

X̂k), (37)

�inf(Ŷi) = �(Ŷi + gopt,Ŷj
Ŷj + gopt,Ŷk

Ŷk). (38)

Here gopt,X̂j
and gopt,X̂k

(gopt,Ŷj
and gopt,Ŷk

) are optimized
real numbers. Then, according to Ref. [34], the exis-
tence of genuine tripartite steering can be confirmed if
St123 + St213 + St312 < 1

2 . As shown in Figs. 19(a)–19(d),
the St123, St213, St312 and St123 + St213 + St312 are plotted
as a function of the G1 and G2 when θ ′

1 = θ2 = 0/2π in
our phase-sensitive cascaded scheme. The values of all the
region are less than 1

2 as shown in Figs. 19(a)–19(c), which
implies that the amplitude quadrature and phase quadrature
of any one of the output beams is highly correlated with a
combination of the other two output beams. The contour plot
of St123 + St213 + St312 is shown in Fig. 19(d), the value of
St123 + St213 + St312 is less than 1

2 for most region of intensity
gain G1 and G2, which corresponds to the existence of genuine
tripartite steering in our phase-sensitive cascaded system when
θ ′

1 = θ2 = 0/2π . Similarly, we can find that the dependence
of St123, St213, St312 and St123 + St213 + St312 on the gains G1

and G2 in the phase-insensitive cascaded scheme through use
of Eqs. (34)–(36) is also consistent with the cases of the
phase-sensitive cascaded system when θ ′

1 = θ2 = 0/2π . That
is to say, there also exists genuine tripartite steering in the
phase-insensitive cascaded scheme.

VI. CONCLUSION

In this paper, we have studied an experimental scheme to
generate three quantum correlated beams via a phase-sensitive
cascaded FWM in hot Rb atomic vapor. We have shown
some interesting results for quantum correlation existing in
this system. Compared with the degree of intensity difference
squeezing of the twin beams obtained with phase-sensitive sin-
gle FWM process [31] or the three output beams obtained with
phase-insensitive cascaded FWM processes [32], the degree of
intensity difference squeezing of the three beams output from
the current phase-sensitive cascaded FWM processes can be

FIG. 19. The values of St123 (a), St213 (b), St312 (c) in Eqs. (34)–(36), and St123 + St213 + St312 (d) vary with G1 and G2 when θ ′
1=θ2=0/2π .
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largely enhanced. Beyond intensity difference squeezing, in-
tensity sum squeezing and two other combinatorial squeezing
among the three output light fields are predicted theoretically.
The squeezing levels of different intensity combinations will
increase with the increase of intensity gains. No matter what
kind of combination, it is worth noting that the maximal
squeezing levels would always refer to the same value when
the intensity gain of the two FWM processes is fixed.
The values of maximum squeezing degree will decrease
followed by optical losses. Finally, we have also studied
the genuine tripartite entanglement and steering in cascaded
FWM processes. In order to experimentally realize our phase-
sensitive cascaded scheme, we could exploit the coherent
modulation phase locking technique for phase-sensitive FWM
process that we have developed recently [47]. These findings
may find applications in quantum metrology and quantum
information processing due to its ability of quantum squeezing
manipulation.
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