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Bright nonlocal quadratic solitons induced by boundary confinement
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Under the Dirichlet boundary conditions, a family of bright quadratic solitons exists in the regime where the
second harmonic can be regarded as the refractive index of the fundamental wave with an oscillatory nonlocal
response. By simplifying the governing equations into the Snyder-Mitchell mode, the approximate analytical
solutions are obtained. Taking them as the initial guess and using a numerical code, we found two branches
of bright solitons, of which the beam width increases (branch I) and decreases (branch II) with the increase of
the sample size, respectively. If the nonlocality is fixed and the sample size is varied, the soliton width varies
piecewise and approximately periodically. In each period, solitons only exist in a small range of sample size.
Single-hump fundamental wave solitons with the same beam width in narrower samples can be, if the second
harmonics are connected smoothly, jointed to be a multihump soliton in a wider sample whose size is the sum of
those for the narrower ones. The dynamical simulation shows that the found solitons are unstable.
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I. INTRODUCTION

Quadratic solitons, which were theoretically predicted in
the 1970s [1,2] and first observed in the 1990s [3,4], have
attracted extensive interest and been widely investigated in past
decades (Refs. [5–8] and references therein). Because of the
fast and strong electronic nonlinearity in χ (2) media, quadratic
solitons have potential applications such as in ultrafast all-
optical switching [9]. The beam-trapping mechanism of the
quadratic solitons crucially differs from its counterpart in
Kerr-type media. In Kerr-type media the solitons come into
being because of the balance between the diffraction and/or
dispersion and the self-focusing, which is caused by the
beam-induced distribution of the nonlinear refractive index.
However, in quadratic media, the self-trapping of solitons
comes from the rapid exchange of energy and phase between
two or more optical fields during quadratic optical parametric
process. The phase mismatch value is an important parameter
for the quadratic solitons. The conventional technique on
controlling the phase mismatch value (e.g., to make the
interacting fields phase matched or nearly phase matched)
is realized based on birefringence and temperature tuning.
Compared to the conventional technique, the technique of
quasi-phase matching (QPM) makes a great step forward.
The QPM technique is as such: the nonlinear susceptibility
is artificially modulated periodically; therefore an additional
phase mismatch is induced. The additional mismatch can
compensate the inherent mismatch partly or entirely. Based
on the QPM technique, it is possible to take advantage
of the highest coefficients of the second-order nonlinear
susceptibility tensor. Therefore QPM is a promising technique
for the reduction of the power level for the beam trapping and
large phase shift in quadratic media. The problem of solitons
[10,11] in QPM quadratic media and related issues, such as
the modulation instability [12] and the optical switch [13,14],
have been investigated in detail.
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The characteristics of quadratic solitons are determined by
some key parameters in the coupling equations. Considering
coupling between the fundamental wave (FW, E1) and its
second harmonic (SH, E2) in a type I phase-matching case,
the coupling equations are

i
∂E1

∂z
+ d1

∂2E1

∂x2
+ E∗

1E2e
−iβz = 0, (1)

i
∂E2

∂z
+ d2

∂2E2

∂x2
+ E2

1e
iβz = 0, (2)

where the term ∂2
xE1,2/∂x2 represents beam diffraction or

pulse dispersion and β is the phase mismatch. Readers
can refer to previous references, such as Refs. [15,16],
for the detailed derivation of Eqs. (1) and (2). Assuming
the soliton solution in the forms E1(x,z) = a1φ1(x)eiλz and
E2(x,z) = a2φ2(x)ei2λz+iβz, and using the scaling parameters
a2

1 = λ2|(d2/2d1)|, a2 = λ, τ = x|λ/d1| 1
2 , sj = sgn(λdj ), and

α = (2 + β/λ)|d1/d2| > 0, Eqs. (1) and (2) become [17]

s1
∂2φ1

∂τ 2
− φ1 + φ1φ2 = 0, (3)

s2
∂2φ2

∂τ 2
− αφ2 + 1

2
φ2

1 = 0. (4)

Under the cascading case (i.e., α � 1) φ2 � φ2
1/(2α) and

Eqs. (3) and (4) reduce to the model s1(∂2/∂τ 2)φ1 − φ1 +
[φ2

1/(2α)]φ1 = 0, which is equivalent to the equation govern-
ing the solitons in locally responded Kerr-type media [18].
However, this local model is not valid in cases where the limit
α � 1 is not satisfied. In 2003 [17], Nikolov et al. pointed out
that in general cases the model should be s1(∂2/∂τ 2)φ1 − φ1 +
[1/(2α)

∫ ∞
−∞ R(τ − ξ )φ2

1(ξ )dξ ]φ1 = 0, which is equivalent to
that for the solitons in the nonlocal Kerr nonlinear media
(readers can refer to Ref. [19] for a review of nonlocal
solitons). In fact, except for the soliton problem, problems
such as pulse compression [20,21], localized X waves [22],
and modulation instability [23] in χ (2) media can also be
approximately described by the nonlocal model.
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Equations (3) and (4) can be used both in the temporal
domain and the spatial domain. In the temporal domain, the
readers may have the question of whether the response function
is reasonable (because it seems that the effect may precede
the cause). In fact, in the derivation of Eqs. (3) and (4) from
Eqs. (1) and (2), we take an important assumption that the
fields E1 and E2 are steady-state (soliton) solutions. Thus, the
response function is actually describing the relation between
the fundamental wave and its second harmonic (the relation
must be satisfied when the FW and SH are soliton solutions),
rather than describing the dynamic influence of the FW on
its refractive index which in turn affects its evolution [24].
Therefore, for the soliton problem in the temporal domain, the
model Eqs. (3) and (4) are reasonable and are not in violation
of the law of causality.

The parameters s1 and s2 play key roles in determining the
soliton type and its stability. The previous works show that in
the case s2 = +1 the response function is an exponentially
decay one [i.e., R(τ ) = (

√
α/2) exp(−√

α|τ |)]; and in this
case the stable bright (dark) solitons exist if s1 = +1 (s1 = −1)
[17,25]. In the case s2 = −1 the response function becomes
an oscillatory one [i.e., R(τ ) = (

√
α/2) sin(

√
α|τ |)]; there

exist bright (dark) solitons if s2 = +1 [25,26] (s2 = −1
[25]), but the solitons are all unstable under the no-boundary
conditions (the no-boundary conditions mean that the FW
and its SH propagate in infinite media; and the propagation
is therefore not influenced by boundary confinement). In
2014, our research shows that, under the Dirichlet boundary
conditions, there can exist stable bright solitons in the case
s2 = −s1 = −1 [27].

In this paper we go one step further to investigate the
bright solitons in the regime s2 = s1 = −1 under the Dirichlet
boundary conditions. The parameter combination s2 = s1 =
−1 can be realized in the spatial domain: the parameters s1 and
s2 in Eqs. (3) and (4) are jointly determined by d1, d2, and λ,
i.e., s1,2 = sgn(λd1,2). Therefore, for a homogeneous structure
in which the diffraction parameters are d1 ≈ 2d2 > 0, we can
get s1,2 = −1, provided that λ = −|λ|. In the following it is
shown that in the case s2 = s1 = −1, there can exist bright
solitons under the Dirichlet boundary conditions (under the
no-boundary conditions only dark solitons are found in this
combination of s1 and s2 in previous works).

The rest of this paper is organized as follows. In Sec. II,
we make an approximation on the model Eqs. (3) and (4)
and simplify them into the Snyder-Mitchell mode (SMM [28])
under the Dirichlet boundary conditions. Based on the SMM
we get the approximate analytical solutions of the bright
solitons in the case s1 = s2 = −1. In Sec. III, taking the
analytical solutions as the initial trial solutions, we get the
numerical solutions of the bright solitons of the precise model
Eqs. (3) and (4). It is found that there exist two branches of
bright solitons and the characteristics of the two branches are
discussed. We conclude in Sec. IV.

II. SIMPLIFIED MODEL AND THE ANALYTICAL
SOLITON SOLUTION

Because of the mathematical complication, it is difficult to
get the precise analytical solutions of Eqs. (3) and (4). To get
the analytical solutions, here we make an approximation on

Eqs. (3) and (4) and simplify them into the SMM. Based on
the SMM, we get the approximate analytical soliton solutions,
which are taken as the initial trial solutions to get the numerical
precise soliton solutions in Sec. III.

For Eqs. (3) and (4), φ2 can be regarded as the nonlinear
refractive index induced by φ1; therefore it is possible for the
FW to become a soliton if the SH “seen”by the FW is concave
or convex. When s2 = +1 (s2 = −1), the response function
is an exponentially decaying one (oscillatory one) and the SH
soliton is bell-like (oscillatory). For both cases, suppose that
(i) the FW is narrow enough so that the part of the SH “seen”
by the FW is concave or convex (as is shown in the following
figures) and (ii) the SH and FW are all symmetric about the
sample center x = 0, then we can make a Taylor expansion on
the SH φ2 about x = 0:

φ2(τ ) = φ2(0) + τφ′
2(0) + τ 2

2
φ′′

2 (0) + · · · . (5)

Because the SH φ2 is symmetric about x = 0, we can omitting
the odd derivative in Eq. (5). Then truncating the remained
even derivative to the order of τ 2 we get

φ2(τ ) = φ2(0) + τ 2

2
φ′′

2 (0). (6)

Therefore, in the case s1 = s2 = −1, substituting Eq. (6) into
Eq. (3) yields

−∂2
τ φ1 − φ1 +

[
φ2(0) + τ 2

2
φ′′

2 (0)

]
φ1 = 0. (7)

Equation (7) is the SMM [28]. Based on the SMM we can get
the analytical soliton solutions symmetric about x = 0, which
are taken as the initial trial solutions to get the numerical
solutions. The numerical solutions of the asymmetric solitons
can also be gotten by tailoring the symmetric ones as the trial
solutions.

It is well-known that the SMM has the analytical solution
in the following form [28]:

φ1(τ ) =
√

P0

(w0
√

π)1/2
exp

(
− τ 2

2w2
0

)
, (8)

where P0 is the input power of φ1 and w0 is the beam width of
the pulse duration. Substituting Eq. (8) into Eq. (7) yields

φ2(0) = 1 − 1

w2
0

, (9)

φ′′
2 (0) = 2

w4
0

. (10)

Therefore, if the relation between the input power of φ1

(i.e., P0) and φ2(0) as well as φ′′
2 (0) is known, one can get the

power P0 and the beam width w0 in the solution Eq. (8). In the
following the relation is established by solving Eq. (4).

To investigate the bright nonlocal quadratic solitons in-
duced by boundary confinement, We take into account the
setup composed of the parametric material and air (Fig. 1).
For the TE-polarized waves, the boundary conditions are [29]

φ1,2(−L/2 + 0) = φ1,2(−L/2 − 0), (11)

∂τφ1,2(−L/2 + 0) = ∂τφ1,2(−L/2 − 0), (12)
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FIG. 1. Sketch of the bright nonlocal quadratic soliton induced by
boundary confinement in the setup composed of parametric material
and air. Red solid and blue dashed lines represent the FW and the SH,
respectively.

φ1,2(L/2 + 0) = φ1,2(L/2 − 0), (13)

∂τφ1,2(L/2 + 0) = ∂τφ1,2(L/2 − 0). (14)

For the TM-polarized waves, the boundary conditions for the
transverse magnetic field can be expressed in a similar fashion.
Hence, the TM-polarized surface waves can be dealt with in
a similar way. Alfassi et al. [29] have shown the fact that, if
the index difference between the two materials on two sides of
the interface is significant, the optical energy is almost totally
confined in the nonlocal nonlinear medium, whether the wave
is TE or TM polarized. Therefore, for the setup composed of
the parametric material and air, we can approximately regard
the boundary conditions as the Dirichlet boundary conditions:

φ1(−L/2) = φ1(+L/2) = 0, φ2(−L/2) = φ2(+L/2) = 0,

(15)

For the FWs’ φ1, so long as w0 	 L, the trial solution
Eq. (8) will naturally satisfy the boundary conditions; and
the boundary has little direct influence on the FWs. Whereas
for the SHs’ φ2, which are oscillatory, they will be crucially
influenced by the boundary.

For Eq. (4) which governs φ2, the solution φ2 is the sum
of the general solution [φ(1)

2 (τ )] of the homogeneous equation
and the particular solution [φ(2)

2 (τ )] of the inhomogeneous
equation, i.e.,

φ2(τ ) = φ
(1)
2 (τ ) + φ

(2)
2 (τ ). (16)

Providing the soliton is symmetric about the center of the
sample, the general solution should be

φ
(1)
2 (τ ) = c1 cos(

√
ατ ) (17)

according to the symmetry characteristic. The particular
solution of the inhomogeneous Eq. (4) is

φ
(2)
2 (τ ) = 1

4
√

α

∫ ∞

−∞
φ2

1(ξ ) sin(
√

α|τ − ξ |)dξ. (18)

In order to get the parameter c1, the boundary conditions
and the particular solution at the boundary should be taken into
account. Now let’s substitute the soliton solution [Eq. (8)] into
Eq. (18) to get the particular solution at the boundary. Because
the field φ1 has intensity only in the region −L/2 < ξ < L/2,
we can make the approximation

φ
(2)
2

(
L

2

)
≈ 1

4
√

α

∫ ∞

−∞

[ √
P0

(w0
√

π )1/2
exp

(
− τ 2

2w2
0

)]2

× sin[
√

α(τ − ξ )]dξ

= P0

4
√

α
exp

(
−α

4
w2

0

)
sin

(√
α

2
L

)
. (19)

In a similar way

φ
(2)
2

(
−L

2

)
≈ P0

4
√

α
exp

(
−α

4
w2

0

)
sin

(√
α

2
L

)
. (20)

At the boundary, the particular solution φ
(1)
2 (±L/2) and

the general solution φ
(2)
2 (±L/2) together satisfy the boundary

condition Eq. (15), i.e.,

φ
(1)
2

(
± L

2

)
+ φ

(2)
2

(
± L

2

)
= 0. (21)

Therefore we get

c1 = − P0

4
√

α
exp

(
−α

4
w2

0

)
tan

(√
α

2
L

)
, (22)

and then

φ2(τ ) = 1

4
√

α

∫ ∞

−∞
φ2

1(ξ ) sin
(√

α|τ − ξ |)dξ

− P0

4
√

α
exp

(
−α

4
w2

0

)
tan

(√
α

2
L

)
cos(

√
ατ ).

(23)

Making a Taylor expansion to Eq. (23) with respect to τ to the
second order yields

φ2(τ ) ≈ φ2(0) + τ 2

2
φ′′

2 (0), (24)

where

φ2(0) = P0

2
√

πα
Fds

(√
α

2
w0

)

− P0

4
√

α
exp

(
−α

4
w2

0

)
tan

(
Lπ

Ts

)
, (25)

φ′′
2 (0) = P0

2
√

πw0
− αφ2(0). (26)

Fds represents the Dawson integral, and Ts = 2π/
√

α is the
oscillatory period of the SHs.
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FIG. 2. The existence domain for the two branches of symmetric
single-hump bright solitons in one period (the sample size varies from
1.5Ts to 2.5Ts) for various degree of nonlocality (the nonlocal degree
becomes weaker with the increase of

√
α).

Comparing Eqs. (9) and (10) with Eqs. (25) and (26), we
get

P0 = 2
√

πw0

[
α

(
1 − 1

w2
0

)
+ 2

w4
0

]
, (27)

P0 = 4
√

πα

(
1 − 1

w2
0

)[
2Fds

(√
α

2
w0

)

−√
π exp

(
− α

4
w2

0

)
tan

(
Lπ

Ts

)]−1

, (28)

which yield

2Fds

(√
α

2
w0

)
− √

π exp

(
−α

4
w2

0

)
tan

(
Lπ

Ts

)

=
2
√

α

w0

(
1 − 1

w2
0

)
α
(
1 − 1

w2
0

) + 2
w4

0

. (29)

Based on Eq. (29) one can get the soliton width w0, and
in turn get the power P0 based on Eq. (27) or (28), and
the corresponding SHs can be obtained from Eq. (23). If
the solution satisfies the prerequisite that 0 < w0 < Ts/2 and
P0 > 0, we regard it as a reasonable soliton solution, to which
the SMM is applicable. In the following we take the Gaussian
solution [i.e., Eq. (8)] with the reasonable w0 and P0 as the
initial trial solution to find the numerical solutions of Eqs. (3)
and (4) based on the Newton iteration approach.

III. NUMERICAL RESULT

Equations (27)–(29) may have none, one, two, or several
center-symmetric solutions for different sample sizes L and
nonlocal degrees α. We take the physically reasonable and
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FIG. 3. (a) The rms width w for φ1 of branch I (blue solid lines) and branch II (red dashed lines) solitons versus sample size L, when√
α = 0.3. (b)–(h) Soliton profiles of branch I [blue solid lines (FW) and blue solid lines with circle symbol (SH), left ordinate] and branch II

[red dashed lines (FW) and red dashed lines with circle symbol (SH), right ordinate] for different sample sizes corresponding to points 1–9 in
panel (a). Panels (f)–(h) all correspond to points 8 and 9, but the FWs are located at different positions of the sample.
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SMM-applicable solutions (which satisfy the prerequisite that
0 < w0 < Ts/2 and P0 > 0) as trial solutions to find the
numerical solutions based on the Newton iteration approach.
According to the numerical results we get two branches of
solitons shown in Figs. 2 and 3. In general, the forms of FWs
are bell-like, and those of the SHs are oscillatory.

After getting the central-symmetric solitons, we guess
that, according to the oscillatory form of the SHs, one may
get new center-asymmetric solitons if the central-symmetric
solitons are properly shifted. Based on this guess, we shift
and tailor the central-symmetric solution as the initial guess.
Through the Newton iteration approach we get the numerical
solution which is in accordance with our guess [as shown in
Figs. 3(c), 3(e), 3(g), and 3(h)].

Figure 2 shows the distribution of the bright solitons in one
period (the sample size varies from 1.5Ts to 2.5Ts) for various
degrees of nonlocality. It shows that there exist two branches
of solitons, of which the beam width increases and decreases
with the increase of the sample size, respectively [Fig. 3(a)].

Branch I solitons (the beam width increases with the sample
size, represented with blue bars in Fig. 3) exist for all the
degrees of nonlocality we investigated. The lower limit for the
existence regime of the branch I soliton is fixed at L = 2Ts

for every degree of nonlocality, but the upper limit varies
with the degree of nonlocality. Specifically speaking, the
existence regime is relatively narrow for strong nonlocality
(corresponding tothe small value of

√
α), then increases with

the decrease of nonlocality (i.e., the increase of
√

α), and at last
keeps invariant for the relatively weak nonlocality (

√
α > 2).

However, the branch II solitons (the beam width decreases
with the sample size, represented with red bars in Fig. 3) exist

only in the relatively stronger nonlocal case (
√

α < 0.6), and
the stronger the nonlocality is, the wider the existence regime
will be. Unlike the branch I solitons, both the lower limit and
the upper limit for the existence regime of the branch II solitons
increase with the decrease of nonlocality (i.e., the increase of√

α). In addition, the upper limit of branch I is very close
to that of branch II, if both two branches for the considered
degree of nonlocality exist.

If the nonlocality is fixed and the sample size is varied, the
soliton width varies piecewise and approximately periodically
[the period is Ts/2, Fig. 3(a)]. In every period, there is only
a small range of sample sizes in which solitons exist. The
width of the Branch I (II) solitons increases (decreases) with
the increase of the sample size in each period. There are some
major characteristics of the two branches of solitons.

(1) The solitons can be (but not necessarily) symmetric
about the sample center in the range mTs < L < (m + 1/2)Ts

(m = 0,1,2, . . .), but are undoubtedly asymmetric about the
sample center in the range (m + 1/2)Ts < L < (m + 1)Ts .

(2) In the first interval (0 < L < Ts/2) only the branch I
solitons exist; the branch II solitons do not exist [Fig. 3(b)]. In
the second and following intervals (L > Ts/2) both branch I
and branch II solitons exist.

(3) Under the Dirichlet boundary conditions, the soliton is
formed if (i) the diffraction of the FW soliton is balanced by
the nonlinear effect or (ii) the boundary effect together with
the nonlinear effect balances the diffraction. In the first case,
the distribution of the FW is a bell-like one [Figs. 3(c)–3(g)].
But in the second case, the distribution of the FW approximate
to the boundary deviates from the bell-like form [Figs. 3(a)
and 3(b)].
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FIG. 4. (a) The single-hump branch I [blue solid lines (FW) and blue solid lines with circle symbol (SH), left ordinate] and branch II [red
dashed lines (FW) and red dashed lines with circle symbol (SH), right ordinate] solitons in the sample for L = 2.054Ts and

√
α = 0.3. (b) The

double-hump solitons in the sample with the same parameters. (c) The triple-hump solitons in the sample with the same parameters.
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FIG. 5. (a) The single-hump branch I [blue solid lines (FW) and blue solid lines with circle symbol (SH), left ordinate] and branch II [red
dashed lines (FW) and red dashed lines with circle symbol (SH), right ordinate] solitons in the sample with the size L1 = 1.05Ts . (b) The
single-hump branch I and branch II solitons in the sample with the size L2 = 1.554Ts . (c) The double-hump branch I and branch II solitons in
the sample with the size L = L1 + L2. (d) The double-hump branch I and branch II solitons in the sample with the size L = 2L2. In panels
(a)–(d)

√
α = 0.3.

(4) For a fixed sample size, the FW soliton can be located
at different positions of the sample, providing the left- and
right-hand sides have integral numbers of half-sine oscillation
[Figs. 3(f)–3(h)].

(5) In the third and following intervals, if there exist
solitons (not approximate to the boundary) in two samples
with size L = l1 and L = l2 = l1 + mTs/2, the soliton in the
sample with L = l2 is the extension of that in the sample with
L = l1. In other words, the shape and the size of the two FWs
approximate very well to each other, and the SH of the sample
with L = l2 has m more half-oscillatory periods than that of
the sample with L = l1.

Figure 4 shows that in a sample with a fixed degree
of nonlocality (

√
α = 0.3) and a fixed sample size (L =

2.054Ts), there may exist single- and multihump solitons. The
more the number of humps for the branch I (branch II) solitons
is, the narrower (wider) the width will be.

As shown in Fig. 5, if in samples with sizes L1 = m1Ts/2 +
l, L2 = m2Ts/2 + l, . . ., and Lp = mpTs/2 + l exist single-
hump solitons with the same width, in the sample with size L =
L1 + L2 + · · · + Lp will exist a p-hump soliton (the hump
can be in-phase or out-of-phase), which looks to be jointed by
the single-hump solitons, as long as the SHs for the single-
hump solitons are connected smoothly. It should be noted that,
only the same branch solitons can be “jointed”; the branch
I soliton(s) cannot be “jointed” with the branch II solitons,
because the two types of solitons have obviously different
widths and amplitudes, as shown in Fig. 3.

We have propagated the two branches of solitons with
various parameters to study their stability. In simulating
the propagation of the found solitons, Eqs. (1) and (2) are

used; the Dirichlet boundary conditions, i.e., E1(−L/2) =
E1(+L/2) = 0, E2(−L/2) = E2(+L/2) = 0, are addressed;

FIG. 6. Upper panels: Intensity evolution of FW (left) and SH
(right) of the branch I soliton for L = 1.054Ts and

√
α = 0.3. Lower

panels: Evolution of FW (left) and SH (right) for the branch II
soliton; the parameters are the same as those for the upper panels. The
simulation used d1 = 2, d2 = 1, λ = −2, and Nx = 339 (for branch
I) and Nx = 259 (for branch II) points in x and Nz = 5 × 104 steps
in z (corresponding to that the step length along z is �z = Ld/104,
where LD = w2/(2|d1|) is the Rayleigh distance of the FW and w is
the rms width of the FW.)
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FIG. 7. An example for the evolution of FW (red solid line) and SH (blue dashed line) for the case that only the FW beam (with Gaussian
profile) is input. At the entrance plane the width of the FW equals that of the FW of the branch II soliton for L = 1.054Ts and

√
α = 0.3, and

the power equals the total power of the FW and the SH of the branch II soliton. Other parameters are the same as those in Fig. 6.

and a code with a finite difference method is used. We
have checked a conserved quantity, i.e., the total power. It is
conserved during propagation. The result shows that the two
branches of solitons are all unstable. As shown in Fig. 6 for
example, the solitons can only keep the shape in a few Rayleigh
distances LD of the FW [defined as LD = w2/(2|d1|), w is the
rms width of the FW] and then break up quickly (Fig. 6).

For the case s1,2=−1, it is the Dirichlet boundary conditions
which makes the relation between the FWs and the SHs of the
solitons differ from that under the no-boundary conditions; and
it causes the existence of bright solitons (which is not found
under the no-boundary conditions). In the view of geometrical
optics, the beam undergoes total internal reflection at the
interface between the quadratic material and the air during
propagation, this might be the reason for the instability of the
found two branches of solitons.

We have also simulated the propagation of Gaussian beams
in the sample for different sample sizes and beam powers
(e.g., Fig. 7). The result shows that the power interchange
between the FW and the SH happens when the FW diffracts
during propagation. The power interchange and the diffraction
interact; this make the beam shape change greatly. After
the arrival of the beam edge at the boundary, the shape
changes more dramatically. Because of the combined action of
diffraction, power interchange, and boundary confinement, the
Gaussian beams undergo complicated propagation; we have
not found a general law for their propagation. In fact, the
irregular propagation of Gaussian beams is as expected: even
for the soliton solutions, the beam is unstable and quickly
breaks up during propagation. For the Gaussian beams which
are greatly different from the soliton solutions (with bell-like
FW as well as oscillating SH), the propagation would be much
more unstable and irregular.

IV. CONCLUSION

In conclusion, under the Dirichlet boundary conditions
there can exist bright parametric solitons in the case s1 =

s2 = −1, in which only dark solitons are found under the
no-boundary conditions in previous works. If the model
Eqs. (3) and (4) are reduced into the SMM model, one can
get the approximate analytical solution of the bright solitons,
which can be taken as the initial trial function to get the
numerical precise solution. The numerical results show that the
bright solitons in the case s1 = s2 = −1 can be classified into
two branches, i.e., branch I and branch II, of which the beam
width increases and decreases with the increase of the sample
size, respectively. Branch I solitons exist in all the degrees of
nonlocality we investigated; but the branch II solitons exist
only in the stronger nonlocal case. If the nonlocality is fixed
and the sample size is varied, the soliton width varies piecewise
and approximately periodically. In every period, there is only
a small range of sample sizes in which soliton exists. In a
sample with fixed degree of nonlocality and fixed sample size,
there may exist single- and multihump solitons. The more the
number of humps for the branch I (branch II) solitons is, the
narrower (wider) the width will be. In addition, single-hump
solitons with the same beam width of FWs in narrower samples
can be jointed to be a multihump soliton in a wider sample (the
size is the sum of those of the narrower ones), as long as the
SHs for the single-hump FW solitons are connected smoothly.
Our results only cover the solitons of which the SMM is
applicable and the forms of the FWs and SHs are bell-like and
oscillatory, respectively. There may be other soliton solutions
differing from our result or beyond the SMM, but they
call for other initial guesses, theoretical modes, and further
exploration.
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