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Squeezing of thermal fluctuations in four-wave mixing in a � scheme
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We theoretically investigated the mechanism of two-mode quadrature squeezing in a regime of four-wave
mixing in a � scheme of three-level atoms embedded in a thermal reservoir. We demonstrated that the process of
nonlinear transfer of noise from the low frequency of ground state splitting to the optical frequency is significant
if the number of thermal photons at the low frequency is high. We have shown that correct calculation of
the two-mode squeezing level taking into account both thermal noise and distortion of dissipative properties
of the thermally excited medium resulted in a simple expression for the maximum squeezing level, which is
defined by the ground-state coherence decay rate and the drive-field intensity. We found the optimal conditions
for squeezing, in particular, the optimal density-length product of the active medium depending on the atomic
relaxation parameters and the drive-field intensity.
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I. INTRODUCTION

Since the pioneering work of Slusher et al. [1] many groups
have demonstrated squeezing based on four-wave mixing
(4WM) in atomic vapors under a variety of conditions [2–5].
A number of theoretical and experimental works [6–15] have
shown that resonant 4WM based on ground-state coherence
is attractive, since coherent population trapping (CPT) and
electromagnetically induced transparency (EIT) can provide
a small ratio of absorption coefficient with respect to a high
increment of 4WM instability and, as a consequence, strong
intensity correlations of generated twin beams and a high
level of two-mode quadrature squeezing between opposite
sidebands of the twin beams. One of the advantages of this
mechanism is that 4WM naturally generates the squeezed light
with a narrow frequency band that is resonant to an atomic
transition, which can be applied as a quantum-information
carrier interacting with a material system. Besides, in resonant
schemes of 4WM a high level of squeezing can be achieved for
relatively low drive powers. Noise correlations and squeezed-
light generation on the basis of 4WM in sodium vapor
has been experimentally demonstrated by Grove et al. [6].
The demonstration of −8 dB of relative intensity squeezing
between probe and conjugate beams produced in a nearly
copropagating nondegenerate 4WM scheme in rubidium vapor
has been reported in Refs. [12,13,16].

A common problem in experiments using resonant atomic
ensembles for squeezing is the processes of spontaneous
emission in atoms that occur concurrently with four-wave
mixing and lead to incoherent emission into the signal
modes. These processes contribute to the “thermalization”
of the optical state in the signal modes and degrade the
squeezing [17]. Such processes take place if there are thermal
excitations in the medium (if the temperature is not zero).

The generally excepted idea [12] is that the negative
influence of spontaneous emission from the upper level
on squeezing in 4WM based on ground-state coherence is
reduced due to the EIT effect. It is intuitively based on
the standard fluctuation-dissipation theorem (FDT) [18]. But
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the generalized fluctuation-dissipation relation obtained in
Ref. [19] for a resonantly driven quantum medium makes us
believe that the situation is complicated by the fact that the
noise level at the optical frequency may be determined by the
averaged number of thermal photons at the low frequency
of ground-state splitting if the population damping rate at
this frequency is not zero. This effect is caused by the
parametric transfer of noise from low to high frequency in the
presence of the resonant drive wave. Actually the generalized
FDT [19] takes into account the process of spontaneous Raman
scattering that leads to incoherent emission into the resonant
signal mode.

The presence of some extra noise beyond that which is nec-
essary to preserve the canonical commutation relation of the
field has been observed in EIT delayed light experiments [20]
and in experiments on the propagation of squeezed vacuum
under EIT [21] and has also been associated with the processes
of population exchange between ground states in theoretical
treatment [22]. The calculation of spontaneous Raman noise
presented in Ref. [23] demonstrates storage and retrieval of
single photons in an off-resonant Raman memory scheme.

Noise scattering as a factor that can spoil squeezing in 4WM
mechanisms has been pointed in Ref. [17]. However, until
now the accurate theory of 4WM squeezed-light generation in
thermally excited atomic vapors based not on the phenomeno-
logical approach (as in Ref. [13]), but with gain, propagation
losses, and noise intrinsically included in the microscopic ap-
proach, has not been presented. Most theoretical studies [8,15]
have used a zero-temperature approximation for the analysis
of squeezed-light generation in such schemes. In most of
works the theoretical treatment has been limited to numerical
calculations without analytical solutions, clarification of basic
dependencies, and optimal conditions.

In the present paper we theoretically investigate the process
of generation of a two-mode squeezed vacuum based on
a 4WM mechanism realized in a three-level � scheme
with monochromatic driving under the condition of thermal
excitations. The considered system is interesting also from the
methodological point of view as a spectacular example that
illustrates the mechanisms of transformation of the field noise
due to the self-consistent parametric interaction in resonant
nonlinear medium.
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It should be pointed that the 4WM squeezing experiments
and the experiments on paired photon generation in both
“cold” [9,10] and “hot” [13] atomic vapors were performed by
different groups. The main advantage of the cold conditions
is that the decoherence processes are essentially reduced,
while the hot conditions are attractive due to large optical
depths. In the present paper we analyze mainly how squeezing
depends on thermal population distribution and corresponding
spontaneous emission processes. Meanwhile we obtain a
useful expression for the level of squeezing depending on
relaxation rates and the density of the atomic sample; the
specific temperature dependencies of these parameters are very
important but their analysis is beyond the scope of the present
investigation.

In the present paper we use the results of previous
research on this system [24] conducted for the case of zero
temperature and negligible dissipation, as well as the results
of analysis of this scheme of parametric instability for classical
fields [25,26].

In Sec. II we introduce with the necessary degree of detail
the basic terms and equations used for the analysis of quantum
radiation propagating through the dense medium consisting
of independent quantum centers (“atoms”) interacting with a
dissipative reservoir under the condition of nonzero tempera-
ture. In Sec. III the system of resonant 4WM in a � scheme is
described. The characteristics of the parametric interaction
of waves taking into account the thermal redistribution of
populations among energy levels are obtained. On the basis of
the approach developed in Ref. [19] the correlation relations
for the noise sources of interacting quantum fields are derived.
In Sec. IV the regime of two-mode squeezed-vacuum genera-
tion in this system is analyzed. The spectral properties of the
squeezed vacuum under different conditions are investigated.
The optimal parameters for squeezing are obtained.

II. GENERAL EQUATIONS

Here we introduce in detail the basic terms and relations for
the system of quantum radiation interacting with the medium
consisting of quantum atoms embedded in a dissipative
reservoir in the frame of the Heisenberg-Langevin approach.

A. Atomic system

For the atomic system we define the coordinate-dependent
density operator as

ρ̂mn(r,t) = 1

�Vr

∑
j

ρ̂j ;mn(t), (1)

where index j numerates the atoms within the small volume
�Vr in the vicinity of the point with the radius-vector r and
ρ̂j ;mn = â

†
j ;nâj ;m is the Heisenberg density operator acting

on variables of the atom with index j ; it is expressed via
the creation and annihilation operators which are defined by
the expressions â

†
n|0〉 = |n〉 and ân|n〉 = |0〉, where |n〉 are

basis states of the single-particle Hamiltonian with energy
levels Wn. The operator ρ̂mn obeys the Heisenberg-Langevin

equation [27,28]:

˙̂ρmn = − i

�
(ĥmpρ̂pn − ρ̂mpĥpn) + R̂mn + F̂mn, (2)

where ĥmn = Wmδmn − dmnÊ(r,t) takes into account the in-
teraction of atoms with the electric field Ê(r,t) in the dipole
approximation, dmn is the dipole matrix elements, R̂mn is the
relaxation operator, and F̂mn is the Langevin noise operator
satisfying F̂mn = F̂

†
nm, 〈F̂mn〉 = 0; hereinafter averaging is

taken over the reservoir variables and the atomic state.
The standard model for the relaxation operators corre-

sponds to the so-called master equations [29–31], where

R̂mn =
∑
pq

rmnpq ρ̂pq . (3)

In a simplest form the nonzero coefficients rmnpq set the rates
of transverse and longitudinal relaxation:

R̂mn = −γmnρ̂mn, m �= n,

R̂mm =
∑

n

wmnρ̂nn. (4)

The correlation functions for the atomic noise operators are
derived in the Appendix. Here we use the correlation relations
for the spectral components of the Langevin operators, defined
as F̂mn(r,t) = ∫ +∞

−∞ F̂mn(r,ω)e−iωtdω. Under the adiabatic
approximation neglecting the slow evolution of populations
〈ρ̂nn〉 and the amplitude of drive-induced coherence at the
resonant transition σba , defined as 〈ρ̂ba〉 = σbae

∓iωd t |b≷a , we
get

〈F̂mn(r,ω)F̂nm(r′,ω′)〉 = 1

2π
(2γmn〈ρ̂nn〉

+ 〈R̂nn〉)δ(ω + ω′)δ(r − r′), (5)

〈F̂ma(r,ω)F̂bm(r′,ω′)〉
= 1

2π
(γam + γbm − γab)σbaδ(ω + ω′ ∓ ωd )|b≷aδ(r − r′).

(6)

B. The field equations

The electric field operator Ê(r,t) in a general case obeys
the following operator wave equation [27,30]:

∂2

∂t2
(Ê + 4π P̂) + c2∇ × ∇ × Ê = 0, (7)

where the operator of electric polarization P̂(r,t) =∑
m,n dnmρ̂mn is expressed via density operators ρ̂mn, which are

the solution of Eq. (2). Assume the field to be quantized over
spatial modes in homogeneous, dissipationless medium with
linear dielectric permittivity ε(ω) = 1 + ∫ ∞

0 4πχH (τ )eiωτ dτ ,
whereas the nonlinear response, dissipation, and noise effects
are taken into account as small additional terms to the linear
relation:

P̂(r,t) =
∫ ∞

0
χH (τ )Ê(r,t − τ )dτ + δP̂. (8)

Here χH is the Hermitian part of the linear susceptibility
of the medium. We assume that the field consists of one or
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several quasimonochromatic waves labeled by index j ; each
of them may be presented as a combination of large numbers
of spectrally close modes of quantization propagating within
a paraxial beam of the cross-sectional area S⊥. Then the
following representation can be used:

Ê(r,t) =
∑

j

ejEj ĉj (r,t)eikjr−iωj t + ej
∗Ej ĉ

†
j (r,t)e−ikjr+iωj t ,

where ej is the unit vector of the polarization of the j

wave, ωj and kj are coupled by the corresponding dispersion
relation k2

j c
2/ω2

j = ε(ωj ), and operators ĉj (r,t) and ĉ
†
j (r,t)

are slow time- and space-dependent photon annihilation and
creation operators. Ej are normalization constants defined

as Ej =
√

4π�ω2
j /|

∂(ω2
j ε(ωj ))

∂ωj
| [27,30]. For such representation

the operators n̂phj = ĉ
†
j (r,t)ĉj (r,t) play the role of the photon

density operators and p̂phj = vgrj ĉ
†
j (r,t)ĉj (r,t) are the photon

flux density operators, where vgrj = 2c2kj/
∂(ω2

j ε)

∂ωj
are the group

velocities.
The following truncated equations can be written for the

operators ĉj (r,t) [24,28]:(
∂

∂t
+ (vgrj∇)

)
ĉj (r,t) = �j

i

�
e∗EjδP̂j (r,t), (9)

where �j = sgn(
∂(ω2

j ε)

∂ωj
) and δP̂j (r,t) are the slowly

varying amplitudes of the polarization terms δP̂ =∑
j δP̂j (r,t)eikjr−iωj t + δP̂†

j (r,t)e−ikjr+iωj t .
In a boundary-value problem the spectral decomposition of

the field amplitude is used:

ĉj (r,t) =
∫ +∞

−∞
ĉjν

(r)e−iνt dν, (10)

where the integration in infinite limits is reduced to the
integration over the narrow frequency interval �νj 
 ωj .
It is appropriate to write the propagation equation for the
“flux” amplitudes âj = √|vgrj |ĉj . Assuming that the wave
propagates in the positive z direction, kj = kj z0, we get the
following equation:

∂âjν
(z)

∂z
− iν

vgrj
âjν

(z) = ie∗Ej

�
√|vgrj |

δP̂jν
(z), (11)

where vgrj = 2c2kj/
∂(ω2

j ε)

∂ωj
and δP̂jν

(r) is the corresponding
spectral image of the slowly varying amplitude of polarization:

δP̂j (r,t) =
∫ +∞

−∞
δP̂jν

(r)e−iνt dν. (12)

At the boundary zb between the medium and vacuum the
following boundary condition for the field operator can be
used:

1√
c
âj (zb) |medium= ĉj (zb) |vacuum , (13)

which satisfies the conservation of Poynting flux. (It is assumed
that the effects of reflection are neglected.)

The polarization on the right-hand side of Eq. (11) includes
nonlinearity (e.g., parametric coupling of different waves), dis-

sipation, and fluctuations: δP̂jν
= δP̂N

jν
+ δP̂diss

jν
+ δP̂L

jν
. The

dissipation term that is linear over the quantum field, δP̂diss
jν

=
χ aH(ωj + ν)eEj ĉjν

, defines the absorption coefficient κj (ν) =
−i

2πkj

εj
χ aH(ωj + ν). Here χ aH is the anti-Hermitian part of

the susceptibility. Note that if the medium is driven by a
classical field then the “linear” coefficients take into account
dependence on drive intensity: ε(Id ), χ aH(Id ), and κj (Id ).

So we use the following form of equation for the filed
operator:

∂âjν
(z)

∂z
− iν

vgrj
âjν

(z) + κj (ν)âjν
(z) = N̂jν

+ L̂jν
. (14)

Here N̂jν
= ie∗Ej

�

√
|vgrj |

δP̂N
jν

and L̂jν
= ie∗Ej

�

√
|vgrj |

δP̂L
jν

.

The Langevin term L̂jν
provides the fulfillment of com-

mutation relations for the field operators in a dissipative
medium [24,28]:

[
âjν

(z),â†
jν′ (z)

] = 1

2πS⊥
δ(ν − ν ′).

So the definite relation between noise terms and the absorption
coefficient follows from this general requirement without
specification of the dissipation and noise origin:

[
L̂jν

(z),L̂†
jν′ (z

′)
] = 1

πS⊥
κj (ν)δ(z − z′)δ(ν − ν ′), (15)

but the separate expressions for the correlation functions of
Langevin operators 〈L̂jν

(z)L̂†
jν′ (z

′)〉 and 〈L̂†
jν′ (z

′)L̂jν
(z)〉 cannot

be evaluated from this relation. Their correct calculation
should be based on the “microscopic” approach, by consistent
calculation of noise atomic response on the action of atomic
noise operators F̂mn, obeying correlation relations (5) and (6),
and corresponding evaluation of the noise component of
medium polarization.

III. RESONANT FOUR-WAVE MIXING IN A � SCHEME

A. The key parameters of the model

We consider the following scheme of the four-wave mixing
process, depicted in Fig. 1, where the total field consists of
the strong classical drive wave and signal quantum waves,
the probe wave and the Stokes wave, copropagating in the z

direction through the plane-parallel layer of three-level atoms:

Ê = edξde
ikdz−iωd t + c.c. + epEpĉp(z,t)eikpz−iωpt

+ esEsĉs(z,t)e
iksz−iωs t + H.c. (16)

For simplicity we put ed = ep = es = e. We consider the
classical wave with constant amplitude ξd = |ξd |iθ and a
frequency equal to the frequency of the atomic transition
|2〉 − |3〉: ωd = ω32. The spectral decomposition of the wave
amplitudes is used [Eq. (10)]:

ĉp,s(r,t) =
∫ +∞

−∞
ĉp,sν

(r)e−iνt dν. (17)

Summarizing the results of previous investigations of this
system [24,25] we can get that the effective generation of the
bichromatic correlated radiation (and the squeezed two-mode
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FIG. 1. The scheme of the resonant 4WM process in three-level
� atoms. Here δω = ωp − ω31 is the one-photon resonance detuning
of the “central” frequency of the quasimonochromatic probe wave,
and δω is chosen so that it corresponds to the strict four-wave spacial
synchronism. ν is the detuning of the considered spectral component
of the probe wave from the “central” frequency.

radiation) at the frequencies obeying the four-wave resonance
condition,

ωp + ωs = 2ωd, (18)

is realized due to the combination of the following factors
(i) Electromagnetically induced transparency. The drive

wave should be strong enough but can be far from saturation
value:

γ 2
31 � |�|2 � γ31γ21, (19)

where � = (d32edξd )/2� is the Rabi frequency of the drive
wave and γij are the coherence decay rates at the corresponding
atomic transitions. The frequency of the probe wave should be
close to the two-photon resonance (ωp − ωd ≈ ω21), which
in our case corresponds to the resonance with the atomic
transition |1〉 − |3〉, adjacent to the transition |1〉 − |2〉 with
long-lived coherence γ21 
 γ31,γ32. The width of the EIT
window is defined by the condition |ωp − ω31| < �EIT, where
�EIT ∼ |�|2/γ31. The EIT condition, Eq. (19), provides both
sufficient reduction of the partial decrement of the resonant
probe wave and strong parametric coupling for configuration
with close lower atomic levels:

ω21 
 ω31,ω32. (20)

(ii) Four-wave spacial synchronism. This condition is
provided by favorable wave dispersion in the considered
atomic medium. We suppose that the “central” frequencies of
the probe and Stokes waves correspond to the strict four-wave
spacial synchronism:

kp + ks = 2kd, (21)

where kj = (ωj/c)
√

ε(ωj ). It was shown in Refs. [25,26] that
the relation (21) is fulfilled for definite detuning from the

resonance with the atomic transition ωp = ω31 + δω, where

δω = |�|2
ω21

(
3

2
+ |ζ |2

)
, (22)

here ζ = d31e
d32e .

The effective generation of correlated radiation is realized
if the parametric coupling coefficient is large compared with
the partial decrement of the probe wave, which is reduced to
the following relation:

|�|2
γ21ω21

> 1. (23)

The smallness of the synchronism shift compared to the
parametric coupling coefficient determines the frequency band
of parametric instability near the central frequency |ν| < �P ,
where

�P = 2|�|2
ω21

. (24)

The regime of two-mode squeezed-vacuum generation in
this system was analyzed in detail in Ref. [24] for the case of
thermally unexcited atoms and negligible dissipation. Our aim
is to analyze this regime in a dissipative atomic medium in a
“hot” reservoir, so we use the results of Ref. [24] where they
are applicable only.

Note that here we analyze the particular case of zero
one-photon detuning for the drive wave ωd = ω32. At the same
time for a number of the experiments [12–14,16] all the fields
are detuned from the exact transitions to minimize the optical
losses and detrimental effects of spontaneous emission. From
this point of view the analyzed system can be considered as a
demonstrative one that enables us to estimate the maximal
negative influence of spontaneous emission to squeezing.
On the other hand this system is interesting since the strict
one-photon resonance provides the largest nonlinear coupling
coefficient as one of two competing parameters together with
optical losses. The schemes with strict resonance were realized
in other experiments [6,9,10]. Developing the theory for any
detunings as well as for Doppler broadening is the plan for
future investigation.

B. Equations for the density-matrix operators

Here we write the equations for the density-matrix opera-
tors, Eq. (2), in the presence of the electric field, Eq. (16), and
Langevin forces F̂mn in order to calculate the coherently driven
partial, parametric, and noise components of polarization.
Using the rotating-wave approximation (RWA) with respect
to the high frequencies ω31 and ω32 under the condition of
Eq. (20) the interaction of all field components with both
high-frequency transitions is taken into account, so that the
density-matrix operators are presented as

ρ̂31 =
∑

j=d,p,s

σ̂
j

31e
−iωj t+ikj z, ρ̂32 =

∑
j=d,p,s

σ̂
j

32e
−iωj t+ikj z,

ρ̂21 = σ̂21e
−iωl t+iklz,
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where ωl = ωp − ωd and kl = kp − kd . Meanwhile, we use
the approximation of well-resolved transitions:

γ31,γ32 
 ω21. (25)

We also assume the following condition to be fulfilled:

γ31|�|2
γ21ω

2
21


 1. (26)

As it will be seen later, the condition of Eq. (26) enables us to
neglect the partial dissipation of the nonresonant Stokes wave
with respect to the dissipation of the resonant probe wave. It
is fulfilled if the small relaxation rate at transition |1〉 − |2〉 is
taken into account.

Consider the atomic response to the action of quantum
radiation and noise forces additively in a linear approximation
over quantum fields. Assume that the amplitude of the classical
drive wave is constant. Working in spectral representation
for the field operators, Eq. (10), we use the corresponding
representation for the slow components of the density-matrix
operators:

σ̂
p,s

31,32(z,t) =
∫ +∞

−∞
σ̂

p,s

31,32ν
(z)e−iνt dν,

σ̂21(z,t) =
∫ +∞

−∞
σ̂21ν

(z)e−iνt dν,

where the width of corresponding spectral lines is small
compared to the atomic frequency ω21. Similarly the spectrum
of Langevin forces Fmn(z,ω) can be separated into three
intervals:

F̂31,32(z,ω) =
∑

j=p,s

f̂
j

31,32ν=ω−ωj
(z),

F̂21(ω,z) = f̂21ν=ω−ωl
(z). (27)

Then the system of equations for the density-matrix operators
takes the following form of algebraic equations:

σ̂
p

31ν
= 1

�
p

31

(
p̂ν(ρ11 − ρ33) + �σ̂21ν

+ f̂
p

31ν

)
,

σ̂ s
31ν

= 1

�s
31

(
ζ ŝν(ρ11 − ρ33) + f̂ s

31ν

)
,

σ̂
p

32ν
= 1

�
p

32

(
1

ζ
p̂ν(ρ22 − ρ33) + f̂

p

32ν

)
,

σ̂ s
32ν

= 1

�s
32

(
ŝν(ρ22 − ρ33) + ζ�

(
σ̂21−ν

)† + f̂ s
32ν

)
,

σ̂21ν
= 1

�l
21

(
σ̂

p

31ν
�∗ + σd

31(ŝ−ν)†

− p̂νσ
d∗
32 − ζ�

(
σ̂ s

32−ν

)† + f̂21ν

)
. (28)

Here ζ = d31e
d32e , as was introduced in Sec. III A. The field

operators are

p̂ν = d31eEpĉpν

2�
, ŝν = d32eEsĉsν

2�
.

The complex frequency detunings are

�j
mn = ωmn − ωj − ν − iγmn, j = d,l,p,s. (29)

For the averaged drive-induced coherences we have the
following relations:

σd
31 = 1

�d
31

ζ�(ρ11 − ρ33),

σ d
32 = 1

�d
32

�(ρ22 − ρ33), (30)

where �d
31 ≈ ω21, �d

32 = −iγ32. The averaged values for di-
agonal density-matrix operators obey the following equations:

− (w21 + w31)ρ11 + w12ρ22 + w13ρ33 = 0,

−2Im
(
�∗σd

32

) + w21ρ11 − (w12 + w32)ρ22 + w23ρ33 = 0.

(31)

In Eqs. (28)–(31) the relaxation model, Eq. (4), is used.

C. Field-induced population redistribution

Under the condition of finite temperature T �= 0 and not
ideal low-frequency transition |2〉 − |1〉, it is necessary to
calculate the redistribution of atoms over levels induced by
the drive wave. To this end we express the relaxation rates
wmn, Eq. (31), in terms of equilibrium (in the absence of drive)
population distribution,

rT
n = ρT

nn/ρ
T
11 = exp (−�ωn1/T ),

and longitudinal relaxation times, defined for transition |m〉 −
|n〉 as Tmn, so that

w1n = 1

Tn1
, wn1 = rT

n

Tn1
, w23 = 1

T32
, w32 = 1

T32

rT
3

rT
2

. (32)

We get from Eqs. (31)–(32) the following expressions for the
stationary populations:

ρnn

ρ11
=

rT
n

(
1

T21T31
+ 1

T21T32
+ 1

T31T32

rT
3

rT
2

) + 2|�|2
γ32

( rT
2

T21
+ rT

3
T31

)
(

1
T21T31

+ 1
T21T32

+ 1
T31T32

rT
3

rT
2

) + 2|�|2
γ32

(
1

T21
+ 1

T31

) ,

n = 2,3. (33)

Consider the condition of EIT, Eq. (19), that is realized
if 1/T21 
 1/T31 and 1/T32 and if the level of thermal
excitations at optical frequencies is low, T 
 �ω31. We put
the exact equality

rT
3 = 0,

that corresponds to real conditions with good accuracy.
Meanwhile the ground-state frequency splitting can be much
less than the energy of thermal excitations (for example, in Rb,
where ω21 = 2π × 6.83 GHz we get �ω21 ∼ T at temperature
T ∼ 0.3 K). It is remarkable that according to Eq. (33) under
the EIT condition level |2〉 is devastated due to the action of
the strong drive wave and fast relaxation from the upper level,
which is a manifestation of the well-known CPT effect:

ρ22

ρ11
≈ rT

2

(
1 + T31

T32

)
γ32

2T21|�|2 
 rT
2 . (34)

Nevertheless the residual population of level |2〉 is taken into
account, and, as it will be shown later, it is necessary to do this
for correct noise estimation.
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Note that the upper level is slightly populated due to the
drive field action (although the number of atoms at the upper
level does not depend on the drive intensity under the EIT
condition):

ρ33

ρ11
≈ rT

2
T31

T21

 ρ22

ρ11
, (35)

but this population can be ignored.

D. Susceptibility of thermally excited atoms

The amplitudes of the slowly varying components of polar-
ization P̂ = ∑

j=d,p,s (P̂j (z,t)eikj z−iωj t + P̂†
j (z,t)e−ikj z+iωj t )

are expressed via density components in the following way:

P̂j = d23σ̂
j

32 + d13σ̂
j

31. (36)

We solve the dynamical part of equations for the atomic
coherences, Eqs. (28), taking into account the small population
of level |2〉 [the population of level |3〉 can be ignored as
dictated by Eq. (35)]. As a result, we calculate the susceptibility
components χH,aH

p , χH,aH
s , χps , and χsp defined by the

following relations:

P̂pν
= χH

p (ν)Epĉpν
+ χ aH

p (ν)Epĉpν

+χps(ν)ei2θEs

(
ĉs−ν

)† + δP L
pν

,

P̂sν
= χH

s (ν)Esĉsν
+ χ aH

s (ν)Esĉsν

+χsp(ν)ei2θEp

(
ĉp−ν

)† + δP L
sν

. (37)

The following expressions are obtained:

χH
p (ν) = η

4π |�|
(

ωp + ν − ω31

|�| − |ζ |2 |�|
ω21

)
,

χ aH
p (ν) = iη

4π |�|
(

(ωp + ν − ω31)2γ31

|�|3 + γ21

|�| − |�|
γ32

n23

ρ11

)

≈ iη

4π |�|
(

ν2γ31

|�|3 + γ21

|�| − |�|
γ32

n23

ρ11

)
,

χH
s (ν) = η

8πω21

(
1 − 3

2

ωs + ν − 2ω32 + ω31

ω21

)
,

χ aH
s (ν) = iη

8πω21

(
−3

2

γ31

ω21
+ 2

1

ω21

(
γ31 + γ32

|ζ |2
)

n23

ρ11

)
,

χps(ν) = χsp(ν) = − η

4πω21
. (38)

Here

η = 4π |d31|2N/�, (39)

where N is the density of atoms. The relations (38) correctly
describe the frequency dependence of the susceptibility com-
ponents in a central part of the EIT window, more precisely
for |ν| < |�|√γ21/γ31. The small corrections of the order
γ31|�|2/(γ21ω

2
21) 
 1 [Eq. (26)] are not taken into account.

In particular this means that the frequency dependence of the
anti-Hermitian part of the probe wave susceptibility χ aH

p (ν) is
essential only at the scale larger than the frequency band of
the parametric instability |ν| � |�|2/ω21 (see Sec. III A).

In correspondence to the obtained relation for the anti-
Hermitian part of partial susceptibility of the probe wave,

Eq. (38), it is decreased in the presence of the population
of level |2〉. To analyze how strong this reduction is, we should
use the solution for the population of level |2〉, Eq. (34), and
the relation between the longitudinal and transverse relaxation
rates:

γ21 = 1

2T21

(
rT

2 + 1
) + �21, (40)

where �21 is the dephasing rate at the low-frequency transition
|2〉 − |1〉 caused by elastic processes. Then we get the
following expression for the anti-Hermitian part of the partial
susceptibility of the probe wave:

χ aH
p = iη

4π |�|2
[
ν2γ31

|�|2 + �21 + 1

2T21

(
1 − rT

2
T31

T32

)]
. (41)

It follows from Eq. (41) that modification of the linear decre-
ment of the probe wave in the presence of thermal excitations
(rT

2 �= 0) depends on the ratio between relaxation rates at
two high-frequency transitions: |3〉 − |1〉 and |3〉 − |2〉. In a
narrow range of parameters the decrement can even became
negative, which corresponds to the so-called amplification
without inversion regime [32]. Considering the case of close
relaxation rates at high frequencies T31 ≈ T32, we get

χ aH
p = iη

4π |�|2
(

ν2γ31

|�|2 + �21 + 1

2T21[1 + nT (ω21)]

)
. (42)

Here we use the notation nT (ω) = (e�ω/T − 1)−1, which is the
averaged number of “thermal” photons at frequency ω. The
temperature dependence of χ aH

p is defined by nT (ω21) and by
the temperature dependencies of the longitudinal relaxation
time T21(T ) and the “elastic” relaxation rate �21(T ), which
depend on the mechanism of dissipation that predominates
under particular experimental conditions at the considered
temperature. We can qualitatively model the temperature
dependence of the population damping rate in the following
way:

1

T21
= A21[nT (ω21) + 1], (43)

which precisely corresponds to the interaction with the
dissipative reservoir of harmonic oscillators (see, for example,
Ref. [30]). Under real experimental conditions we should
assume some dependence A21(T ), which takes into account
different dissipative mechanisms that play a major role under
different temperature conditions. If Eq. (43) is used then we
get that the anti-Hermitian part of the partial susceptibility of
the probe wave equation (42) is not sensitive to the thermal
excitations χ aH

p = χ aH
p (nT (ω21) = 0):

χ aH
p = iη

4π |�|2
(

ν2γ31

|�|2 + �21 + 1

2
A21

)
. (44)

It is interesting to note that the medium driven by the
resonant coherent field has the negative conductivity at
frequency ωs : −iχ aH

s < 0. The negative dissipation is caused
by the process of Raman scattering of the drive wave at the
transition |1〉 − |2〉 into the Stokes satellite at frequency ωs .
The absolute value of this amplification is much less than
the absorption at the frequency of the probe wave due to
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condition (26): ∣∣χ aH
s

∣∣ 
 ∣∣χ aH
p

∣∣. (45)

The dependence of the anti-Hermitian component of the
susceptibility at ωs on the thermal redistribution among atomic
levels is presented in Eq (38), but it is unessential due to
Eq. (34). The analogous dependencies in the Hermitian parts
of the susceptibilities are omitted.

So we can conclude that due to the field-induced devastation
of level |2〉 [Eq. (34)] under the EIT conditions, Eq. (19), all
components of the medium’s susceptibility can be considered
to be not sensitive to the thermal excitations of atoms in a wide
range of parameters.

The radical dependence on temperature in the EIT medium
appears in the noise terms of the polarization equations (37),
namely, in their correlation functions.

E. Correlation functions for the noise components
of the medium polarization

The commutators of noise polarization components,
defined by the linear partial decrements of waves in

correspondence with Eq. (15), do not depend on the thermal
excitations in the medium, as follows from the conclusion of
the previous section. The situation is different with correlators
separately or their sum.

In linear medium the relation between correlation functions
and the linear decrement is dictated by the standard fluctuation
dissipation theorem [18]:〈

δP̂ L
jν(z)δP̂ L†

jν ′ (z′) + δP̂
L†
jν ′ (z′)δP̂ L

jν(z)
〉

= −i
�

π

1

S⊥
χ aH

j (ν)[2nT (ωj + ν) + 1]δ(ν − ν ′)δ(z − z′).

(46)

We apply the technique developed in Ref. [19] to calculate
the correlation functions of the noise components of polar-
ization excited in different frequency intervals, corresponding
to probe and Stokes waves, in the 4WM regime beyond the
simple RWA [but using condition (26)]. Namely, we find the
noise solution of Eqs. (28), and using correlation functions
for the atomic noise operators, Eqs. (5) and (6), we get for
correlation functions of noise components of polarizations,
Eq. (36), the following expressions:

〈
δP̂ L

pν(z)δP̂ L†
pν ′(z′) ∓ δP̂

L†
pν ′ (z′)δP̂ L

pν(z)
〉 = −i

�

π

1

S⊥

iη

4π |�|
(

ν2γ31

|�|3 + γ21

|�| ∓ |�|
γ32

n23

ρ11

)
δ(ν − ν ′)δ(z − z′), (47)

〈
δP̂ L

sν(z)δP̂ L†
sν ′ (z′) ∓ δP̂

L†
sν ′ (z′)δP̂ L

sν(z)
〉 = −i

�

π

1

S⊥

iη

8πω21

[
γ31

2ω21
∓ 2γ31

ω21
+ 2

ω21

(
γ31 + γ32

|ζ |2
)

n23

ρ11

]
δ(ν − ν ′)δ(z − z′), (48)〈

δP̂ L
pν(z)δP̂ L†

sν ′ (z′) ∓ δP̂
L†
sν ′ (z′)δP̂ L

pν(z)
〉 = 0, (49)

〈
δP̂ L

pν(z)δP̂ L
sν ′ (z′) ∓ δP̂ L

sν ′ (z′)δP̂ L
pν(z)

〉 = −i
�

π

1

S⊥

iηe2iθ

8πω21

(
2γ31(ω31 − ωp − ν)

|�|2 + 2γ31

ω21
∓ 2in23

ρ11

)
δ(ν + ν ′)δ(z − z′). (50)

First we can see that the obtained commutators for the noise
polarizations exactly coincide with the corresponding relation,
Eq. (15), which guarantees the fulfillment of commutation
relations for the field operators:

[
δP̂ L

jν(z)δP̂ L†
jν ′ (z′)

] = −i
�

π

1

S⊥
χ aH

j (ν)δ(ν − ν ′)δ(z − z′),

(51)

where χ aH
j (ν) were obtained in Eq. (38). Second, the sums of

correlation functions can be written in a form that resembles
the standard FDT relation, Eq. (46), so that they are propor-
tional to the anti-Hermitian components for the probe and
Stokes waves, but with cardinally different proportionality
factors:〈

δP̂ L
jν(z)δP̂ L†

jν ′ (z′) + δP̂
L†
jν ′ (z′)δP̂ L

jν(z)
〉

=
∣∣∣∣−i

�

π

1

S⊥
χ aH

j (ν)

∣∣∣∣(2Sj (ν) + 1)δ(ν − ν ′)δ(z − z′). (52)

The coefficients Sj are related to the polarization noise
associated with the processes of spontaneous emission; they
define the excess noise beyond that which is necessary to
preserve the canonical commutation relation for the field
operators. Actually the parameter Sj determines the number of

spontaneously emitted photons at frequency ωj in coherently
driven medium under the condition of high optical depth.

For the probe wave this coefficient is equal to

Sp(ν) =
|�|2

γ32γ21

n23
ρ11

1 − |�|2
γ32γ21

n23
ρ11

+ ν2γ31

|�|2γ21

. (53)

Note that it is proportional to the population of the devastated
level |2〉, but with a large coefficient of proportionality |�|2

γ32γ21
.

Then, using Eq. (34) for the population ρ22 and Eq. (40) for the
low-frequency coherence decay rate γ21 we get the following
expression (it is written under the assumption T31 ≈ T32):

Sp(ν) = nT (ω21)
1
2 + (

�21T21 + ν2γ31

|�|2 T21
)
[nT (ω21) + 1]

= nT (ω21)
1
2 + �21

A21
+ ν2γ31

|�|2A21

. (54)

In the last expression the model representation, Eq. (43), was
used. It is important that the thermal noise of polarization at
frequency ωp is defined by the averaged number of thermal
photons at low frequency of ground-state splitting nT (ω21) =
(e�ω21/T − 1)−1. The number of thermal photons at splitting
frequency ω21 may be high. Thus, for example, for Rb vapor
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the number of thermal photons at splitting frequency ω21 =
2π × 6.83 GHz becomes of the order of unity at temperature
T ∼ 0.5 K, while at room temperature T = 290 K it is already
about 1000. The thermal noise factor Sp depends also on
the ratio of the population exchange rate at low-frequency
transition T −1

21 to the dephasing rate caused by elastic processes
�21. The thermal noise is maximum at zero detuning ν and its
level increases with the ratio of population exchange rate to the
rate of low-frequency coherence relaxation arising from elastic
processes. In other words, the thermal noise is significant if
coherence damping is mainly determined by the same mecha-
nism of dissipation as the one that causes population transfer.
The dependence of noise at frequency ωp on the parameters
of transition with frequency ω21 is explained by the process of
parametric transfer of noise from low to high frequency in the
presence of a resonant strong drive wave. It can be also inter-
preted as the result of spontaneous anti-Stokes Raman scatter-
ing, but modified under conditions of resonant interaction.

The analogous coefficient for the Stokes wave is

Ss(ν) = 1/3. (55)

It is interesting that it is not defined by nonzero excitations
in the atomic system (thermal distribution among levels). The
reason is that the fluctuations at frequency ωs with nonzero flux
can be generated due to scattering of the drive wave on zero
fluctuations of the reservoir at low frequency. In other words
it is caused by the spontaneous Stokes Raman scattering. For
the following analysis of noise characteristics of generated
two-mode squeezed radiation it was important here to find out
that this coefficient is not large, so that the noise source at
frequency ωs can be ignored, since the power spectral density
of the noise source at frequency ωs is proportional to the anti-
Hermitian part of the susceptibility at frequency ωs and it is
much smaller than the the noise source at frequency ωp because
Eq. (45) is fulfilled. The same concerns the cross-correlation
terms in Eq. (50).

F. The solution of the coupled equations for the field operators

Using the obtained relations for the partial and the paramet-
ric components of susceptibilities, Eq. (38), we can derive the
coupled equations for the filed operators according to Eq. (14).
Note that these equations were derived under the condition that
the nonlinear and dissipative components of polarization are
small compared with the field. It is reduced to the condition
imposed on the medium density:

η

ω21

 1, (56)

where η is given by Eq. (39). So we get the following coupled
equations for opposite (ν and −ν) spectral components of the
field operators corresponding to the probe and Stokes waves:

∂âpν
(z)

∂z
− iν

vgrp

âpν
(z) + κpâpν

(z) = −iχe2iθ â†
s−ν

+ L̂pν
,

∂â
†
s−ν

(z)

∂z
− iν

vgrs

â†
s−ν

(z) + κsâ
†
s−ν

(z) = iχe−2iθ âpν
+ L̂†

s−ν
.

(57)

Here âjν
=

√
|vgrj |ĉjν

, as defined in Sec. II B, are the operators

that define the energy fluxes along the z axis in the probe and
Stokes waves. The group velocities along the z axis are defined
by the partial susceptibilities χH

j [Eq. (38)] in the following

way: vgrj = c/(n0 + 2π
ωj

n0

∂χH
j

∂ν
), where n0 is the refractive

index of the background. So we get

vgrp ≈ 2cn0|�|2
ηωp

,

vgrs ≈ c

n0 − 3ηωs

8n0ω
2
21

.

The expression for the probe-wave group velocity is presented
under the condition of a strong slowdown:

ηωp

|�|2 � 1. (58)

It is interesting to note that under the condition
|1 − 3ηωs/8n2

0ω
2
21| < n−1

0 the group velocity of the Stokes
wave exceeds the light velocity, and under the condition

3ηωs

8n2
0ω

2
21

> 1 (59)

it changes sign to negative. Such effects are well known for
active and dissipative media and do not lead to violation
of basic principles (see, for example, Refs. [33–35]). Note
that both conditions (58) and (59) are compatible with
condition (56).

The absorption coefficient of the probe wave and the
amplification coefficient of the Stokes wave are given by the
following relations:

κp = −2πωp

cn0
iχ aH

p ≈ ηωp

2cn0|�|
(

ν2γ31

|�|3 + γ 0
21

|�|
)

,

−κs = 2πωs

cn0
iχ aH

s ≈ ηωs

2cn0ω21

3γ31

4ω21
, (60)

where

γ 0
21 = �21 + 1

2T21[1 + nT (ω21)]
= �21 + 1

2
A21. (61)

The Langevin noise operators L̂p,sν
= i

√
2πωp,s

�cn0
δP̂ L

p,sν
. The

coefficient of parametric coupling in Eq. (57) is equal
to

χ = η
√

ωpωs

2cn0ω21
≈ ηωp

2cn0ω21
. (62)

The solution of the system of Eqs. (57) takes the following
form:(

âpν
(z)

â
†
s−ν

(z)

)
=

(
1

KX

)
eiqX(ν)z

(
ûXν

+
∫ z

0
e−iqX(ν)ξ f̂Xν

dξ

)

+
(

1
KO

)
eiqO (ν)z

(
ûOν

+
∫ z

0
e−iqO (ν)ξ f̂Oν

dξ

)
,

(63)
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where

qO,X = ν

2

(
1

vgrp

+ 1

vgrs

)
+ i

κp − |κs |
2

± χ
√

σ 2 − 1,

σ = ν

2χ

(
1

vgrp

− 1

vgrs

)
+ i

2χ
(κp + |κs |),

KO,X = (σ ∓
√

σ 2 − 1)e−2iθ . (64)

As in Refs. [24,25], we denote two normal modes as the O

mode and the X mode. The coefficients KO and KX define the
ratio between waves with frequencies ωp,s in normal modes.
The amplitudes ûXν

and ûOν
are expressed via the operators of

incident radiation ĉp,sν
(0) defined in section z = 0 in vacuum

using boundary condition (13):

ûXν
= √

c
KOĉpν

(0) − ĉ
†
s−ν

(0)

KO − KX

,

ûOν
= √

c
ĉ
†
s−ν

(0) − KXĉpν
(0)

KO − KX

. (65)

The operators f̂Xν
and f̂Oν

are the Langevin sources for the O

and X modes:

f̂Xν
= KOL̂pν

− L̂
†
s−ν

KO − KX

,

f̂Oν
= L̂

†
s−ν

− KXL̂pν

KO − KX

. (66)

We take into account strong group deceleration of the probe
wave and acceleration of the Stokes wave, so that |vgrp/vgrs | 

1, and we neglect a weak partial amplification coefficient
of the Stokes wave with respect to partial absorption of the
probe wave |κs | 
 κp [Eq. (45)]. Then the Eqs. (64) can be
simplified:

qO,X = χ (σ ±
√

σ 2 − 1),

σ = ν

2χvgrp

+ iκp

2χ
,

KO,X = (σ ∓
√

σ 2 − 1)e−2iθ . (67)

Analyzing the dynamical part of solution (63) we can make
the following conclusions. Under the ideal condition of no
dissipation, κp = 0, the limitation of frequency detuning,

|ν| < �P ,

where �P = 2χvgrp = 2|�|2/ω21 [see Eq. (24)], defines the
band of parametric instability. If κp = 0 and ν = 0, two ideally
correlated waves are generated with equal amplitudes, so that
we have

qO,X = ±iχ,

KO,X = ∓ie−2iθ . (68)

Under the condition of nonzero dissipation, κp �= 0,
the X mode is always amplified (at every detuning) (see
Refs. [25,26]), but the ratio between partial amplitudes in
normal modes is changed, so that the correlations are spoiled.
The regime of strong parametric instability when the solution

is close to ideal, Eq. (68), is realized if the following conditions
are fulfilled [see Eq. (23)]:

χ

κp

= |�|2
γ 0

21ω21
� 1 (69)

and

|ν| 
 �P .

IV. TWO-MODE SQUEEZING

In the considered regime of parametric instability of bichro-
matic radiation the flow of correlated photons is generated
at the output of the interaction section, and the generated
radiation exhibits characteristics of two-mode squeezing. Thus
the fluctuations of the sum of one quadrature of the field
components and the difference of the other quadratures fall
below those of the vacuum state [17]. We examine the
fluctuation of the following observable:

X̂ν = 1√
2

(X̂pν
− X̂s−ν

),

where

X̂jν
= ĉjν

eiϕj + (
ĉjν

)†
e−iϕj , j = p,s.

Here the operators ĉjν
are defined by the “flux” amplitudes,

Eqs. (63), at the output of the layer ĉjν
= 1√

c
âjν

(l). The observ-

able X̂ν and its fluctuation may correspond to the measured
spectral characteristics of the current at the detector in a
balanced homodyne detection scheme, where the phases ϕp,s

are determined by the parameters of the local oscillator [36].
More precisely, we calculate the normalized spectral noise
power defined by the averaged quadratic fluctuations of the
observable X̂ν as it is related to the standard quantum limit
(SQL) value. Define this quantity as

Qν = (2πS⊥c�νdet)〈(�X̂ν)2〉, (70)

where the overline corresponds to the averaging over the
detection resolution bandwidth �νdet. Here we take into
account that

〈(�X̂ν)2〉SQL = 1/(2πS⊥c�νdet)

.

A. The general solution for two-mode fluctuations

Consider the boundary condition at z = 0 corresponding
to a completely uncorrelated state of vacuum fluctuations, so
that 〈ĉiν(0)ĉ†jν ′ (0)〉 = δ(ν−ν ′)δij

2πS⊥c
. With the aim to calculate the

quantity Qν we use the obtained solutions of the equations
for parametrically coupled waves, Eqs. (63), (65), and (66)
with coefficient, given by Eq. (67), and the expressions for
the correlation functions of the noise components of the
polarizations, Eqs. (47)–(50).

As we have shown previously in Sec. III E the noise spectral
density of polarization at the nonresonant frequency ωs is
small compared to that at the resonant frequency ωp because
we stay within the framework of negligible dissipation of the
Stokes wave in comparison with dissipation of the probe wave,
Eq. (26), and the noise associated with Raman spontaneous
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emission processes cannot significantly increase the level of
fluctuations at frequency ωs [see Eqs. (52) and (55)]. The
analysis of the general solution for the fluctuation of the
joint quadrature operator X̂ν shows that taking into account
nonzero noise spectral density of polarization at frequency ωs

as well as cross-spectral density between noise polarizations
at frequencies ωs and ωp goes beyond the approximation
equation (26). So here we introduce the relation for the spectral
noise power of the joint observable X̂ν under the assumption
that the only source of fluctuations is the quantum and thermal
noise associated with the probe field losses:

Qν = 1∣∣K̃2
0 − 1

∣∣2

[
1 + |K0|2

2
−

(
K̃0

ei�

2
+ K̃0

∗ e−i�

2

)]

×
(

1 + |K0|2 − |K0|2 κp(2Sp + 1)

ImqX

)
e−2ImqXl

+ 1∣∣K̃2
0 − 1

∣∣2

[
1 + |K0|2

2
−

(
K̃∗

0
ei�

2
+ K̃0

e−i�

2

)]

×
(

1 + |K0|2 + |K0|2 κp(2Sp + 1)

ImqX

)
e−2Imq0l

+ 4∣∣K̃2
0 − 1

∣∣2 Re

[(
−ReK̃0 + |K0|2 ei�

2
+ e−i�

2

)

×
(

ReK̃0 − i
|K0|2

|K0|2 − 1

κp(2Sp + 1)

χ

)
ei(qX−q∗

0 )l
]
.

(71)

Here K̃0,X = K0,Xe2iθ and � = 2� + ϕp + ϕs . The partial
absorption coefficient of the probe wave κp is given by
Eq. (60), the coefficient of parametric coupling χ is defined
by Eq. (62). The parameter defining the level of thermal
fluctuations of polarization at the probe frequency Sp is given
by Eq. (54). In deriving the above relation we have used
that, according to Eq. (67), K̃0K̃X = 1, q0,X = χK̃X,0, and
Imq0 = −ImqX/|K0|2.

The resulting relation, Eq. (71), is the sum of three terms.
The first one is proportional to the growing exponent with the
double increment of the X mode |2ImqX|. It corresponds to
the exponential growing of noise associated with the instability
process. The second one attenuates with the double decrement
of the O mode 2Imq0. And the third one attenuates slowly
with the partial dissipation decrement −Re[i(qX − q∗

0 )] = κp.
The squeezing regime Qν 
 1 is realized due to appropriate
phase � selection that minimizes the amplitude of the first
term, and the most favorable case is where the amplitude of
the third term is small, but decrement of the O mode, which
determines the squeezing factor, is large.

The important particular cases following from Eq. (71) are
considered in what follows.

B. No dissipation

1. Center of line

In the ideal case of no dissipation in the medium, κp = 0,
at the zero detuning ν = 0 when Eqs. (68) are valid, we get

Qν = 1
2 (1 − sin �)e2χl + 1

2 (1 + sin �)e−2χl.

Choosing � = π/2 we get zero amplitude of the growing
term. Due to equal amplitudes of two waves in the unstable
normal mode the exponentially growing fluctuations of Xp,s

observables of two waves for the chosen phases become ideally
correlated and for the difference observable these fluctuations
will be completely subtracted. As the result we get

Qν=0 = e−2χl. (72)

The squeezing improves infinitely with the length of interac-
tion.

2. Spectral characteristics

The noise spectrum under the ideal condition of no dissipa-
tion (κp = 0) is given by the following relations obtained from
Eq. (71). Within the band of parametric instability |ν| < �P

we get

Qν = 1

2(1 − σ 2)
[1 − cos(� + δ)]e2χ

√
1−σ 2l

+ 1

2(1 − σ 2)
[1 − cos(� − δ)]e−2χ

√
1−σ 2l

+ σ

1 − σ 2
(cos � − cos δ), (73)

here we use the relation |K0| = 1; δ is defined as K̃0 = eiδ . For
the frequency detuning larger than the width of the parametric
instability band, |ν| > �P [�P is defined by Eq. (24)], the
noise spectrum is given by

Qν = σ (σ − cos �)

σ 2 − 1
+ 1

σ 2 − 1

× Re[(−1 + σ cos � − 2i
√

σ 2−1 sin �)e−2iχ
√

σ 2−1l].

(74)

In Eqs. (73) and (74), σ = ν/�P . It is worth noting that for
every frequency detuning ν0 within the band of parametric
instability the appropriate phase � can be found, namely, � =
−δ(ν0), so that the amplitude of the growing term and the
amplitude of the constant term at this frequency become equal
to zero and we get

Qν0 = 1

1 − σ 2
e−2χ

√
1−σ 2l .

It is obvious that the best squeezing can be achieved in the
center of line ν = 0 and the phase � = π/2. For this phase
the noise level at every detuning ν �= 0 decreasing at the initial
stage of interaction starts to grow exponentially beginning with
the definite length. As a consequence the narrowing of the
spectral interval of squeezed light takes place with an increase
of the length of interaction. Analyzing Eqs. (73) and (74),
we get the following estimations for the frequency band of
squeezing �sq, defined so that Qν < 1(0 dB) for |ν| < �sq.
For the short distances l 
 1/χ , or more precisely for small
density-length product of the medium, the weak squeezing is
realized within the frequency band:

�sq ≈ π

2

�P

χl
= π

vgrp

l
.

For l = 1/χ the band of squeezing is equal to the parametric
instability band, �sq = �P . And for long distances l � 1/χ
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FIG. 2. Two-mode noise level Qν (in dB) for the phase � = π/2
versus frequency detuning from the 4WM resonance ν normalized
to the frequency band of the parametric instability for the case
of negligible dissipation (κp = 0), zero temperature (T = 0), and
different lengths of interaction: (1) l = 0.5/χ , (2) l = 1/χ , (3)
l = 1.5/χ , and (4) l = 3/χ .

(large density-length product) the band of squeezing becomes
much narrower,

�sq ≈ 2�P exp(−χl), (75)

and the magnitude of squeezing in the center becomes
much higher in correspondence with Eq. (72). The effect of
narrowing of the frequency band of squeezed light with the last
asymptotic result, Eq. (75), was pointed in Ref. [24], where
the process of generation of a biband squeezed vacuum in the
medium without dissipation was analyzed in detail.

The noise spectrum Qν in the EIT medium without
dissipation (κp = 0) is presented for the phase � = π/2 at
different lengths of interaction in Fig. 2.

C. Dissipative medium, zero temperature

How does the dissipation damage squeezing? The dissi-
pation in the medium “delivers” an additional uncorrelated
vacuum noise with amplitude, proportional to the absorption
coefficient, and “spoils” correlations between two waves
responsible for the squeezing. Note, that the second effect
does not appear for the symmetric equations for two waves,
unlike the system under consideration. Formally, nonzero
partial decrement of the probe wave (κp �= 0) changes the ratio
between partial amplitudes in normal waves K̃0 in such a way
that the growing term in Eq. (71) cannot be cut off by choosing
the appropriate phase � any more. For the zero temperature
(Sp = 0), at zero detuning (ν = 0) and � = π/2 we get from
Eq. (71) the following relation:

Qν=0 = 1

2
e
−κpl+2χ

√
1+

(
κp

2χ

)2
l

×
⎛
⎝1 − 1√

1 + ( κp

2χ

)2

⎞
⎠

⎛
⎝1 + κp

2χ

√
1 + ( κp

2χ

)2

⎞
⎠

+ 1

2
e
−κpl−2χ

√
1+

(
κp

2χ

)2
l

×
⎛
⎝1 + 1√

1 + ( κp

2χ

)2

⎞
⎠

⎛
⎝1 − κp

2χ

√
1 + ( κp

2χ

)2

⎞
⎠

+ e−κpl κp

2χ
[
1 + ( κp

2χ

)2] . (76)

Even in the center of line the noise level decreases with the
length of interaction only to a certain point, after which it
increases exponentially. So there is an optimal length, lopt,
dependent on κp. In the case of weak dissipation (or a strong
driving field), κp 
 χ [see Eq. (69)], we get from Eq. (76)

lopt ≈ 1

2χ
ln

4χ

κp

. (77)

The level of noise at this length is equal to

Qν=0(lopt) ≈ κp

χ
e−κplopt ≈ κp

χ

(
1 + κp

2χ
ln

κp

4χ

)

 1. (78)

The maximal length for which Qν=0 < 1 is lmax = 2lopt. The
width of the squeezing band for the optimal length can be
estimated by Eq. (75):

�sq ≈ �P

√
κp

χ
= 2|�|

√
γ 0

21

ω21
.

It should be noted that rather weak squeezing is realized
for strong dissipation (or a weak driving field), when Eq. (69)
is not fulfilled. So under the condition κp � χ we get for the
optimal length the following relation:

lopt ≈ 1

κp

ln
κp

χ
. (79)

The level of noise at this length is equal to

Qν=0(lopt) ≈ 1 − 2χ

κp

,

and the frequency band of such squeezing is significantly
higher than the frequency band of parametric instability.

Figure 3 demonstrates the interaction length dependence of
squeezing in the center of line. The noise spectra for different
parameters κp(ν = 0)/χ and different lengths of interaction
are shown in Fig. 4. The calculations hereinafter are made
for the parameter |�|

ω21

√
γ31

γ 0
21

= 0.1. On the one hand it provides

the fulfillment of Eq. (26), and on the other hand it should
be taken into account to calculate correctly the influence of
the EIT resonance line shape within the considered frequency
domain.

We have shown here that the main parameter that defines
the level of squeezing in dissipative medium is the ratio of the
partial absorption coefficient to the coefficient of parametric
coupling:

κp

χ
= γ 0

21ω21

|�|2 .

The relation, analogous to Eq. (78), was obtained in Ref. [8]
for the system of counterpropagating waves.
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FIG. 3. Two-mode noise level Qν (in dB) for the phase � = π/2
versus normalized length of interaction for zero detuning (ν = 0),
zero temperature (T = 0), and different parameters κp/χ : (0) κp/χ =
0, (1) κp/χ = 0.02, (2) κp/χ = 0.1, (3) κp/χ = 0.5, (4) κp/χ = 1,
and (5) κp/χ = 2.

It should be noted that the existence of the optimal length
of interaction dependent on the partial absorption coefficient
of the probe wave was indirectly confirmed experimentally in
Ref. [13], where it was shown that for a given transmission of
the probe wave there is an optimal parametric gain for the best
squeezing based on 4WM in an atomic vapor.

D. Thermal fluctuations squeezing

Now we analyze how the presence of thermal fluctuations
in the medium may disturb generation of the squeezed state of
light.

In accordance with general relation (71) the only parameter
that changes the noise level of the joint quadrature operator Qν

under the condition of thermal excitations in the medium is Sp

given by Eq. (54), which in the considered nonlinear system
is defined by the averaged number of thermal quanta at the
low frequency of ground-state splitting nT (ω21) and depends
on the population damping rate and elastic dephasing rate at
this transition.

Figure 5 presents the noise spectra and dependences of
squeezing in the center of line on the density-length product
for different values of nT (ω21). The ratio A21/�21 is taken
equal to 1 so that Sp(ν = 0) = 2

3nT (ω21).
Unlike the zero-temperature regime, when for every

arbitrarily small parameter χ/κp (in frame of mentioned
restrictions) the squeezing takes place, in the presence of
thermal fluctuations there is a threshold value for the parameter
χ/κp > (χ/κp)thr dependent on Sp. The analysis of Eq. (71)
for ν = 0 has shown that the noise level at the optimal value for
the density-length product, which depends on the parameter
χ/κp [in the extreme cases given by Eqs. (77) and (79)], is
modified in a simple way:

Qν=0(lopt) ≈ Qν=0(lopt)|Sp=0(Sp + 1).

Using this relation it can be shown that in the case of low
temperature, when Sp 
 1, the threshold value is low, defined
by the following expression:(

χ

κp

)
thr

≈ Sp/2.

For a strong parametric coupling regime when χ/κp � 1, the
presence of thermal fluctuations weekly changes both the peak
value of squeezing and the noise spectrum.

In the case where Sp � 1 the threshold value becomes
essential: (

χ

κp

)
thr

≈ Sp,

and even under optimal conditions (χ � κp) the noise level in-
creases Sp + 1 times in comparison with the zero-temperature
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FIG. 4. Two-mode noise level Qν (in dB) for the phase � = π/2 versus normalized detuning, for zero temperature (T = 0) and different
parameters κp(ν = 0)/χ : (1) κp/χ = 0.02, (2) κp/χ = 0.1, (3) κp/χ = 0.5, (4) κp/χ = 1, and (5) κp/χ = 2. In panel (a) all spectra are
obtained at the same normalized length of interaction, lχ = 2. In panel (b) each spectrum is obtained at the optimal length of interaction: (1)
lχ = 2.65, (2) lχ = 1.87, (3) lχ = 1.1, (4) lχ = 0.85, and (5) lχ = 0.62.
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FIG. 5. Two-mode noise level Qν (in dB) for the phase � = π/2 for different temperatures (the corresponding averaged number of
thermal photons at frequency ω21 is pointed out in every panel) and different parameters κp(ν = 0)/χ : (1) κp/χ = 0.02, (2) κp/χ = 0.1, (3)
κp/χ = 0.5, (4) κp/χ = 1, and (5) κp/χ = 3. In panels (a)–(c) the length dependence of the squeezing in the center of line is presented. In
panels (d)–(f) the noise spectra are presented, and each spectrum is obtained at the optimal length of interaction: (1) lχ = 2.65, (2) lχ = 1.87,
(3) lχ = 1.1, (4) lχ = 0.85, and (5) lχ = 0.5.

regime:

Qν=0(lopt) ≈ κp

χ
(Sp + 1). (80)

An interesting result follows from Eq. (80). Namely, taking
into account expressions for the absorption coefficient κp

[Eqs. (60) and (61)] and for the parameter Sp [Eq. (54)], we
get that Eq. (80) can be presented in the following very simple
form:

Qν=0(lopt) ≈ γ21(T )ω21

|�|2 . (81)

It is important to note that this relation takes into account both
the modification of the relation for the absorption coefficient
in the presence of thermal excitations in the medium and
the additional noise associated with the spontaneous Raman
emission that appears in the presence of thermal excitations.
However, the resulting expression for the level of noise of the
squeezed two-mode quadrature X̂ν under optimal conditions
(χ/κp � 1, l = lopt, ν = 0) is so constructed that it can be
calculated neglecting both effects. The only temperature-
dependent parameter in the resulting expression is the low-
frequency coherence damping rate γ21 that characterizes the
atomic system at the actual temperature. Therefore we can
conclude that under optimal conditions the thermal excitations
in the atomic system affect the level of two-mode squeezing
only inasmuch as they increase the damping rate of low-
frequency coherence.

V. DISCUSSION

We presented here the detailed analytical investigation of
two-mode squeezed-vacuum generation in a robust scheme
of four-wave mixing in a resonant � configuration taking
into account such negative factors as dissipation caused
by relaxation in the atomic system and thermal excitations
delivering the additional uncorrelated noise. These processes
are considered on the basis of a self-consistent microscopic
approach. We investigated the influence of spontaneous Raman
scattering under resonant conditions of EIT on the level of
two-mode squeezing. We obtained the analytical formulas
for the optimal density-length product of atomic medium and
for the frequency width of the squeezing band as they depend
on the drive intensity and the relaxation rate.

The following illustrative estimations of real experimental
parameters, for example, for 87Rb vapor (D1 transition;
wavelength of resonant radiation, λ = 795 nm; frequency of
ground-state splitting, ω21 = 6.83 GHz) can be made. For
the relaxation rate γ21 = 15 kHz, if the drive power is about
10 mW and the beam focusing diameter is 2 mm (so that
the Rabi frequency |�| ≈ 30 MHz) the condition of strong
parametric instability, Eq. (69), is fulfilled: χ/κp ≈ 8. Then
the calculated dimensionless optimal density-length product
loptχ = 1.7 corresponds to the following dimension value:
lN ≈ 4 cm × 7 × 1011 cm−3. The level of squeezing in the
center of line is equal to −10 dB and the frequency band
of squeezing �sq ≈ 80 kHz. Note that here we used rather
moderate relaxation parameters. The minimization of the
ground-state coherence damping rate is an “old problem,”
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which has been effectively solved in relation to the devel-
opment of CPT-based atomic frequency standards (see, for
example, Ref. [37]). Damping rates of the order of 10 Hz are
achievable nowadays at room temperatures. Therefore we can
state that the particular problem of thermal noise influence on
the squeezing can potentially be solved to the same extent.

So the following general conclusion can be made. Strong
parametric coupling in a regime of four-wave mixing in a �

scheme of three-level atoms may provide two-mode squeezing
not only of the intrinsic quantum fluctuations of light but also
squeezing of thermal fluctuations. The highest attainable level
of squeezing taking into account squeezing of thermal noise is
dictated by the ground-state coherence relaxation rate and the
intensity of the drive field.

ACKNOWLEDGMENTS

This work was supported by the RFBR under Grants No.
14-29-07152 and No. 14-22-02034.

APPENDIX: CORRELATION FUNCTIONS OF ATOMIC
LANGEVIN OPERATORS

Here we analyze the correlation properties of Langevin
operators in the atomic equation, Eq. (2):

˙̂ρmn = − i

�
(ĥmpρ̂pn − ρ̂mpĥpn) + R̂mn + F̂mn. (A1)

The important point is that the properties of the noise operators
F̂mn are connected with the properties of the relaxation
operators R̂mn [38].

The model of constant relaxation rates, Eq. (3), obtained
within the frame of the Markov approximation [38] is
equivalent to the δ correlation in time of the noise source:

〈F̂mn(r,t)F̂pq(r′,t ′)〉 = 2Dmnpq(r,r′,t)δ(t − t ′). (A2)

This approximation allows one to use so-called generalized
Einstein relations [31,39] for calculating the diffusion
coefficients Dmnpq(r,r′,t):

2Dmnpg(r,r′) = d

dt
〈ρ̂mn(r,t)ρ̂pq(r′,t)〉

−
〈(

d

dt
ρ̂mn(r,t) − F̂mn(r,t)

)
ρ̂pq(r′,t)

〉

−
〈
ρ̂mn(r,t)

(
d

dt
ρ̂pq(r′,t) − F̂pq(r′,t)

)〉
.

(A3)

Next, we assume that the action of the reservoir on
different atoms is independent, so that fluctuations of the
density matrix operators for different atoms are not correlated:
〈(ρ̂mn;j − 〈ρ̂mn;j 〉)(ρ̂pq;i − 〈ρ̂pq;i〉)〉 ∝ δij . Taking into account
also the strict equality that should be fulfilled for each atom
by definition of the density matrix operators, ρ̂mn;j ρ̂pq;j =

ρ̂pn;j δmq , we get for the averaged product of the space-
dependent density matrix operators the following relation:

〈ρ̂mn(r)ρ̂pq(r′)〉 = 〈ρ̂mn(r)〉〈ρ̂pq(r′)〉 + δmq〈ρ̂pn(r)〉δ(r − r′).

(A4)

The expression for the diffusion coefficients, Eq. (A3), with
regard to Eqs. (A4), (2), and (3), finally takes δ correlated in
space form:

Dmnpq(r,r′,t) = Dmnpq(r,t)δ(r − r′), (A5)

where

2Dmnpq (r,t) = δmq〈R̂pn〉 −
∑

l

rmnql〈ρ̂pl〉 −
∑

l

rpqlm〈ρ̂ln〉.

In a simple case of Eqs. (4), the correlation functions of the
Langevin sources for the “off-diagonal” operators (m �= n,
p �= q) are given by the following expression:

2Dmnpq (r,t) = δmq((γmn + γpq)〈ρ̂pn〉 + 〈R̂pn〉). (A6)

Thus, the autocorrelation function for Langevin operator at
some transition m − n is given by

2Dmnnm(r,t) = 2γmn〈ρ̂nn〉 + 〈R̂nn〉. (A7)

The excited coherence at some transition |a〉 − |b〉 corresponds
to the nonzero correlations of Langevin sources at the adjacent
atomic transitions:

2Dmabm(r,t) = (γam + γbm − γab)〈ρ̂ba〉. (A8)

For the spectral components of the Langevin operators
defined as F̂mn(r,t) = ∫ +∞

−∞ F̂mn(r,ω)e−iωtdω, taking into ac-
count Eqs. (A2) and (A5), we get

〈F̂mn(r,ω)F̂pq(r′,ω′)〉 = 1

π
Dmnpq(r,ω + ω′)δ(r − r′), (A9)

where

Dmnpq(r,ω) = 1

2π

∫ +∞

−∞
Dmnpq(r,t)eiωtdt. (A10)

Under the adiabatic approximation, neglecting the slow evo-
lution of populations and the amplitude of drive-induced co-
herence in the resonant approximation, 〈ρ̂nn〉 ≈ const, 〈ρ̂ba〉 =
σbae

∓iωd t |b≷a , σba ≈ const, the atomic noise operators are δ

correlated in frequency, and we get from Eqs. (A7) and (A8)
the following correlation functions:

〈F̂mn(r,ω)F̂nm(r′,ω′)〉
= 1

2π
(2γmn〈ρ̂nn〉 + 〈R̂nn〉)δ(ω + ω′)δ(r − r′), (A11)

〈F̂ma(r,ω)F̂bm(r′,ω′)〉
= 1

2π
(γam + γbm − γab)σbaδ(ω + ω′ ∓ ωd )|b≷aδ(r − r′).

(A12)
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