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All-optical control of unipolar pulse generation in a resonant medium with nonlinear field coupling
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We study the optical response of a resonant medium possessing nonlinear coupling to an external field driven by
a few-cycle pump pulse sequence. We demonstrate the possibility of directly producing unipolar half-cycle pulses
from the medium possessing an arbitrary nonlinearity, by choosing the proper pulse-to-pulse distance of the pump
pulses in the sequence. We examine various ways of shaping the medium response using different geometrical
configurations of nonlinear oscillators and different wavefront shapes for the excitation pulse sequence. Our
approach defines a general framework to produce unipolar pulses of controllable form.
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I. INTRODUCTION

Generation of ultrashort pulses is a field of active research
due to emerging opportunities for real-time control of ultrafast
processes [1–4]. Since optical pulses of few-cycle or even sub-
cycle duration became available, the number of applications
for them increases continually, enhancing our understanding of
fundamental phenomena in atoms, molecules, and condensed
matter. The shortest possible pulse duration opens up new
opportunities for the direct measurement of extremely high-
speed dynamical processes important for various branches of
physics, chemistry, medicine, and biology. The development of
new techniques for generation and control of ultrashort pulses
is therefore crucial for the advancement of modern optical and
material science.

Compared with few-cycle pulses, half-cycle optical pulses
possess an exceptional feature of being unipolar, that is, the
electric field does not change its sign throughout the pulse.
Such a field shape gives rise to light-matter interactions that are
not possible using conventional light pulses. In particular, this
property can be an advantage if one wants to control the ultra-
fast charge motion in pump-probe experiments. Specifically,
unipolar pulses can efficiently deliver a kinetic momentum
to the charged particles in order to control their motion, for
instance, to ionize the atoms or ions in the medium [5–7]
or to measure the quantum dynamics of electron and ionic
wave packets [8–11]. Unipolar pulses can efficiently accelerate
charge particles and thus be used for producing coherent
beams for particle injectors and charge-particle accelerating
devices [12,13]. Over the last years, unipolar pulses have also
been proposed for the generation of isolated highly intense
attosecond pulses [14–16]. It was recently shown that the
coherent light-matter interaction with the use of unipolar
pulses enables the control of resonant medium properties
(population inversion and polarization gratings) on a subcycle
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time scale [17,18]. Therefore, finding effective means of
unipolar pulse production and control is needed. It is important
to note, though, that outlined applications do not require pulses
that are strictly unipolar. Effectively one can consider pulses
with a central part of constant sign and long tails on each
side that are opposite in sign, which allows us to avoid the
difficulties of dealing with zero-frequency component.

To date, subcycle pulses have been generated in the
visible, near-infrared, terahertz, and x-ray ranges [19–23] and,
recently, in the midinfrared [24]. Half-cycle pulses have been
experimentally obtained from laser-driven plasma in a solid
target [25] and from a double-foil target irradiated with intense
few-cycle laser pulses [26]. Theoretically unipolar pulses were
predicted when an initially bipolar ultrashort pulse propagates
in a nonlinear resonant medium [27–30] and in a Raman-active
medium in a self-induced transparency regime [31,32] or under
excitation by few-cycle pulses [33–35].

Ultrashort laser pulse shaping technologies find ever-
widening applications in the fields of coherent control,
high-field laser-matter interactions, nonlinear microscopy and
spectroscopy, biotechnology, and optical data processing
[36–39]. All these applications prove to be highly sensitive to
the maximal flexibility in ultrashort-pulse profiling. Today’s
mainstream research in the generation of ultrabroadband
pulses is developing towards subcycle waveform synthesis,
which is the coherent combination of pulses generated
from different sources covering separate spectral regions
[20,22,40–44]. The synthesis of ultrashort pulses calls for
careful manipulation of the parameters of the individual pulses,
namely, the spectral phase, carrier phase, and relative delay
between the sources. The ultrabroad spectrum also requires a
highly accurate spectral phase and amplitude control to process
ultrashort pulses, what implies the usage of complicated pulse
shaping systems to manipulate components extended over
large bandwidths. Therefore, the possibilities of arbitrary opti-
cal waveform generation appear to be technically challenging
and are naturally limited by the shaping device processing
characteristics. The possibility of ultrashort and, particularly,
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unipolar pulse shaping directly during the generation process
thus seems to be an extremely inviting prospect. We devise
in this paper an alternative approach for the generation of
ultrashort waveforms, which we hope will make a contribution
towards this direction.

In Ref. [45] the optical response of a one-dimensional
string made of two-level oscillators with a periodically
varying density excited at superluminal velocity by an incident
ultrashort pulse was studied. It was shown that such a system
allows the generation of Cherenkov radiation of an unusual
shape; namely, an additional resonant frequency appeared in
the radiation spectrum. Furthermore, in [46] this consideration
was extended to the case where the coupling of the oscillators
to the field is nonlinear; a concept of unipolar pulse generation
was proposed when the oscillators are excited by a train of
few-cycle pulses.

In this paper, we generalize this approach to the case of
an arbitrary shape of nonlinear coupling of the oscillators to
the external field as well as arbitrarily curved wavefronts and
different geometries of the oscillator arrangement. Special
consideration is devoted to the role of the carrier-envelope
phase (CEP) of the pump pulses in unipolar pulse generation.
We show that the CEP value can have a profound impact on
the medium optical response and its proper adjustment can be
important to obtain unipolar pulses.

As we show, combined into spatially extended arrays, such
oscillators can allow direct generation of unipolar pulses of a
controllable waveform. This is possible because the excitation
velocity varies upon propagation along the oscillator array, in
contrast to the case of a constant excitation velocity [33–35].
We study in detail several particular spatial arrangements of the
oscillators, for instance, located on a planar string or on a disk.
Our findings show that this approach has great possibilities for
unipolar pulse shaping.

The paper is organized as follows. In Sec. II we derive
the general condition defining the possibility of unipolar pulse
generation in our system. In Secs. III and IV we discuss the
most promising examples for unipolar pulse shaping. Finally,
in Sec. V we give a brief overview of our findings and present
concluding remarks.

II. GENERAL CONDITION FOR HALF-CYCLE
PULSE GENERATION

We consider in the following a model of a resonant optical
oscillator excited by a few-cycle pump pulse. We assume the
excitation field to be linearly polarized, which gives us the
equation for the evolution of medium polarization P (t),

P̈ + γ Ṗ + ω2
0P = g[E(t)]E(t), (1)

where ω0 is the oscillator resonant frequency, γ is the
damping rate, and the function g[E(t)] describes the coupling
strength of the oscillator to the field. Considering that the field
coupling can be anisotropic, Eq. (1) should be written for
each component of the polarization vector, but with a linearly
polarized electric field these equations have a form analogous
to Eq. (1). Hence, without loss of generality we can restrict
ourselves to the scalar case described by Eq. (1).

The coupling-field function g[E(t)] can be arbitrary.
Physically, it can be implemented by several nonlinearly

coupled oscillators with strongly different parameters such
as effective mass and resonant frequency. For instance, we
may consider just two such oscillators; the first is excited by
a high-frequency external field and induces slow motion of
the other oscillator through nonlinear bonding. By excluding
the slow motion, we arrive at a nonlinear equation like
Eq. (1). Such nonlinear field coupling can be expected, for
instance, for nonlinearly coupled localized plasmonic reso-
nances in metallic nanostructures [47,48], hybrid aggregates of
organic supramolecular assemblies and inorganic nanocrystals
[49,50], coupled semiconductor microcavities [51], double-
quantum-dot heterostructures [52,53], and other hybrid optical
materials. Natural examples of such field coupling include also
Raman-active media [54,55].

We suppose that the pump pulse is short compared to the
natural period of oscillations: ω0τp � 1. We also assume that
the oscillation decay rate γ � ω0 and consider oscillations
in the time interval of the order of the natural period, so
that oscillator damping can be neglected. Then, setting u(t) =
Ṗ (t) + iω0P (t), we obtain the following equation:

u̇ − iω0u = g[E(t)]E(t). (2)

The assumption of a short pulse duration allows us to
suggest that the oscillator is affected by instantaneous forcing
followed by the free oscillations. With that Eq. (2) yields, for
the induced polarization dynamics right after the pump pulse
action for t > 0,

u(t) = eiω0t

{
u0 +

∫ +∞

−∞
g[E(t ′)]E(t ′)e−iω0t

′
dt ′

}
. (3)

The integral on the right-hand side of Eq. (3) is considered
to be taken over the whole pulse duration, which is indicated
by the infinite integration limits. Keeping in mind that the
electric field is real and splitting the complex exponent under
the integral sign into real and imaginary parts, Eq. (3) gives

P (t) = P0 sin(ω0t + φ0) + �1

ω0
sin(ω0t) − �2

ω0
cos(ω0t),

(4)

Ṗ (t) = ω0P0 cos(ω0t + φ0) + �1 cos(ω0t) + �2 sin(ω0t),

(5)

where P0 and φ0 correspond to the oscillation amplitude and
phase at the moment of excitation pulse arrival and �1 and �2

are given by

�1 =
∫ +∞

−∞
g[E(t ′)]E(t ′) cos(ω0t

′)dt ′,

�2 =
∫ +∞

−∞
g[E(t ′)]E(t ′) sin(ω0t

′)dt ′. (6)

The oscillator is supposed to be initially at a standstill,
i.e., P0 = 0. Thus, as we have shown in recent papers [33–
35], to emit unipolar pulses, the sine response in Eq. (4) is
required. In this case the oscillator emission induced by one
few-cycle pulse can be stopped by another identical pulse
at the half-period delay in such a way that the emitted field
maintains a constant sign. The emitted field then has the form
of a half-cycle optical pulse. This result holds since the far field
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emitted by the oscillator in between excitation pulse action at
an arbitrary point r ′ is given as

E(r ′,t) ∼ P̈ (r,t − |r − r ′|/c) ∼ ω2
0P (r,t − |r − r ′|/c), (7)

and thus, except for the constant factor, the emitted field is
proportional to the polarization itself. For this reason, the
presence of a nonzero cosine term in Eq. (4) necessitates a
nonunipolar emitted field due to a cosine function that has a
varying sign during the first oscillation half-period.

Thus, from Eqs. (4) and (5) one gets the necessary criterion
for unipolar half-cycle pulse production by means of the
proposed method:

�2 =
∫ +∞

−∞
g[E(t ′)]E(t ′) sin(ω0t

′)dt ′ = 0. (8)

Analysis of Eq. (8) reveals some rather significant results.
Let us consider an excitation pulse possessing a symmetric
envelope with respect to the middle of the pulse (e.g., of a
Gaussian shape) and an arbitrary phase shift of the carrier:

E(t) = E0e
−t2/τ 2

p cos(�t + ϑCE), (9)

where � is the central frequency and ϑCE stands for the carrier-
envelope phase. Suppose first that ϑCE = ±π

2 , implying that
the driving electric field is an odd function with respect to the
middle of the pulse. In this case Eq. (8) means that the field
coupling function g[E(t)] must necessarily be odd as well.
For example, the field coupling strength may be proportional
to the odd degree of the driving field, as shown in [46] for the
simplest linear dependence.

However, for another CEP, ϑCE �= ±π
2 , the situation turns

out different. Assume the most important case, ϑCE = 0.
As can be seen from Eqs. (8) and (9) the field coupling
function g[E(t)] in this case can be of arbitrary power-law
dependence on the driving field E(t). This means that even
the simplest linear oscillator with g[E(t)] = g0 = const can
be driven to exhibit a sine response and thus to allow half-
cycle pulse generation with accurate adjustment of the CEP.
Equations (6) yield the dependence of the linear oscillator
response amplitudes �1 and �2 on the carrier-envelope
phase ϑCE,

�1 = √
πE0g0τpe−(�2+ω2

0)τ 2
p/4 cosh

(
�ω0τ

2
p

/
2
)

cos ϑCE,

�2 = −√
πE0g0τpe−(�2+ω2

0)τ 2
p/4 sinh

(
�ω0τ

2
p

/
2
)

sin ϑCE,

(10)

which are illustrated in Fig. 1. Since � � ω0 due to the short
excitation pulse duration, it is seen from Eq. (10) that the cosine
term amplitude �2 is equal to 0 for ϑCE = 0 and ϑCE = ±π

only, but except in the vicinity of ϑCE = ±π
2 , the sine term

amplitude �1 is much greater. Considering that ω0τp � 1 and
�0τp ∼ 1, the observed relation between response amplitude
�1 and response amplitude �2 is provided by

max
ϑCE

�2/ max
ϑCE

�1 = tanh
(
�ω0τ

2
p

/
2
) ≈ �ω0τ

2
p/2 � 1.

The resulting oscillator response P (t) is depicted in Fig. 2
(red lines) for different CEP values together with the appropri-
ately scaled electric field of the excitation pulses (black lines).
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FIG. 1. Dependence of the linear oscillator response amplitudes
�1 and �2, (10), on the carrier-envelope phase ϑCE; ω0τp = 0.04,
�/ω0 = 100.

According to Eq. (7), the emitted pulse appears to be unipolar
when ϑCE = 0 and ϑCE = ±π and contains a certain portion
of opposite sign for other CEP values. Some high-frequency
oscillations distorting the emitted pulse shape are inevitably
observed during the action of exciting pulses, but we suppose
them to be effectively cut off by the appropriate low-pass filter.

It should be noted that the oscillation amplitude delivered
to the linear oscillator by the excitation pulse is nevertheless
substantially lower than can be achieved for the oscillator with
nonlinear field coupling. The oscillator response amplitudes
�1 and �2 for the field coupling function g[E(t)] = g1E(t)

−2 0 2 4
−5

0
5

10
15x 10−4

ω0 t

 P
ω

02 /
E 0

g 0   (a)

−2 0 2 4
−5

0

5
x 10−4

ω0 t

 P
ω

02 /
E 0

g 0   (b)

−2 0 2 4
−5

0

5x 10−4

ω0 t

 P
ω

02 /
E 0

g 0   (c)

−2 0 2 4
−5

0

5x 10−4

ω0 t

 P
ω

02 /
E 0

g 0   (d)

FIG. 2. The linear oscillator response P (t) (red line) and the
electric field of the exciting pulses, (9) (black line), for different
values of the carrier-envelope phase: (a) ϑCE = 0; (b) ϑCE = π

3 ; (c)
ϑCE = 7π

15 ; (d) ϑCE = π

2 . ω0τp = 0.04, �/ω0 = 100. The time delay
between two excitation few-cycle pulses is equal to T0/2.
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are given as follows:

�1 = 1

2

√
π

2
E2

0g1τpe−ω2
0τ

2
p/8

× [
1 + e−�2τ 2

p/2 cosh
(
�ω0τ

2
p

/
2
)

cos 2ϑCE
]
,

�2 =−1

2

√
π

2
E2

0g1τpe−(4�2+ω2
0)τ 2

p/8

× sinh
(
�ω0τ

2
p

/
2
) · sin 2ϑCE. (11)

Equations (10) and (11) yield the following estimate for the
maximum values of the response amplitudes:

�lin
1

E0g0
:

�nonlin
1

E2
0g1

∼ e−�2τ 2
p/4. (12)

Considering that for the pump few-cycle pulse �0τp ∼ 1, one
gets from Eq. (12) that the nonlinear field coupling enables a
significantly increased excitation response. Hence, usage of the
linear optical medium seems ineffective, although its principal
applicability appears to be of crucial importance.

Another remarkable fact which follows from Eq. (11) is the
weak dependence of the oscillator response on the CEP, which
holds when e−�2τ 2

p/2 � 1. As long as this condition is fulfilled,
the first expression in Eq. (11) converts to

�1 ≈ 1

2

√
π

2
E2

0g1τpe−ω2
0τ

2
p/8. (13)

According to Eqs. (11) and (13) one gets

max
ϑCE

�2/ max
ϑCE

�1 = sinh
(
�ω0τ

2
p

/
2
)
e−�2τ 2

p/2 � 1;

that is, the value of the cosine term amplitude �2 is negligibly
small compared with the sine term amplitude �1, although it is
exactly equal to 0 just when ϑCE is a multiple of π

2 . Therefore,
the response of the oscillator with nonlinear field coupling
is extremely close to sine regardless of the CEP value, thus
making CEP control insignificant in this case.

For unipolar pulse shaping purposes, we should consider
summation of the half-cycle pulses from many single oscilla-
tors in a certain manner. Thus we arrive at the excitation of
spatially extended arrays composed of specifically arranged
optical oscillators. It is interesting to note that, placed into
a high-Q cavity, such oscillator arrays serve as the active
medium of broad-area passive and active optical systems and
can exhibit highly complex spatiotemporal behavior [56–60].
When the oscillator array is excited by few-cycle pulses, which
can generally have different wavefront forms, the emitted
unipolar pulse shape is determined by the variation of the
excitation velocity over the array. In the simplest case of linear
string excitation at a constant velocity [33,34,45], flap-top
pulses are produced with the amplitude and duration the only
varying parameters. Depending on the array and excitation
geometry, we can tune the spatiotemporal profile of the
emitted unipolar pulse in wide limits. In the next sections
we examine the possibilities for controlling the unipolar pulse
profile, where we deal with oscillators with nonlinear field
coupling arranged into spatially extended arrays and excited
by few-cycle pulses having different wavefront forms.

III. PLANAR ARRAY OF OSCILLATORS EXCITED
BY CURVED INCIDENT WAVES

Given the results in the previous section, we consider
the possible means of unipolar pulse generation and control
of their spatiotemporal characteristics in spatially extended
arrays of oscillators. The optical properties of different
nanoemitters and their arrays have been actively investigated in
recent years. Particularly, due to the remarkable progress in the
development of metallic nanoparticle fabrication techniques
[61,62], their ensembles are finding expanding applications as
optical waveguides [63,64], surface enhanced Raman scatter-
ing media [65,66], high-quality optical resonators [67–69],
and antennas and detectors [70]. Various types of particle
arrangements were considered for these purposes, providing
the possibility of adjusting the resulting optical characteristics
according to the medium geometry.

We start with a planar array excited by two few-cycle optical
pulses with T0/2 delay and curved incident wavefronts. As
stated above, the oscillator has to exhibit a sine response
to a single pump pulse, so the total emission of every
oscillator is given by two sine functions with a half-period
delay which actually represents a half-cycle pulse. Let us first
consider a one-dimensional string of oscillators with nonlinear
field coupling under the influence of cylindrical waves (see
Fig. 3). Oscillator emission is observed at a point on the
string midperpendicular far away from the string at distance
r � L or, alternatively, in the focal plane of the focusing
lens parallel to the string. For the sake of simplicity, we
assume that the excitation pulses are linearly polarized, with
the polarization direction orthogonal to the plane in Fig. 3.
Under this assumption, the summation problem is scalar.

Given Eqs. (4)–(7) and assuming γ � ω0, the mathematical
expression for the generated pulse shape is

E(t) = E0

1∑
k=0

∫ L

0
sin[ω0fx]
[fx]dx, (14)

where fx = t − r
c

−
√

H 2+|x−l|2−H

c
− (k − 1)Tp describes the

emission delay from the oscillator located at the point with
coordinate x, 
 is the Heaviside step function, and E0 is the
scaling constant. The results of the numerical calculation of the

FIG. 3. A one-dimensional string composed of oscillators with
nonlinear field coupling (blue bar) is excited by two successive
ultrashort light pulses of cylindrical wavefronts (orange curve).
Oscillator emission is observed at a far-distant point on the string
midperpendicular.
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integral, Eq. (14), for different values of parameters b = ω0L

c
,

H
L

, and l
L

are plotted in Figs. 4(a) and 4(b). The profile of the
generated unipolar pulse turns to be monotonically decreasing
from its highest level at the leading edge to the lowest at the
trailing edge. In this one-dimensional configuration, this shape
results from the fact that the intersection point of the exciting
wavefront moves along the string at a superluminal velocity
varying along the string due to wavefront curvature. The final
shape asymmetry is determined by this excitation velocity
decreasing along the string, thus leading to pulse amplitude
decay towards the trailing edge.

Figure 4(a) was obtained when the wavefront center was
placed right above one of the string ends. In this case excitation
wavefronts cross the string at the nearest end at zero angle,
resulting in an infinite instantaneous excitation velocity and
an abrupt jump in the pulse amplitude near the leading edge.
To make the pulse profile more uniform, one can shift the
wavefront center off to the side. Figure 4(b) illustrates the
unipolar pulses obtained in this way. The pulse shape is
now determined by the range of angle values at which the
exciting pulses cross the string over its length. When shifting
the wavefront center farther apart, this angle range decreases,
leading to smoothing of the pulse profile.

To obtain another shape of the output pulse, we can intro-
duce additional degrees of freedom meaning to get varying
number of excited oscillator growth rate interfering with the
wavefront curvature effects. It will naturally be provided if
we turn to two-dimensional geometry and consider a circular
disk composed of oscillators and excited by spherical incident
wavefronts (see Fig. 5). For the sake of simplicity, we assume
that the excitation pulses are linearly polarized, with the polar-
ization direction parallel to the circle plane. Array emission is
considered with measurement at a point on the symmetry axis
far away from the disk at distance r � R or, alternatively, on
the focal plane of the focusing lens parallel to the circle plane.

The mathematical expression for the pulse shape in this
case as

E(t) = E0

1∑
k=0

∫ R

0
sin[ω0fρ]
[fρ] · 2πρdρ, (15)

where fρ = t − r
c

−
√

H 2+ρ2−H

c
− (k − 1)Tp.

FIG. 5. Circular disk composed of oscillators (blue region) is
excited by two successive few-cycle light pulses with spherical
wavefronts (orange region). The medium radiation is observed at
a point on the symmetry axis far away from the disk at distance r .

In contrast to the linear array, the observed unipolar pulse,
Eq. (15), now has a profile monotonically increasing with time
(see Fig. 6; b = ω0R

c
). Even though the excitation wave moves

along the array at a gradually decreasing velocity, the number
of excited oscillators increases more rapidly, thus making the
pulse shape asymmetric towards the trailing edge.

It should be noted that taking into account the arbitrary
polarization direction of the incident pulses can also provide
plenty of alternatives for pulse shaping. Therefore, the polar-
ization degrees of freedom seem to have great potential in this
context and deserve special consideration, which is outside the
scope of the current paper.

IV. CIRCULAR ARRAY OF OSCILLATORS EXCITED
BY PLANE INCIDENT WAVES

Another practically relevant way to excite the circular array
implies its excitation by pulses with plane-incident wavefronts.
We consider once again two few-cycle optical pulses with
T0/2 delay possessing plane wavefronts and propagating at
an arbitrary angle β to the circle plane. This means that the

−1 0 1 2 3 4 5
0

0.5

1

1.5

 (t−r/c)/T 0

 E
(t)

/E
0

 

 

 b=50
 b=20
 b=10

FIG. 6. Results of the numerical solution of the integral, Eq. (15),
for different values of parameter b; H

R
= 1.
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FIG. 7. A circular string of oscillators (blue circle) is excited by
two successive few-cycle light pulses having plane wavefronts and
propagating at an angle β with the circle plane. Radiation from the
medium is observed at a point on the z axis far away from the circle
at distance r .

excitation fronts move on the circle plane at velocity V =
c/ sin β. The electric field is measured as before at a far distant
point at the considerable distance r from the circle, r � R, or
on the focal plane of the focusing lens parallel to the circle
plane.

As the first step, we take the oscillators arranged along a
circular string of radius R (see Fig. 7). The shape of the emitted
pulse is now expressed as

E(t) = E0

1∑
k=0

∫ 2π

0
sin[ω0fϕ]
[fϕ]dϕ, (16)

where fϕ = t − r
c

− R(1−cos ϕ)
V

− (k − 1)Tp describes the
emission delay from the oscillator located at a point with polar
angle ϕ. The results of the numerical calculation of the integral,
Eq. (16), for different values of the dimensionless parameter
b = ω0R

V
= ω0R

c
sin β are plotted in Fig. 8(a). The resulting

unipolar pulse has a symmetric but strongly nonuniform
profile with a well-pronounced concave shape. This feature
is naturally expected to take place since the medium geometry
configuration is nonlinear and the intersection point thus
moves along the string at varying velocity V/| sin ϕ|. Indeed,
the intersection-point velocity has maximum values at ϕ = 0
and ϕ = π , resulting in field jumps near the leading and trailing
edges of the pulse. This is why the generation of a rectangular
pulse does not occur in this case. With decreasing angle β

and thus parameter b, the overall duration of the generated
unipolar pulse properly decreases, as it takes less time for the
excitation pulses to get through the whole circle; the pulse
amplitude at the same time correspondingly increases. In the
limiting case where the incident wavefronts are parallel to
the circle plane b → 0, all the particles radiate in phase, thus
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FIG. 8. Results of the numerical solution of the integral, Eq. (16),
for different values of parameter b: (a) with the uniform angular
density of the oscillators; (b) with the angular density varying as
N (ϕ) = | sin ϕ|.

producing a single half-cycle pulse multiplied by the number
of oscillators.

To smoothen the pulse shape, we may take the particle
density varying along the circle in a certain manner. With
N (ϕ) the angular density of the oscillator distribution, Eq. (16),
generalizes to become

E(t) = E0

1∑
k=0

∫ 2π

0
sin[ω0fϕ]
[fϕ]N (ϕ)dϕ. (17)

Figure 8(b) shows an important example of such a dis-
tribution, (17), for N (ϕ) = | sin ϕ| with the production of
rectangular-shaped unipolar pulses. Its duration increases
with the increase in b, while the amplitude correspondingly
decreases, thus keeping the whole pulse area constant.

Finally, we examine a circular disk-shaped array of oscil-
lators analogous to the geometry in the previous section. The
equation for the pulse shape is

E(t) = E0

1∑
k=0

∫ 2R

0
sin[ω0fx]
[fx] ·

× 2

√
1 −

∣∣∣ x

R
− 1

∣∣∣2
d

(
x

R

)
, (18)

where fx = t − r
c

− x
V

− (k − 1)Tp and the x axis goes along
the diameter through the disk center.

Figure 9 shows the results of the numerical calculation of
the integral, Eq. (18), for different values of the dimensionless
parameter b = ω0R

V
= ω0R

c
sin β. The resulting unipolar pulse

has a convex profile in this case. Its duration and amplitude
may be inversely varied according to the parameter b.

V. CONCLUSION

We have studied theoretically the optical response of a
resonant medium with an essentially nonlinear field coupling
which is excited by few-cycle pump pulses. The medium has
been shown to exhibit a specific response depending on the
field coupling nonlinearity, oscillator geometry, and CEP of the
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FIG. 9. Results of the numerical solution of the integral, Eq. (18),
for different values of parameter b.

excitation pulse. Relying on the response specifics, we elabo-
rate the concept of half-cycle pulse generation where the oscil-
lator is influenced by a pair of pulses with the proper time delay,
so that the first pulse initiates the half-cycle pulse response
and the second one stops it at a certain moment. A general
criterion is derived allowing us to determine the applicability
of this method to the arbitrary nonlinearity of field coupling.

The proposed method allows us to produce ultrashort
unipolar pulses directly from a resonant medium without
the use of a complicated technique for coherent waveform

synthesis. Since the only restriction we impose on the medium
resonant frequency ω0 is that its corresponding period be
much larger than the excitation pulse duration, our approach is
applicable for the controllable generation of half-cycle pulses
over a wide frequency range. Therefore, the method can be
most easily used in the terahertz and midinfrared ranges.
However, potential extension of the proposed approach to the
femtosecond and subfemtosecond ranges seems possible.

To study the possibility of pulse shaping in our scheme,
we have considered emission from spatially extended arrays
of different geometry as well as different wavefront forms
of the excitation pulses. We have studied in detail several
particular cases, namely, when a planar array of oscillators
is excited by an incident wave with a curved front and the
case of a circular array excited by a plane incident wave. It is
shown that modification of the oscillator density and excitation
wavefront allows the generation of unipolar pulses with a high
variability of pulse shapes: asymmetric ones with the maxima
at the leading or trailing edges and with monotonous increase
or decrease towards the opposite edge and symmetric ones
with either a concave, a convex, or a rectangular shape.
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