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Spin-asymmetric Josephson plasma oscillations
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The spin-asymmetric Josephson effect is a proposed quantum-coherent tunneling phenomenon where Cooper-
paired fermionic spin- 1

2 particles, which are subjected to spin-dependent potentials across a Josephson junction,
undergo frequency-synchronized alternating-current Josephson oscillations with spin-dependent amplitudes.
Here, in line with present-day techniques in ultracold Fermi gas setups, we consider the regime of small Josephson
oscillations and show that the Josephson plasma oscillation amplitude becomes spin dependent in the presence of
spin-dependent potentials, while the Josephson plasma frequency is the same for both spin components. Detecting
these spin-dependent Josephson plasma oscillations provides a possible means to establish the yet-unobserved
spin-asymmetric Josephson effect with ultracold Fermi gases using existing experimental tools.
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I. INTRODUCTION

The Josephson effect [1] refers to the dynamics of
macroscopic variables such as the relative phase and particle
number in a bipartite quantum many-body system known
as a Josephson junction. Possibly the best-known instance
of this phenomenon is a supercurrent through a solid-state
superconducting tunnel junction [2]. An analogous effect has
also been demonstrated, for example, in superfluid 3He [3]
and 4He [4], exciton polaritons [5], and ultracold atoms with
both bosonic [6,7] and fermionic [8] species. Here we consider
the case of ultracold Fermi gases, although our results will be
conceptually general and thus applicable also in other systems.

There has been earlier theoretical work on the Josephson
effect in ultracold Fermi gases; see, e.g., [9–12]. However,
the unprecedented control and tunability of parameters and
individual degrees of freedom that are achievable in ultracold
atomic gas setups [13–19] offer the possibility to consider
going beyond the standard Josephson phenomenon. A case
in point is the proposed spin-asymmetric Josephson effect
[20–22]. In this scenario, the Cooper-paired fermionic particles
are subjected to a spin-dependent potential δσ (here σ =
↑,↓) across the Josephson junction. As a result, the spins
still display coherent Josephson oscillations with the same
Josephson frequency for both components, but the amplitude,
or the critical Josephson current IC , becomes spin dependent,
i.e., the Josephson current for spin σ has the form I J

σ (t) =
IC
σ (δσ̄ ) sin[(δ↑ + δ↓)t + ϕ], where t denotes time and ϕ is

the initial phase difference. We set h̄ = 1 throughout this
work. Note that the critical current depends only on the
potential of the opposite spin δσ̄ , but the Josephson frequency
ωJ = δ↑ + δ↓ is spin symmetric.

The physical origin of this rather surprising result can be
elucidated by considering the dynamics of a single Cooper
pair across the Josephson junction in the presence of spin-
dependent potentials and tunneling couplings �σ , as shown in
[21]. The relevant initial state is a superposition of the paired
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states on the left- and right-hand sides of the junction, given
by α0|↑↓〉L|∅〉R + β0|∅〉L|↑↓〉R , where α0 and β0 are complex
numbers with |α0|2 + |β0|2 = 1. The broken-pair intermediate
states |↑〉L|↓〉R and |↓〉L|↑〉R are required to describe the tun-
neling processes. If no spin-dependent potentials are present,
these intermediate states have the same eigenenergy. However,
the degeneracy is lifted by the spin-dependent potentials. It
turns out that this is the key to understanding the origin of the
phenomenon.

We proceed to explain the different tunneling processes
constituting the Josephson current. In the simplified system of
a single Cooper pair, which is analogous to a two-site Hubbard
model, time-dependent perturbation theory to second order in
�σ yields the Josephson current for spin σ as

I J
σ (t) = 2�↑�↓|α0β0|

(
Mpair + Mσ

single

)
× sin[(δ↑ + δ↓)t + ϕ]. (1)

For details of the calculation, see [21]. Here Mpair = 1
U+δ↑

+
1

U+δ↓
, where U is the interaction between the spin components.

This term results from second-order tunneling processes
starting from the state |∅〉L|↑↓〉R and ending in the state
|↑↓〉L|∅〉R via either the state |↑〉L|↓〉R or the state |↓〉L|↑〉R .
Thus, Mpair describes the usual pair interference process
that is symmetric with respect to δ↑ and δ↓. It turns out
that there is also a contribution from two first-order pro-
cesses that break the spin symmetry. These processes yield
the terms M

↑
single = 1

U−δ↓
− 1

U+δ↑
and M

↓
single = 1

U−δ↑
− 1

U+δ↓
,

which are different for the two spin components. The
term M

↑
single is the result of the interference of the vir-

tual broken-pair tunneling processes |↑↓〉L|∅〉R → |↑〉L|↓〉R
and |∅〉L|↑↓〉R → |↑〉L|↓〉R , while M

↓
single emerges from the

interference of |↑↓〉L|∅〉R → |↓〉L|↑〉R and |∅〉L|↑↓〉R →
|↓〉L|↑〉R . Since the energy degeneracy of the intermedi-
ate states is lifted by the presence of the spin-dependent
potentials, the virtual broken-pair tunneling processes con-
tribute asymmetrically to the Josephson current and thus
produce the spin-asymmetric Josephson effect. However, note
that the single-particle processes are present also in the
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FIG. 1. Origin of the spin-asymmetric critical Josephson currents. Considering the dynamics of a single Cooper pair across a Josephson
junction with spin-dependent potentials, the Josephson current results from a superposition of the paired states |↑↓〉L|∅〉R and |∅〉L|↑↓〉R . Here
we show the tunneling processes that contribute to (a) I J

↑ and (b) I J
↓ . The three processes are the following. First, there is a pair-tunneling

contribution via the intermediate state |↑〉L|↓〉R (left panel). Second, there is another pair-tunneling contribution via the other intermediate state
|↓〉L|↑〉R (middle panel). We have included the loop with label 1 to remind us that these usual Josephson processes describe the interference
between the tunneled pair and the initial population (indicated by the label 1) of the state |↑↓〉L|∅〉R . The pair-tunneling processes are the same
for both spin components. Finally, we find that there is also a virtual single-particle interference contribution (right panel). The single-particle
interference term is different for the spin-↑ and spin-↓ components due to the presence of the spin-dependent potential that lifts the energy
degeneracy of the intermediate states. This causes the spin-asymmetric Josephson effect.

standard symmetric case δ↑ = δ↓. We also emphasize that
these virtual broken-pair tunneling processes do not refer
to the cosine term (the quasiparticle interference term) of
the Josephson effect, which involves actual single-particle
transitions and vanishes at zero temperature for potentials
smaller than the excitation gap 2	. The different interference
processes contributing to the Josephson current are depicted in
Fig. 1.

The Josephson junction with spin-dependent potentials has
similarities to ferromagnetic Josephson junctions [23–28].
Perhaps most notably, the tunable critical supercurrent in
S-F -I -F -S junctions [24] (here S stands for superconductor,
I for insulator, and F for ferromagnet) can be explained by
the spin-asymmetric Josephson effect in the direct-current (dc)
limit at zero temperature [22]. We emphasize, however, that
in the spin-asymmetric Josephson effect the spin-dependent
potentials create the asymmetry and the barrier separating
the superconductors can be just an insulator without a
spin-active coupling, unlike in the case of a ferromagnetic
barrier. In fact, the spin-asymmetric Josephson effect could
possibly be realized in a solid-state S-I -S junction with two
superconductors that have different Zeeman splittings for the
two spin states in the presence of a magnetic field [29]. There is
also no immediate connection between our single-particle
interference terms and Andreev reflections in weak links, since
Andreev reflections can take place even without Josephson
effects, whereas our virtual single-particle interferences are
always inherent to the coherent Josephson current regardless

of the type of the junction. Moreover, our single-particle
interference term vanishes in the dc Josephson effect [see the
discussion after Eq. (1)], while Andreev reflections and bound
states can be relevant also in the dc limit [30]. Finally, we point
out that the spin-asymmetric Josephson effect occurs when the
pairing is of singlet type, and no triplet pairing is required.

The spin-asymmetric Josephson effect has been predicted
to take place between the hyperfine levels of a four-
component superfluid Fermi gas with radio-frequency (rf)
field-induced transitions and in two-component superfluids in
spin-dependent double wells [20,21]. It has also been proposed
to occur within a single superfluid between the odd and even
sites of a spin-dependent superlattice [22].

Recently [8], the observation of Josephson plasma oscil-
lations throughout the BCS–Bose-Einstein condensate (BEC)
crossover has been reported in ultracold Fermi gases. Here,
motivated by these experimental advances in Josephson
dynamics, we consider the possibility to observe the spin-
asymmetric Josephson effect via spin-dependent plasma oscil-
lations in a superfluid Fermi gas forming a Josephson junction
with a spin-dependent potential. All the required experimental
tools that we will present have already been demonstrated with
ultracold atoms. Thus, the arrangement that we propose can be
realized with existing techniques in ultracold-atom setups. The
plasma oscillation regime corresponds to a relative number
difference on the order of a few percent across the junction
[8,12]. This limits the possible values of the spin-dependent
potentials (see Sec. III B).
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In comparison to earlier studies on the spin-asymmetric
Josephson effect, we point out that Josephson plasma oscilla-
tions differ from the full alternating-current (ac) oscillations
in that they refer to the solution of linearized Josephson
equations, similar to the equations of motion of a classical pen-
dulum, with the small-angle approximation for the Josephson
phase. This leads to small-amplitude oscillations of the number
density with a plasma frequency that is different from the
Josephson frequency given by the potential difference across
the junction. Full ac Josephson oscillations have not yet been
observed in ultracold Fermi gases.

This work is organized as follows. In Sec. II we describe
our setup with especially ultracold Fermi gases in mind. We
present our results in Sec. III. We provide a summary and
discussion in Sec. IV before describing some calculational
details in the Appendix.

II. SETUP

We give the description of the setup for the spin-asymmetric
Josephson effect in terms of ultracold atoms. However, we
emphasize that the arrangement is conceptually general and
as such not restricted only to ultracold atoms, and thus other
systems could also be considered.

Our setup consists of a two-component superfluid atomic
Fermi gas (e.g., 6Li) divided into two weakly connected
reservoirs L and R with chemical potentials μL and μR ,
respectively. This setup forms an effective Josephson junction.
The arrangement is similar to the ones used in the observation
of Josephson dynamics in 6Li [8] and in quantum transport
experiments with 6Li [31–36].

In the absence of couplings between the reservoirs and addi-
tional potentials, the system is described with the Hamiltonian

Ĥ0 =
∫

dr
∑

σ

∑
j=L,R

[
ψ̂

†
σ,j (r)

(
− ∇2

2m
− μj

)
ψ̂σ,j (r)

]

+
∫

dr1

∫
dr2

∑
j=L,R

U (r1,r2)

× [ψ̂†
↑,j (r1)ψ̂†

↓,j (r2)ψ̂↓,j (r2)ψ̂↑,j (r1)], (2)

where ψ̂
†
σ,L (R)(r) [ψ̂σ,L (R)(r)] is a field operator that creates

(annihilates) a spin σ fermion at position r on the left-
(right-) hand side of the junction. Consistent with dilute atomic
Fermi gases, we assume an attractive contact interaction
U (r1,r2) = gδ(r1 − r2) between the spin ↑ and ↓ particles on
both sides of the junction. Here δ(r) is the Dirac delta function
in three dimensions and g = 4π

m
as < 0, where m is the mass

of the particles and as is the three-dimensional (3D) s-wave
scattering length. As is customary with ultracold fermions, we
give the interaction in terms of the dimensionless parameter
kF as , where kF is the Fermi momentum, as g = 8

3π
kF as

EF

n
.

Here EF denotes the Fermi energy and n the particle number
density.

To induce Josephson currents in the system, we assume that
at time t = 0+ the two reservoirs become weakly coupled via
the Hamiltonian

Ĥ� =
∑

σ

�σ

∫
dr ψ̂

†
σ,L(r)ψ̂σ,R(r) + H.c., (3)

μR

δ↑

Ωσ

δ↓

μL

FIG. 2. Schematic of a spin-dependent Josephson junction. A
superfluid Fermi gas is divided into two reservoirs denoted by L and
R. The reservoirs are connected via the weak tunneling coupling
�σ , which induces Josephson oscillations across the junction.
Additionally, a spin-dependent potential δσ is applied across the
junction, which creates a spin asymmetry in the Josephson current.

where �σ is the coupling strength. Moreover, to create the
spin asymmetry in the currents, an additional spin-dependent
potential δσ is applied across the junction at time t = 0+. This
is described with the Hamiltonian

Ĥδ =
∫

dr
∑

σ

[(
μL − δσ

2

)
ψ̂

†
σ,L(r)ψ̂σ,L(r)

+
(

μR + δσ

2

)
ψ̂

†
σ,R(r)ψ̂σ,R(r)

]
. (4)

For the reason why the chemical potentials are included also in
this Hamiltonian, see Chap. 10.4.1 in Ref. [19]. Alternatively,
as demonstrated in [36], one can consider spin-dependent
chemical potentials μL,σ �= μR,σ switched on at time t = 0+.
The total Hamiltonian of the system thus reads

Ĥ = Ĥ0 + Ĥ� + Ĥδ. (5)

See Fig. 2 for a schematic illustration of the system.
We now describe how the required spin-dependent potential

could be achieved experimentally in two different ways by
utilizing spin-dependent interactions. In an ultracold Fermi
gas setup, the spin σ corresponds to, e.g., the lowest two
hyperfine levels of 6Li, |1〉 and |2〉, with, e.g., |↓〉 = |1〉 and
|↑〉 = |2〉, which features a Feshbach resonance at a magnetic-
field strength of 832 G.

Our first suggested implementation exploits a third spin
component, e.g., atoms transferred via an rf pulse to the third
lowest hyperfine level of 6Li, denoted by |3〉, introduced on
one side of the junction. On the BCS side of the 1-2 Feshbach
resonance, i.e., for magnetic fields above 832 G, the atoms
in the state |3〉 interact differently with the atoms in |1〉 and
|2〉 due to the different positions of the respective pairwise
Feshbach resonances [37]. This allows utilizing the mean-field
Hartree shift to create a potential difference between the atoms
in the states |1〉 and |2〉, given by 	δ12 = 4π

m
n3(a13 − a23),

where n3 is the number density of atoms in state |3〉 and a13

(a23) is the scattering length for collisions between atoms in
states |1〉 (|2〉) and |3〉 (see, e.g., [38]). In this magnetic-field
regime, 	δ12 is significant even for n3 	 1010 cm−3. Such a
low density is required to allow a lifetime on the order of a
few hundred milliseconds against three-body recombinations
in three-component Fermi gases, in accord with [39–41].

Our second proposal is based on the recent experimental
realization of Bose-Fermi superfluid mixtures [42], which has
been achieved even in systems with a large mass imbalance
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[43,44]. In particular, we suggest to create a Bose-Fermi
superfluid mixture where the bosonic atoms are either 87Rb
or 133Cs, both of which feature broad Feshbach resonances on
the BCS side of the 1-2 6Li superfluid. This allows the tuning
of the interaction with respect to only one 6Li spin component
[45,46] and again creates a spin-dependent mean-field Hartree
shift, which for a Bose-Fermi mixture can be large also away
from the center of the resonance [47].

In both of the proposed schemes, as the two spin compo-
nents |1〉 and |2〉 tunnel through the Josephson junction, the
difference in the mean-field shifts 	δ12 creates the required
spin-dependent potential difference δσ across the junction.
Since the scattering lengths can be tuned and the number den-
sity can be controlled, this spin-dependent potential difference
can be varied as well.

III. RESULTS

A. Spin-asymmetric Josephson currents

We are interested in calculating the Josephson currents
in our system and take the spin-dependent potentials δσ to
be smaller than the excitation gap 2	. The setup presented
in Sec. II is mathematically analogous to that considered
in our previous work on the spin-asymmetric Josephson
effect in a four-component Fermi gas [21]. Thus, the same
calculations for the Josephson currents presented in [21] and
the Supplemental Material therein using the BCS mean-field
approach, linear response theory, and the Kadanoff-Baym
formalism [48,49] are also applicable in this setup. Here we
show only the result. We present an outline of the calculations
in the Appendix.

The Josephson current for spin σ is given by

I J
σ (t) = −IC

σ (−δ̃σ̄ ) sin[(δ̃↑ + δ̃↓)t − ϕ], (6)

where δ̃σ = μL − μR − δσ . Here the critical Josephson cur-
rent reads

IC
σ (−δ̃σ̄ ) = 2|�↑�↓�F (p = 0,−δ̃σ̄ + i0+)|, (7)

where

�F (p,iωn) = 1

βV

∑
q,iωm

FL(q,iωm)

× F†
R(q − p,iωm − iωn). (8)

In this expression, ωn and ωm denote fermionic Matsubara
frequencies, V is the volume, and β = 1

kBT
, where kB is the

Boltzmann constant and T is temperature. Furthermore, FL

(FR) is the anomalous BCS-Nambu-Gor’kov Green’s function
describing Cooper pairing correlations on the left- (right-) hand
side of the junction. The anomalous Green’s function is given
in Matsubara space by

F(q,iωm) = 	

(iωm)2 − E2
q
, (9)

where Eq =
√

ξ 2
q + 	2. Here ξq is the kinetic energy of

momentum state q given relative to the chemical potential,
i.e., ξq = εq − μ, with εq = |q|2/2m.

We point out again that in Eq. (6) the critical current for
the spin σ component depends only on the potential δ̃σ̄ of

the opposite spin, while the Josephson frequency ωJ = δ̃↑ +
δ̃↓ is the same for both spin components. This is the spin-
asymmetric Josephson effect.

Note that even though these fully coherent Josephson
oscillations are spin dependent, there is no total equilibrium
spin imbalance in our system. This suppresses the possibility
for equilibrium phase separation and for exotic Fulde-Ferrell-
Larkin-Ovchinnikov-type pairing that is furthermore unlikely
to occur in the 3D case considered here [50–52].

B. Spin-asymmetric plasma oscillations

Motivated by the experiment in [8], we now ask how the
small-amplitude Josephson plasma oscillations are affected
by the presence of spin-dependent potentials. Detecting spin-
asymmetric Josephson plasma oscillations offers an alterna-
tive and perhaps an experimentally more feasible means to
establish the spin-asymmetric Josephson effect with present-
day techniques. We leave the nonlinear self-trapping regime
[5,6,53] in the presence of spin-dependent potentials for future
work.

To begin the analysis, we introduce a spin-dependent
number difference parameter 	NJ

σ = 1
2 (〈N̂J

σ,L〉 − 〈N̂J
σ,R〉) =

1
2 (NJ

σ,L − NJ
σ,R), akin to the bosonic case [54]. Here N̂J

σ,L

(N̂J
σ,R) denotes the number operator for spin σ particles on

the left (right) reservoir that belong to the Fermi condensate
and can thus contribute to the Josephson current. Using Eq. (6)
and the fact that ∂tN

J
σ,L = −∂tN

J
σ,R , we find that the dynamics

of 	NJ
σ is obtained from

∂
(
	NJ

σ

)
∂t

= −IC
σ (−δ̃σ̄ ) sin �J (t). (10)

The Josephson phase �J (t) obeys the equation of motion

∂�J (t)

∂t
= δ̃↑ + δ̃↓ = 2(μL − μR) − δ↑ − δ↓. (11)

The spin-dependent critical Josephson current implies spin-
dependent number oscillations also in the plasma oscillation
regime. Therefore, also the chemical potential undergoes small
spin-dependent dynamics. We can write Eq. (11) as

∂�J (t)

∂t
= E

↑
ch	NJ

↑ + E
↓
ch	NJ

↓ − δ↑ − δ↓, (12)

where we have introduced the spin-dependent charg-
ing energy Eσ

ch = 2 dμσ,L

dNJ
σ,L

, which is evaluated at NJ
σ,L =

NJ
σ,R = NJ

σ /2 [54].
For times much shorter than the inverse Josephson fre-

quency but long enough to observe plasma oscillations, we
have sin �J (t) ≈ �J (t) and we obtain the coupled differential
equations

∂2(	NJ
↑ )

∂t2
= −IC

↑ (−δ̃↓) × (E↑
ch	NJ

↑ + E
↓
ch	NJ

↓ − δ↑ − δ↓)

(13)

and

∂2(	NJ
↓ )

∂t2
= − IC

↓ (−δ̃↑)

× (E↑
ch	NJ

↑ + E
↓
ch	NJ

↓ − δ↑ − δ↓). (14)
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The solution for spin σ has the form

	NJ
σ (t) = Aσ

p sin(ωpt) + 	NJ
σ (0), (15)

where the Josephson plasma frequency is given by
ωp =

√
E

↑
chI

C
↑ + E

↓
chI

C
↓ . Note that in the spin-symmetric case,

we have the standard formula ωp = √
EchEJ , where EJ =

IC
↑ + IC

↓ = IC is the Josephson energy [8,54] (recall that
h̄ = 1). However, in general, we expect the plasma frequency
in the presence of spin-dependent potentials to differ from
the standard case, as can be seen, for example, with the toy
calculation presented in Sec. I.

Similar to the full ac spin-asymmetric Josephson effect,
we therefore find that the system undergoes frequency-
synchronized Josephson plasma oscillations with a spin-
dependent amplitude. The asymmetry in the amplitudes
follows the relation

A
↑
p

A
↓
p

= IC
↑ (−δ̃↓)

IC
↓ (−δ̃↑)

. (16)

Equation (16) is the main result of this paper.
The asymmetry given by Eq. (16) is limited by the

requirement that the oscillations in the number density between
the two reservoirs must be small. For the plasma oscillation
approximation to be valid, the relative number difference z =
NJ

L −NJ
R

NJ
L +NJ

R

has to be on the order of a few percent [8,12]. This gives

an upper bound to the Josephson frequency ωJ = δ̃↓ + δ̃↑
in the plasma oscillation regime. The maximal Josephson
frequency then determines how much the asymmetry in the
plasma oscillation amplitudes can be tuned and how large
asymmetries can be obtained.

To give an estimate of the upper bound for ωJ , we assume
for simplicity that there are no spin-dependent potentials
across the junction. The Josephson dynamics is then induced
only by the difference in the chemical potentials, with
ωJ = 2(μL − μR). We want to express ωJ in terms of the
relative number difference z, whose values corresponding to
the plasma oscillation regime are known [8,12]. Using the
chemical potential for a noninteracting trapped gas μ ∝ N1/3,
we find that the relative difference in the chemical potentials
and in the particle numbers obeys the relation η = (μL −
μR)/(μL + μR) = z/3, which yields the Josephson frequency
as ωJ = 4ημ = 4

3zμ, where we have defined μ = μL ≈ μR .
With the equation η = z/3, we note that the relative chemical

potential difference η across the junction can only be 1%
with the parameters in [8], i.e., z = 3% (with 105 atoms per
spin state) and a barrier height of 1.2 ± 0.1EF between the
reservoirs. In [12], the critical value for z was found to be on
the order of 9% for a barrier height of 5EF and thus η ≈ 3%
in this case. In what follows we use η = 3% as the maximum
relative difference in the chemical potentials to estimate the
maximal Josephson frequency.

To get ωJ , we need a value for the chemical potential μ. In
our simple case of a homogeneous Fermi gas, BCS mean-field
theory with the attractive interaction strength kF |as | between
1.0 and 3.0 and the temperature T between 0.05TF and 0.09TF ,
where TF is the Fermi temperature, yields a chemical potential
between approximately 0.81EF and 0.96EF . This implies
that the maximal Josephson frequency corresponding to the
plasma oscillation regime is around ωmax

J ≈ 0.11EF . Since the
Josephson frequency is given only by the potential difference
across the junction regardless of the type of the potential, we
take that this is the typical value for the maximal Josephson
frequency also in the presence of spin-dependent potentials,
which we now consider.

Using the estimated ωmax
J = 0.11EF , we show in Fig. 3

the numerically obtained asymmetry in the plasma oscillation
amplitudes given by Eq. (16) as a function of δ̃↓ − δ̃↑ for
different temperatures and various strengths of the attractive
interaction in the typical regimes for an ultracold atom
experiment. In particular, the used temperature regime is the
same as in the experiment in [8] and the interaction strengths
are in the same range as on the BCS side of the BCS-BEC
crossover in [8]. Note that we have used basic BCS equations
in our calculations for simplicity, since we are interested
only in the order of magnitude of the asymmetry. For the
interaction strengths in Fig. 3, simple BCS theory estimates the
critical temperature to be between 0.13TF and 0.36TF . In more
accurate schemes [55] there would be some corrections to the
BCS parameter values. For example, the critical temperature
is suppressed by a factor of roughly 2. For a unitary Fermi
gas, the critical temperature has been measured to be about
0.17TF [56]. We see in Fig. 3 that the asymmetry grows for
weaker interactions and can reach over 2%. The asymmetry
grows also with increasing temperature.

The behavior of the asymmetry in the plasma oscillation
amplitudes as a function of interaction strength and tempera-
ture is explained by the divergence of the critical Josephson

FIG. 3. Asymmetry in the spin-dependent plasma oscillation amplitudes as a function of the difference in the spin-dependent potentials
for Josephson frequency ωJ = 0.11EF and interaction strength kF as = −1.0 [black solid curve, only in (a)], kF as = −1.5 (blue solid curve),
kF as = −2.0 (red dashed curve), kF as = −2.5 (yellow dash-dotted curve), and kF as = −3.0 (purple dotted curve). The temperature is (a)
T = 0.05TF , (b) T = 0.07TF , and (c) T = 0.09TF . The temperature regime is the same as in the experiment in [8]. In (a), the kF as = −1.0
curve is included as the reference line to the unitary Fermi gas regime.
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FIG. 4. Critical Josephson current IC
σ as a function of δ̃σ̄ for (a)

interaction kF as = −3.0 (solid curve), kF as = −2.0 (dashed curve),
and kF as = −1.0 (dotted curve) at temperature T = 0.07TF and (b)
temperature T = 0.05TF (solid curve), T = 0.07TF (dashed curve),
and T = 0.09TF (dotted curve) for interaction kF as = −1.5. The
divergence of IC

σ at δ̃σ̄ = 2	 is called the Riedel peak.

current in Eq. (7) at the Riedel peak at δ̃σ̄ = 2	 [57]. The
Riedel peak is located at a potential equal to the minimum
energy required for creating a quasiparticle excitation, i.e.,
2 mink Ek = 2	. The BCS quasiparticle density of states
D(Ek) then has a singularity at the corresponding quasiparticle
energy Ek = 	, i.e., at the gap edge. This singular behavior
of D(Ek) is the physical reason behind the Riedel peak [58].
Since the gap 	 becomes smaller for weaker interactions and
higher temperatures, the position of the Riedel peak moves
closer to small frequencies, as shown in Fig. 4. Therefore,
for decreasing interaction strength and increasing temperature
it becomes easier to obtain greater asymmetries in the critical
currents in the plasma oscillation regime and thus in the plasma
oscillation amplitudes via Eq. (16).

We point out that since BCS theory overestimates the value
of the superfluid gap [55], the Riedel peak is actually closer
to small frequencies than Fig. 4 suggests. Therefore, in reality
we can expect even greater asymmetries than those shown in
Fig. 3. To demonstrate this, we plot in Fig. 5 the asymmetry
in the plasma oscillation amplitudes using the experimental
value for the gap 	 = 0.22EF obtained for interaction strength
kF as = −4.0 and temperature T = 0.06TF , as reported in
[59]. This experimentally determined gap is roughly half of the

FIG. 5. Asymmetry in the spin-dependent plasma oscillation
amplitudes as a function of the difference in the spin-dependent
potentials for parameter values obtained in the experiment in [59].
The Josephson frequency is ωJ = 0.08EF , the interaction strength
is kF as = −4.0, the temperature is T = 0.06TF , and the gap is
	 = 0.22EF .

gap given by simple BCS theory. The corresponding maximal
Josephson frequency is ωmax

J ≈ 0.08EF . We see in Fig. 5 that
even with this strong attractive interaction, asymmetries of
over 2% are feasible to obtain. Larger asymmetries can be
expected for weaker interactions.

We note that the amplitude asymmetry is always a fraction
of an already small Josephson plasma mode signal (z = 3% in
[8]). This makes the detection of the asymmetry challenging.
However, the Josephson plasma mode is a collective dipole
oscillation (i.e., a center-of-mass motion of all atoms) and its
amplitude can be detected in a time-of-flight (TOF) expansion.
Thus, the evolution of the population imbalance is mapped
onto the center-of-mass displacement. For the parameter
values in [8], a displacement of several tens of micrometers can
be achieved with a short TOF of duration less than 10 ms. This
significantly increases the signal-to-noise ratio for detecting
the asymmetry.

Finally, we make a comparison to spin diffusion. The
Josephson plasma oscillation occurs on a time scale on the
order of the trapping frequency, i.e., 50 ms in [8], while
longitudinal spin diffusion takes place on a much longer time
scale (200 ms with the parameters of [8]). This means that
while the plasma oscillation is happening, the spin bias does
not change significantly. This implies that one can properly
define a chemical potential, the charging energy, and also the
spin-dependent potential δσ . In other words, the plasma oscilla-
tion occurs in a quasiequilibrium configuration. In addition, for
measuring the spin-asymmetric plasma oscillation amplitude,
only half of the trapping period is required since we only need
the height from the maximum peak to the minimum one. For
these reasons, we do not expect spin diffusion to significantly
affect the possible observation of the spin-asymmetric plasma
oscillations.

IV. CONCLUSION

In summary, we have studied the plasma oscillation regime
in a Josephson junction with a spin-dependent potential,
realized with an ultracold superfluid Fermi gas. We have
proposed methods to experimentally create the required spin-
dependent potential across the junction. We have predicted
that in this setup the Josephson plasma oscillation amplitude
becomes spin dependent but the plasma frequency is the
same for both spin components similarly to the full ac
spin-asymmetric effect. The spin asymmetry in the plasma
oscillation amplitudes is given by the asymmetry in the spin-
dependent critical Josephson currents that are characteristic of
the spin-asymmetric Josephson effect. Furthermore, we have
shown that the asymmetry in the amplitudes can be tuned by
varying the spin-dependent potentials. In the parameter regime
typical of ultracold-atom experiments, we have demonstrated
that asymmetries on the order of a couple of percent are
achievable. The observation of these spin-dependent plasma
oscillations would establish the so far undetected spin-
asymmetric Josephson effect.

We mention that an effective bosonic picture is often
adopted when the usual Josephson phenomenon is described.
We want to point out that the spin-asymmetric Josephson effect
shows that this bosonic description is incomplete and under-
lines the fact that the contribution from the fermionic single
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particles that compose the Cooper pairs cannot be overlooked,
as manifested by the previously unnoticed single-particle
interference processes in the Josephson current. Importantly,
the contribution from the single-particle processes leads to
a measurable spin-polarized supercurrent. Noteworthily these
single-particle interferences are present also in the standard
spin-symmetric case, but there their effect may be difficult to
detect.

Finally, we state that, as shown in [21,22], the spin-
asymmetric Josephson effect and its direct-current limit, i.e.,
ωJ = 0, provide a critical supercurrent that can be tuned with
the spin-dependent potentials. This feature has the potential to
be useful in a variety of technological applications if realized
in solid-state systems.
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APPENDIX: LINEAR RESPONSE AND KADANOFF-BAYM
FORMALISM

Here we elucidate some of the details in the derivation of
Eq. (6). First, note that we split the Hamiltonian in Eq. (5) into
three parts. The reason for this is that we calculate the current
treating Ĥ� as the first-order perturbation in linear response
theory, while separating Ĥδ from Ĥ0 allows us to take two
simple BCS superfluids as the unperturbed initial state. The
Josephson current for spin σ is then given by

I J
σ (t) = −2 Im[e−i(δ̃↑+δ̃↓)t�↑�↓

× L(p = 0,−δ̃σ̄ + i0+)], (A1)

in which δ̃σ = μL − μR − δσ and L(p,−δ̃σ̄ + i0+) is the
Fourier transform of the retarded linear response function,
which is defined in position space and time domain as

L(r1t,r3t,r2t
′,r4t

′) = − iθ (t − t ′)〈[ψ̂†
↑,R(r3t)ψ̂↑,L(r1t),

× ψ̂
†
↓,R(r4t

′)ψ̂↓,L(r2t
′)]〉, (A2)

where θ (t) is the Heaviside step function, [·,·] denotes the
commutator, and the thermodynamic average is calculated
with respect to the unperturbed Hamiltonian Ĥ0. Further, the
time-dependent field operators are in the interaction picture,
with ψ̂

†
σ,L/R(r,t) = eiĤ0t ψ̂

†
σ,L/R(r)e−iĤ0t .

To get the Josephson current, we need to obtain the linear
response function L in Eq. (A1). As explained in [21], using
the Kadanoff-Baym method [48,49] to obtain the four-operator
correlator L as a variational derivative of the single-particle
Green’s function G with respect to the coupling �, i.e.,
L = − δG

δ�
|�=0, ensures that L obeys the same conservation

laws as G and thus the linear response calculations are

self-consistent. For details, see Refs. [48,49]. However, in
practice the analytic form of G(�) is not known and thus taking
the variational derivative is not possible. Instead, one can
derive an expression for L using equations of motion for the
Green’s function. In what follows we present the general idea
of the Kadanoff-Baym approach to obtain L for completeness
and use shorthand notation for all position and time variables
as per Refs. [48,49].

We proceed to derive an integral equation from which L can
be solved. We start from the relation

∫
d1̄ G(1,1̄)G−1(1̄,1′) =

δ(1 − 1′), from which one obtains the variational derivative of
G with respect to � as

δG(1,1′)
δ�(2′,2)

= −
∫

d3̄ d4̄ G(1,3̄)
δG−1(3̄,4̄)

δ�(2′,2)
G(4̄,1′). (A3)

The left-hand side of this equation becomes the linear response
function L(12,1′2′) when evaluated at � = 0 and multiplied
by −1. We modify the right-hand side of Eq. (A3) so that the
linear response function appears there as well. For this, we use
the equation of motion for the Green’s function, given by [48]

G−1(3̄,4̄) = G−1
0 (3̄,4̄) − �(3̄,4̄) − �(3̄,4̄), (A4)

where G0 is the noninteracting Green’s function that does not
depend on � and � is the self-energy that is a functional of G

and �. Differentiating this equation and using the chain rule
for differentiation for the self-energy, namely,

δ�(3̄,4̄)

δ�(2′,2)
=

∫
d5̄ d6̄

δ�(3̄,4̄)

δG(5̄,6̄)

δG(5̄,6̄)

δ�(2′,2)
, (A5)

directly yields an integral equation for L as

L(12,1′2′) = − G(1,2′)G(2,1′)

+
∫

d3̄ d4̄ G(1,3̄)G(4̄,1′)
δ�(3̄,4̄)

δG(5̄,6̄)
L(5̄2,6̄2′),

(A6)

where all quantities on the right-hand side are evaluated at
� = 0. From Eq. (A6) the linear response function can be
solved at least numerically in the general case. However, in
our system we are able to continue analytically.

As is evident in Eq. (A1), we require L as a function
of momentum and frequency. Thus, we Fourier transform
Eq. (A6) into momentum and frequency space. We are then
left with a matrix equation of the form L = � + ML, where
� and M are matrices coming from the first and second terms
of Eq. (A6), respectively. From this matrix equation L can be
solved analytically in some special cases. For example, in the
case of BCS mean-field theory and a contact interaction as
considered here and in [21], a closed form for the derivative of
the self-energy can be obtained. The required linear response
function then becomes [21]

L(p,iωn) = −�F (p,iωn), (A7)

where �F (p,iωn) is given by Eq. (8). Applying the an-
alytic continuation from Matsubara to real frequencies
iωn → −δ̃σ̄ + i0+ to L in Eq. (A7) yields Eq. (6).
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To obtain a value for the critical Josephson current, the
energy gap 	 in the anomalous Green’s function in Eq. (9) is
obtained numerically by solving the BCS gap equation (see,
e.g., [60,61])

m

4π |as | = 1

2V

∑
k

(
1 − 2nF (Ek)

Ek
− 1

εk

)
, (A8)

where nF (Ek) = 1/[exp(βEk) + 1], along with the number
equation

n = 1

V

∑
k

{
1 − ξk

Ek
[1 − 2nF (Ek)]

}
. (A9)

We assume for simplicity that the superfluid gap is unaffected
by the presence of the spin-dependent potentials.
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