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Loading and compression of a single two-dimensional Bose gas in an optical accordion
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The experimental realization of two-dimensional (2D) Bose gases with a tunable interaction strength is an
important challenge for the study of ultracold quantum matter. Here we report on the realization of an optical
accordion creating a lattice potential with a spacing that can be dynamically tuned between 11 and 2 μm. We show
that we can load ultracold 87Rb atoms into a single node of this optical lattice in the large spacing configuration
and then decrease nearly adiabatically the spacing to reach a strong harmonic confinement with frequencies larger
than ωz/2π =10 kHz. Atoms are trapped in an additional flat-bottom in-plane potential that is shaped with a high
resolution. By combining these tools we create custom-shaped uniform 2D Bose gases with tunable confinement
along the transverse direction and hence with a tunable interaction strength.
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I. INTRODUCTION

Thanks to their high degree of isolation from the environ-
ment and the rich toolbox developed from atomic physics,
quantum gases are ideal platforms to study strongly correlated
systems [1] or to develop new metrology devices [2]. A
key ingredient is the development of custom-shaped optical
potentials allowing one to confine atoms in tunable geometries.
Atoms are routinely trapped in low-dimensional setups, optical
lattices, or, as recently demonstrated, flat-bottom potentials
for three-dimensional (3D) [3] and two-dimensional (2D)
[4,5] gases.

Low-dimensional systems are of particular interest for
several reasons. The role of thermal and quantum fluctuations
is enhanced compared to 3D and leads to rich physics such as
the existence of the Berezinskii-Kosterlitz-Thouless superfluid
phase in two dimensions [6,7]. When placed in (artificial)
magnetic fields, they can give rise to topological phases of
matter similar to those appearing in the quantum Hall effect [8].
From a more technical point of view, 2D systems, now
routinely used in “atomic microscope” experiments [9,10],
are well suited to implement high-resolution imaging or trap
shaping with a resolution typically better than 1 μm, without
being limited by a short focal depth or line-of-sight integration.

In 2D cold atomic clouds the interparticle interactions are
characterized by a dimensionless parameter g̃ = √

8πa/�z,
where a is the s-wave scattering length and �z is the harmonic
oscillator length along the strongly confining direction [11].
Varying the confinement (hence �z) thus opens the possibility
of controlling the interaction strength for a fixed value of a

and eventually entering the strongly interacting regime for
large values of g̃ [12,13].

One of the challenges of realizing 2D systems is to load
a large fraction of an initial (3D) Bose-Einstein condensate
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(BEC) in a single highly anisotropic trap with relatively weak
confinement in the xy plane and a strong one along the third
(z) direction. A possible approach consists of making a single
potential minimum using either phase plates, creating a node
of intensity of blue-detuned light [14], or a tightly focused
red-detuned single beam [15]. Another approach consists of
making an optical lattice by crossing two interfering beams
at a fixed angle. In that case, the lattice spacing and hence
the achievable strength of the confinement along the z axis are
limited by the requirement of a single node loading [16,17]. Yet
another possibility is to use a small-spacing lattice, load several
planes, and then remove atoms in all the planes but one [18].
This procedure may lead to an important atom loss that is
detrimental for exploring large systems. Single-plane 2D Bose
gases have also been demonstrated in radio-frequency-dressed
magnetic traps with a moderate transverse confinement [19] or
in more complex setups involving an evanescent optical field
close to a dielectric surface [20].

In this paper we create a single 2D cloud with a large
number of atoms and a tunable confinement using a so-called
“optical accordion.” It consists of loading atoms in a single
node of a large-spacing lattice and then increasing the angle
between the two interfering beams to make the confinement
stronger. This technique has been demonstrated optically, but
not implemented on an atomic cloud, in Refs. [21,22] and
used to increase the spacing of a lattice trapping ultracold
atoms [23]. Compression of quantum gases has been reported
in Ref. [24] using a different technique involving a reflexion
on a dielectric surface. It has also recently been mentioned
in Ref. [25], without any technical detail or study of the
compression process. In this work we demonstrate single-
plane loading and a fivefold increase of the trapping frequency
of a Bose gas in an optical accordion and study the adiabaticity
of the compression stage. With far-detuned light and moderate
power we obtain clouds of 105 87Rb atoms confined with
frequencies ωz/2π higher than 10 kHz. We show that this
compression can be realized in about 100 ms with a small
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amount of additional heating compared to the ideal adiabatic
evolution. These experiments are carried out with a flat-bottom
in-plane potential.

II. ACCORDION OPTICAL SETUP

The design of our accordion lattice is inspired from [22] and
depicted in Fig. 1(a). A single laser beam of wavelength λ =
532 nm is split by a pair of polarizing beam splitters (PBSs) into
two parallel beams propagating along the y axis. These two
beams cross in the focal plane of a lens, and their interference
forms a one-dimensional (1D) optical lattice. The position of
the incoming beam on the PBSs is moved thanks to a motorized
translation stage. This position controls the distance between
the two beams reflected by the PBSs, hence the angle between
the beams in the focal plane and the fringe spacing. The relative
phase between the two beams, which determines the absolute
position of the fringes, is controlled by a piezoelectric stack
glued on the mirror reflecting the top beam. The two beams
are transmitted through a common polarizing beam-splitter
cube positioned just before the lens [not shown in Fig. 1(a)]
to ensure that they have identical polarization. In this work
we use an elliptical beam with measured waists at atom
positions of wx = 88(2) μm and wz = 38(6) μm in the hor-
izontal and vertical directions, respectively. The uncertainty
corresponds to the standard deviation of the measurement
for the different lattice spacings studied here. The choice
of these values for the waists results from the compromise
between getting the highest intensity with the available power
and having a large enough horizontal waist to get a uniform
confinement over the sample size (see next section) and a
large enough vertical one to ensure a robust overlap between
the two beams when changing the lattice spacing, as discussed
below.

In our setup we change the full angle θ between the two
interfering beams from 3◦ to 15◦. The maximum angle is
limited by the available numerical aperture on this axis, and
the minimum angle is constrained by the finite size of the
beams, which should not be clipped by the edges of the PBSs.
We measure the lattice period i resulting from the interference
of the two beams by imaging the intensity pattern in the atom
plane on a camera, and we obtain the results shown in Fig. 1(b).
By translating the initial beam by 11.5 mm, we vary i from
11.0(1) to 1.9(1) μm. The data points are fitted by

i = λ

2

√
1 + [f/(d + d0)]2, (1)

where d is the displacement of the stage from the position
giving our largest lattice period. Here, d0 is an arbitrary offset,
and f is the focal length of the lens.

The main challenge for realizing the accordion lattice is
to avoid displacements of the beams in the focal plane when
changing their angle. A large displacement of the two beams
decreases their overlap and leads to a lower lattice depth and
hence to a reduction of the trapping frequency or even to atom
loss. In our setup, the main limitation is the imperfect quality
of the lens. For instance, spherical aberrations and surface
irregularities induce variations of the beam positions. We have
tested standard achromatic doublets and an aspherical lens
(Asphericon A50-100) and have found that the displacement
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FIG. 1. (a) Sketch of the optical design allowing one to change
the angle between the two interfering beams as proposed in [22]. The
initial beam is moved (bottom arrow) by a distance d with a motorized
translation stage (model LS-110 from PI miCos) that changes the
distance between the two beams reflected by the polarizing beam
splitters (PBS) of 25 mm size. These two beams are then focused
on the atomic cloud by an aspherical 2-inch-diameter lens of focal
length f0 = 100 mm. The top beam is reflected on a mirror glued on
a piezoelectric stack and goes twice through a quarter-wave plate. (b)
Measured lattice spacing i of the vertical lattice at the atom position
for different positions d of the translation stage. The data points
are fitted by Eq. (1) with f and d0 as free parameters. We obtain
f = 103(1) mm and d0 = 2.46(3) mm. The one-standard-deviation
errors obtained from the fit on the measured lattice spacing are smaller
than the size of the points.

is much smaller for the aspherical lens [26]. We show in
Fig. 2 the positions of the centers of both beams in the z

direction. The beams move by typically less than 20 μm in
both directions, justifying our choice of wz = 39 μm. We
measure a displacement with a similar amplitude along the
horizontal axis. We note that this motion of relatively small
amplitude of the beams could induce irregular variations of the
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FIG. 2. Variation of the vertical positions z0 with respect to their
initial positions of the two interfering beams for different values of
the lattice spacing i. Squares (circles) correspond to the bottom (top)
beam. The shaded area corresponds to ±wz, where wz is the averaged
measured vertical waist over all the lattice spacings.

trap depth and center that may induce heating when changing
the lattice spacing as discussed in Sec. IV.

III. MAKING A UNIFORM 2D BOSE GAS

We now describe the experimental system and the pro-
cedure used to realize 2D uniform gases. A sketch of the
setup is shown in Fig. 3. We use two identical microscope
objectives (numerical aperture of 0.45) above and below a
glass cell. The bottom objective is used for absorption imaging
of the cloud on a CCD camera with a typical resolution of
1 μm. The top objective allows us to image, with a similar
resolution and a magnification of 1/70, a trapping potential
programmed on a digital micromirror device (DMD). This
spatial light modulator is an array of 1024 × 784 square
mirrors of size 13.8 μm. The orientation of each of these
mirrors can be chosen between two states. In this work, all
the mirrors are set in a state reflecting light towards the atomic
cloud except the ones from a central disk-shaped area whose
image in the atomic plane has a radius of 20 μm. The DMD
reflects a blue-detuned beam at a wavelength of 532 nm with a
maximum power of about 300 mW and a waist of 45 μm at the
atom position. These parameters correspond to a maximum
potential height at the edge of the disk of kB × 4 μK. In
all the experiments described in the following, atoms are
confined in the optical potential created by the combination
of this box-potential beam and the accordion beams described
in the previous section. The cloud is imaged using standard
absorption imaging techniques either along the vertical axis or
along the horizontal axis common with the accordion beams.

To load the 2D box potential we first prepare a 3D BEC
using standard methods. We start from a 3D magneto-optical
trap of 87Rb atoms which contains 109 atoms. After cooling,
compression, and optical pumping into the F = 1 manifold
we load the atoms in the F = 1, mF = −1 state in a
magnetic quadrupole trap realized by a pair of conical coils
along the vertical axis. After compression we proceed to

FIG. 3. Sketch of the experimental setup. The vacuum cell,
simply depicted here as two horizontal glass plates, is surrounded by
a pair of identical microscope objectives with a numerical aperture of
0.45. Atoms (in blue in the center) are trapped in the combination of
blue-detuned dipole traps. Confinement along the vertical direction
is realized by the interference of two beams at an angle (on the right)
that create the accordion lattice. In-plane confinement is ensured by
imaging the surface of a DMD on the atomic plane thanks to the
top microscope objective. Here we created a disk-shaped uniform
potential. This trap is loaded from a 3D BEC.

forced evaporative cooling using a radio-frequency field ramp.
Afterward, we decompress the magnetic trap to load atoms
in an optical dipole trap consisting of two beams operating at
a wavelength around 1064 nm and crossing at a right angle
in the horizontal plane. Their vertical and horizontal waists
are, respectively, 30 and 90 μm, and the depth potential is
calculated to be around 70 μK. We then lower the trap depth
to realize forced evaporative cooling, and we get almost pure
BECs with typically 3 × 105 atoms.

We now detail the loading of the 3D BEC in the box
potential. We first ramp the box potential beam to full power
in 300 ms. We then compress the BEC vertically to obtain a
robust single-plane loading by increasing the power of one of
the red-detuned dipole trap beams back to its maximum initial
value in 125 ms while decreasing the other dipole trap power to
zero. We then ramp the power of the accordion beams to their
maximal value of 325 mW per beam in 25 ms with a maximum
spacing of the accordion lattice of 11 μm. Finally, we ramp
off the crossed dipole trap beams. The global spatial phase
of the accordion lattice is adjusted thanks to the piezoelectric
stack to get a dark fringe centered on the initial position of the
atomic cloud. The optical alignment of the accordion beams
is optimized so as to load the atoms in a fringe which is not
moving when compressing the accordion lattice. We can then
reliably load the atoms in a single plane [see Fig. 4(a)] [27].
Further evaporative cooling can be performed by lowering the
power of the box potential beam and/or of the accordion beam
to reach the 2D regime for which the thermal energy and the

013632-3



J. L. VILLE et al. PHYSICAL REVIEW A 95, 013632 (2017)

x

z

10 μm

(a)

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Optical depth

x

y

10 μm

(b)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

FIG. 4. In situ absorption images of the trapped cloud before
compression with ωz/2π = 2.1 kHz and T = 800 nK. The cloud
diameter is 40 μm. To avoid saturation of the absorption signal, we
transfer, using a microwave field, only a small fraction of the 105

atoms from the F = 1 state to the F = 2 state before imaging atoms
in F = 2. (a) Side view (transferred fraction: 100%, average of five
pictures). The weak signals above and below the main cloud are
fringes due to the propagation of light through our dense sample. We
have checked that their position is independent of the lattice spacing
of the accordion lattice. (b) Top view (transferred fraction: 2.4%,
average of 35 pictures).

interaction energy are smaller than �ωz. A typical picture of
the cloud taken along the vertical axis is presented in Fig. 4(b).

IV. COMPRESSION IN THE ACCORDION

The main feature of this setup is the possibility to compress
the gas along the z direction once the atoms are loaded in
a single node of the lattice. In this section we describe our
characterization of the compression process starting from
atoms loaded in the largest-spacing configuration. First, we
measure the oscillation frequency of the cloud in the vertical
direction for different lattice spacings at maximum power.
This frequency is determined as follows. We excite the
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FIG. 5. Measured oscillation frequency along the vertical direc-
tion for different lattice spacings. The solid line is the calculated
frequency with the independently measured parameters of the beams,
and the shaded area corresponds to the uncertainty on the calibration
of the beam parameters. The error bars represent the standard
deviation given by the fit algorithm on the measured frequency and
are close to the size of the data points and not visible for the low
frequencies.

center-of-mass motion of the cloud along the z direction by
suddenly changing the power in the accordion beams, we
let the cloud oscillate, and, finally, we measure the vertical
position of the atomic cloud after a short free expansion. The
trapping frequency is given by a sinusoidal fit of the data. The
results are shown in Fig. 5. By compressing the lattice spacing
from 11 to 2 μm we observe an increase of the oscillation
frequency from 2.15(5) to 11.2(3) kHz. We also plot in Fig. 5
the expected frequency calculated with the measured power,
waists, and lattice spacing. Our measurements are consistently
below this calculation. We attribute this effect to the inaccurate
calibration of the beam waists and powers and the imperfect
overlap of the beams.

We now discuss the effect of compression on the cloud’s
temperature T , which is measured with a method detailed in
Appendix A. In order to avoid evaporation of atoms during this
compression, we first proceed to a cooling stage. It consists of
lowering the power of the in-plane confining laser to evaporate
the cloud and then setting it back to its initial value. After this
evaporation cooling, we typically obtain N = 3 × 104 atoms
in the large-spacing lattice at a temperature of T0 = 180 nK.
With these parameters, the total 2D phase-space density,
defined as D = Nλ2

T /A, with A being the disk area and λT

being the thermal de Broglie wavelength, is D = 4.8, which
corresponds to a noncondensed gas [5]. We then compress
the cloud to various final vertical confinements at a constant
velocity of the translation stage (90 mm/s) within 0.13 s while
keeping the overall sequence duration constant. We show in
Fig. 6(a) the measured final temperature (blue circles) for
various final trapping frequencies. We observe a significant
increase in the cloud’s temperature by a factor of about 2 for
the largest final frequency. The atom number is unchanged
during this compression, and thus it rules out any evaporation
process.
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FIG. 6. Compression in the optical accordion. (a) Temperature
measured after compression to a final frequency ωz (circles) and
corrected by the fit of the measured heating displayed in (b) (squares).
The solid line is a calculation for an adiabatic compression of an ideal
Bose gas with our trap geometry (see Appendix B). (b) Temperature
Tf measured after a compression to the intermediate frequency ωi

and decompression to the initial frequency. The solid line is a linear
fit to the data. The measured heating is divided by 2 before subtraction
to the data in (a), considering that the heating for a full cycle is two
times larger than the heating for the single compression.

The measured increase of temperature during the compres-
sion process could have two origins. (i) It could simply result
from the change in density of states in a purely adiabatic
process [solid line in Fig. 6(a)]. (ii) There may be an additional
heating process due to imperfections in the trap compression
as discussed in Sec. II. In order to test the adiabaticity of the
process we realize a compression up to a given intermediate
frequency ωi followed by a decompression to the initial
frequency. The measured final temperatures Tf are reported in
Fig. 6(b). For a purely adiabatic compression-decompression
cycle we expect no increase in temperature. We observe a
deviation from adiabaticity which can reach 90 nK for a
full compression-decompression sequence or, assuming the
same amount of additional heating for compression and
decompression, 45 nK for the compression stage. This heating
remains small compared to the 150 nK increase in temperature
expected for a purely adiabatic process as described in the next
paragraph. This heating varies approximately linearly with the
target frequency ωi . We have measured a similar heating for
lower velocities of the translation stage.

To further explore the origin of the temperature increase
observed here, we compare our results to the prediction
for adiabatic compression of an ideal Bose gas confined in
our trap geometry. The result of this calculation, detailed in
Appendix B and applied to the measured initial temperature
and frequency, is shown in Fig. 6(a) as a solid line. We also
show the measured temperatures corrected by half the heating
measured for the compression-decompression cycle [Fig. 6(b)]
as squares. They are in good agreement with the calculated
temperature. We conclude that the deviation from adiabaticity
in our experimental setup leads to an additional heating
that remains small compared to the increase of temperature
expected in the adiabatic case.

V. OUTLOOK: AN ADJUSTABLE INTERACTION
STRENGTH

We have realized a 2D uniform Bose gas with a tunable
confinement. As discussed in the Introduction, in such gases
the role of interactions is described, up to logarithmic cor-
rections [11], by the dimensionless parameter g̃ = √

8πa/�z,
where �z = √

�/(mωz) is the harmonic oscillator ground-state
length for a particle of mass m in the harmonic potential
of frequency ωz. Tuning the confinement thus allows one to
control the strength of interaction in such systems without
tuning the scattering length via a Feshbach resonance [13] or
adding an in-plane lattice potential to control the effective
mass of the atoms [12]. In our setup, by varying ωz/2π

between 1 and 11 kHz by tuning the lattice spacing or the
laser power, we can adjust g̃ between 0.08 and 0.26. Obtaining
such comparatively large values of g̃ is of great interest for
realizing strongly correlated states for which the gap between
the ground state and the excited states usually scales linearly
with g̃ [28]. The demonstration of such an optical accordion
is thus a significant step in this direction.

Our system is compatible with the realization of flat-bottom
potentials with a shape that can be changed, potentially in a
dynamic way, thanks to the use of DMDs. Our system is thus
an ideal platform to study in- and out-of-equilibrium many-
body physics in two-dimensional systems. Another asset of
this geometry is the possibility to realize evaporative cooling
with this accordion lattice. In the usual evaporation schemes
a particle is evaporated when it has a high enough energy
and when it reaches a position in the trap where it could be
lost (like the edge of the box potential in the work described
here). In this situation temperature gradients might be created
in the sample. Lowering the depth of the accordion lattice by
decreasing its intensity or by adding a magnetic field gradient
allows for an evaporation independent of the atom position and
could lead to more efficient evaporative cooling. This feature
is particularly interesting when studying quench cooling of 2D
quantum gases [5].
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APPENDIX A: TEMPERATURE MEASUREMENT

The temperatures reported in the main text were measured
using the following procedure. Immediately after loading the
atoms in the optical box potential, we send a short pulse of
a microwave field that transfers a small fraction of about
10% of the atoms from the |1〉 = |F = 1,m = −1〉 state to
the |2〉 = |F = 2,m = −2〉 state. We then proceed to forced
evaporation by lowering the power of the box potential beam
and realize the experimental sequences discussed in the main
text. We assume that the atoms in state |2〉 thermalize with
the main cloud of atoms in |1〉. By choosing the fraction
of atoms in state |2〉 to be small enough we always prevent
the formation of a Bose-Einstein condensate in this state. To
extract the temperature of the sample we release the atoms
from the trap and image the density distribution of atoms in
state |2〉 integrated along the vertical direction and after a
time-of-flight of 8.7 ms. For each point we average typically
10 images with the same experimental conditions.

We compare the radially averaged profile of these dis-
tributions to a numerically computed profile considering an
ideal gas with an initial velocity distribution given by the
Bose distribution and an initial uniform position in the box
potential and assuming an expansion without any interparticle
interaction. The theoretical profile has two free parameters,
the temperature T and the fugacity z, which we optimize to
obtain the best fit to the experimental data points. With our
signal-to-noise ratio, there is a continuous set of (z,T ) that
fits almost equally well a given experimental profile, making
a robust estimate of the temperature difficult. We circumvent
this issue by using the independently measured atom number
as an additional input parameter to compute z(T ), leaving T

as the only free parameter.
From the distribution of temperature measurements for

a fixed experimental sequence, we estimate that the one-
standard-deviation statistical error bars on the temperature
measurement are around ±3% of the measured temperature.
The main source of uncertainty is given by the uncertainty on
the atom number that we use to estimate the temperature. In
our range of parameters, the estimated uncertainty of 25% in
the atom number calibration leads to an uncertainty of about
15% in the temperature. In the main text, we display error bars
corresponding to only the ±3% statistical uncertainty.

APPENDIX B: ADIABATIC COMPRESSION

We consider a gas of noncondensed bosons of mass m

confined in the xy plane in a box potential of surface A

and along the vertical direction in a harmonic potential of
frequency ωz. We set ρ0 = mA/(2π�

2) for the in-plane density
of states and zj = z exp(−jβ�ωz), where z is the gas fugacity,
β = 1/kBT , and j is the integer labeling the j th state of the
vertical harmonic oscillator. The average occupation number
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FIG. 7. Adiabatic compression. We show, for an initial tempera-
ture of 180 nK and an initial frequency of 2.1 kHz, the temperature
increase during compression calculated numerically for different
models. The thick solid line corresponds to the bosonic case. The
green solid line is given by an analytical result obtained in the classical
case with a weak confinement along z and scales as ω1/2

z . The dashed
line and the dot-dashed line are associated with the fermionic and the
Maxwell-Boltzmann statistics cases, respectively.

n̄j,k of a given energy state with an in-plane wave number k is

n̄j,k =
{
z−1 exp

[
β

(
j�ωz + �

2k2

2m

)
− 1

]}−1

. (B1)

Introducing the polylogarithm function gα(z) = ∑∞
k=1 zk/kα ,

we compute Nj , Jj , and SJ , which are, respectively, the atom
number, the grand-canonical potential, and the entropy of
state j .

Nj = ρ0kBT g1(zj ),

Jj = −ρ0(kBT )2g2(zj ),

Sj = −∂Jj

∂T

∣∣∣∣
μ,ωz

= ρ0kBT [2g2(zj ) − g1(zj ) ln(zj )]. (B2)

We compute the temperature evolution for an adiabatic com-
pression by evaluating, for each value of the final compression
frequency ωz, the temperature and the fugacity, keeping
S = ∑

j Sj and N = ∑
j Nj constant. The result of this

calculation is shown in the main text in Fig. 6 and is reproduced
in Fig. 7.

The previous calculation can be straightforwardly extended
to fermionic statistics and to the classical Maxwell-Boltzmann
statistics by replacing gα(z) by fα(z) = −gα(−z) and by
z, respectively. The results for these cases are also repre-
sented in Fig. 7 as a dotted line and a dot-dashed line
respectively, and show that, in all cases, the increase in
temperature during adiabatic compression is larger than for
the bosonic case. Indeed, Bose statistics leads to a larger
population of the low-lying states of the vertical harmonic
oscillator than the classical distribution and thus to a smaller
increase of temperature when increasing the confinement
frequency.
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Finally, we also plot in Fig. 7 an analytical result obtained
for the classical Maxwell-Boltzmann statistics but assuming a
weak confinement along the vertical direction (β�ωz � 1). In
this case the 3D density of states is given by ρ(ε) = ρ0/(�ωz) ε,
and the entropy reads

S/(NkB) = 3 + ln[ρ0(kBT )2/(N�ωz)]. (B3)

An adiabatic compression thus leads to an increase in tem-
perature as T ∝ √

ωz, which corresponds to the green solid
line shown in Fig. 7 and which is very close to the numerical
calculation for the Maxwell-Boltzmann statistics. We note that
in the experiments presented here the fugacity is close to 1 and
the Maxwell-Boltzmann approximation is clearly not valid.
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