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Quantum crystallography of Rydberg-dressed Bose gases on a square lattice

Che-hsiu Hsueh,1,2 Wen-Chin Wu,2,* and Makoto Tsubota1,3,†
1Department of Physics, Osaka City University, Sugimoto 3-3-138, Sumiyoshi-ku, Osaka 558-8585, Japan

2Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan
3The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka, Japan

(Received 18 July 2016; published 27 January 2017)

We numerically investigate the quantum crystallographic phases of a Rydberg-dressed Bose gas loaded on
a square lattice by using the mean-field Gross-Pitaevskii model. For a relatively weak lattice confinement, the
phases of ground state undergo amorphism, polycrystal, and polymorphism following the increase of the blockade
radius, and if the confinement is stronger, a single crystal with a specific filling factor will be formed. In order
to distinctively characterize these phases, the structure function is also studied. In such an anisotropic system,
we show that the superfluid-fraction tensor should be a measurable quantity, and an anisotropy parameter can
be defined. In addition, for such crystallographic phases, the interaction potential can manifest where the grain
boundaries appear.

DOI: 10.1103/PhysRevA.95.013631

The existence of a matter state that simultaneously pos-
sesses solid and superfluid natures, so-called supersolid,
attracts both experimentalists and theorists. The intuitional
candidate systems for finding a supersolid are solid helium
and Bose-Einstein condensates (BEC). In the former, one
anticipates finding superfluidity in a solid and, in contrast,
finding solidity in the latter system, which is regarded as
a superfluid. An interaction with a soft core is regarded as
the crucial factor to the formation of a supersolid [1–22],
or otherwise a three-body interaction in a dipolar BEC
[23–28]. Such a soft-core interaction can be engineered in
clouds of cold atoms weakly coupling the Rydberg state
to the ground state [6,7,29,30]. As a supersolid may be
observable in experiments with Rydberg-dressed alkali atoms,
other quantum crystallographic states, such as superglass, are
expected to be established. The superglass corresponds to a
matter state that simultaneously possesses superfluidity and a
frozen amorphous structure [31–39].

A decisive evidence to confirm the superfluid nature of
a given quantum system is the measurement or calculation
of the superfluid fraction fs . In a perfect superfluid system
fs → 1, whereas fs reduces from 1 when spatial modulation or
dynamical fluctuation occurs, which suppresses the long-range
phase coherence of superfluids. In a lattice system, it has been
shown that in a mean-field manner the superfluid fraction is
equal to the ratio of bare to effective band mass of the system,
fs = m/m∗ [40]. In higher dimensional systems, the effective
mass or equivalently the superfluid fraction should be a tensor,
leading to the following question: What is the measurable
property that can emerge from the anisotropic superfluidity?
Here we propose that the diagonal element of the first effective
mass tensor (or the reciprocal effective mass tensor) should be
a possible measurable quantity. As shown by an experiment led
by Steinberg [41], to measure the effective mass of a periodic
BEC system, one can study the response of the condensate to
an abruptly applied force.
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One method to form crystalline structures is to consider
the anisotropy of interaction [34,35,37]; another method is
to consider the effect from external potentials, e.g., the
“disorder” potential. For applications in strongly disordered
environments, an insulating phase of interacting bosons known
as Bose glass is obtained [42–57]. In applications in lattice
potentials, owing to the competition between the length scales
of supersolid itself and the external potential or the competition
between the interaction and the potential energies, there is a
transition from an incommensurate to a commensurate density
in one-dimensional cases [58,59]. Although any continuous-
space supersolid is compressible [60], the extent of the
compression is small. Owing to the lack of adjustment of the
distance between supersolid droplets, in 1D cases, modulating
the density may be the only possible way to reduce the raised
potential energy. Comparatively, for a higher dimensional
system, as a result of a larger number of degrees of freedom
in real space, there may be alternative approaches to reduce
the raised potential energy (e.g., deforming the original crystal
geometry) and other consequent structures may exist.

It is also worth noting that in a solid state there exists the
phenomenon of superfluidity revival owing to the incommen-
surate lattice potential effect [58] or the defect-induced effect
[61]. In higher dimensional systems, due to more “defects”
arisen from the deformation of the original crystal geometry,
superfluidity fraction could revive from zero to 20%, even
for an original solid state far away from the liquid-to-solid
transition point [61].

In this paper we use the mean-field Gross-Pitaevskii
(GP) equation to demonstrate a variety of crystallographic
phases in a Rydberg-dressed Bose gas loaded on a square
lattice. By varying the lattice depth and blockade radius,
we investigate the crystallographic phase diagram in the
absence of any externally imposed frustration, including the
lattice geometry and the interaction. In Ref. [5], Sepúlveda
et al. showed that the superfluid fraction depends on the
length of the complex network of grain boundaries, and in
Ref. [62], Lechner et al. proposed a method that allows the
tuning of the interaction between vacancies and interstitials
by means of external periodic fields. Compared with these
two studies, the frustration here is induced only by the
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constraint of the lattice potential on a quantum elastomer,
and the elasticity includes the density modulability and
deformable crystal geometry. Compared with the real-space
density distribution, the interaction potential can manifest
where the lower density is such that we can study the formation
of vacancies and interstitials. Most notably, in the present
two-dimensional system, we study the anisotropy of these
crystallographic phases by calculating the superfluid-fraction
tensor [63,64].

For a Rydberg-dressed Bose gas on a triangular lattice [38],
the superglass phase is obtained in the absence of externally
imposed frustration, e.g., in the lattice geometry or interaction.
Here we study the probable crystallographic structures of a
Rydberg-dressed Bose gas on a square lattice by the mean-field
method. In the present system, we not only consider the
superglass phase, but also obtain other quantum crystallo-
graphic phases. Differing from lattice models in which there
is a built-in periodic environment, our model is based on
the original GP equation with an external periodic potential
and an integral kernel that can be viewed as a two-body
potential. In the literature, both the simulations of ground states
[15] and elementary excitations [14,18] by the GP equation
and Bogoliubov–de Gennes equations are qualitatively and
quantitatively consistent with those that use the path integral
quantum Monte Carlo (PIQMC) method, which is a first-
principle method. Thus, the superfluid density can be studied
in the framework of cold atoms where a mean-field theory can
be applied. As a qualitative tool, the mean-field GP method
has the advantages of being both a continuous model and easy
to calculate.

The two-dimensional GP Hamiltonian for a Rydberg-
dressed Bose gas confined into a square lattice is

Ĥ = −�
2∇2

⊥
2m

+ Vlatt(r) + �(r,t), (1)

where Vlatt(r) = V0/2[sin2(πx/a) + sin2(πy/a)] is the exter-
nal square lattice potential with a lattice constant a, and � is the
interaction potential defined as �(r,t) = ∫

U (r̄)|�(r′,t)|2dr′,
where U (r̄) is the soft-core-interaction kernel with r̄ ≡ r − r′
the relative position. Here the order parameter �, which
satisfies the normalized condition

∫
�

|�|2dr = 1 (� is a
unit cell of the square lattice), is the wave function of a
Bose-Einstein condensate. In the following, a and �

2/ma2

are used as units of length and energy, respectively; conse-
quently, the interaction kernel has dimensionless form U (r) =
α/(r6

c + r6), with a tunable strength α and blockade radius
rc. In general, a contact term should appear in the interaction
kernel; however, here we simply ignore the contact term valid
for the case of strong soft-core interaction. This scheme can
be performed by using Feshbach resonances, for example.
Throughout this paper, we fixed the interaction strength
at α = 75.

Figure 1 shows the phase diagram as a function of the block-
ade radius rc/r∗, and the lattice depth V0. Here r∗ � 0.62a is
defined such that, when rc = r∗, the spontaneous supersolid
has a lattice constant equaling a. When the external potential is
relatively weak, the system undergoes the phases amorphism
(AM), polycrystal (PC), and polymorphism (PM), following
the increase of blockade radius. When V0 is large enough,

FIG. 1. Phase diagram of a two-dimensional soft-core
ultracold Bose gas on a square lattice Vlatt(r) =
V0/2[sin2(πx/a) + sin2(πy/a)] versus rc/r∗ and V0 demarcated in
six distinct crystallographic phases. Following the increase of rc/r∗,
the phases are amorphism, polycrystal, and polymorphism for a
weak confinement, and single crystals with a specific filling factor
ν for a stronger confinement. The interaction strength is fixed at
α = 75 and V0 is in units of �

2/ma2.

the system forms a commensurate structure. To characterize
these commensurate structures [here named single crystals
(SCs)], a filling factor ν is defined as the ratio of the number
of occupied and unoccupied sites. As the blockade radius
increases, the system undergoes the phases SCν=1, SCν=1/2,
and SCν=1/4. We find that for rc < r∗, an amorphous structure
known as superglass (here named amorphism) occurs in an
extended region of the phase diagram, and when rc > r∗, stable
crystalline structures start to form regionally and compose a
PC (with single kind of crystallite) or PM (with more than one
kind of crystallite).

Figure 2 provides explicit examples of the density n(r)
in real space [Figs. 2(a)–2(f)] with the background of lattice
potential, and ñ(k) in momentum space [Figs. 2(g)–2(l)]. ñ(k)
is the Fourier transform of n(r). Figures 2(m)–2(r) show the
interaction potential �(r) associated with various phases in
Fig. 1. In all of the figures, the bright (yellow) color indicates
higher values, and the darker (blue) color corresponds to
lower values. In Figs. 2(a)–2(f), the translucent spots indicate
the density droplets. As the long-term time of flight (TOF)
experiment can study the velocity distribution of the system,
it should be able to distinguish different phases by observing
different diffraction peaks in connection with Figs. 2(g)–2(l).

In Fig. 2, from the left column to the right column
correspond, respectively, to AM, PC, SCν=1, SCν=1/2, PM, and
SCν=1/4 states. From Fig. 2(a) we find that almost all density
droplets avoid the extremes of the potential by distorting its
original triangular structure, which results in their random
distribution. Figure 2(g) exhibits the amorphous signature
of the density in the momentum space, which distributes
in concentric circles. For an AM, Fig. 2(m) shows that the
distribution of vacancies and interstitials is also amorphous.
Figure 2(b) shows the ground-state formation composed of
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FIG. 2. Representatives of ground-state density distributions vs space (a)–(f) and vs wave vector (g)–(l) for various quantum crystallization
states. From left to right columns, the figures correspond to amorphism (rc/r∗ = 3/4, V0 = 5/12), polycrystal (rc/r∗ = √

2, V0 = 5/12), filling
factor ν = 1 single crystal (rc/r∗ = √

5/2, V0 = 5/6), ν = 1/2 single crystal (rc/r∗ = 3/2, V0 = 3/4), polymorphism (rc/r∗ = 2, V0 = 5/12),
and ν = 1/4 single crystal (rc/r∗ = 2, V0 = 5/3), respectively. (m)–(r) The interaction potential � for different quantum crystallization states.

many crystallites of varying sizes. The small-dot signals in
Fig. 2(h) indicate that there is a single kind of crystallite
whose unit cell is square, and the cloudy signals aries from
the mismatch between the crystallites. Figure 2(n) clearly
depicts vacancies and interstitials clustering together and
forming grain boundaries. Such a phenomenon is similar to
the results in Refs. [5,62]. For a PM, Fig. 2(e) shows that,
in the ground-state formation composed of three kinds of
crystallite, one is a square and the other two are quadrature
rhombuses. The small-dot signals in Fig. 2(k) indicate the
square crystallite, and the cloudy signals are caused by the
two quadrature rhombuses. Similar to an AM, Fig. 2(q) shows
that the vacancies and interstitials do not cluster together in a
PM. It is necessary to classify the quantum crystallographic
phase of both the real- and momentum-space distributions.
Furthermore, the interaction potential can help us to study the
formation of vacancies and interstitials.

The ij th element of the 2 × 2 reciprocal effective mass
tensor f̂s(θ ), which associates with the superfluid-fraction
tensor if the system possesses sufficient superfluidity, is
defined as

fs,ij (θ ) = lim
q ′

i ,q
′
j →0

m∂2E(1)(q)

�2∂q ′
i∂q ′

j

, (2)

where E(1)(q) denotes the lowest Bloch band, and θ is the angle
between the wave vectors q′ = (q ′

1,q
′
2)T and q = (q1,q2)T . The

Bloch band structures of the system can be obtained by solving
the Bloch waves, which are the eigenstates of the nonlinear
GP Hamiltonian (1). The overall time-dependent wave func-
tions for the lth band have the following form: �(l)(r,t) =
eiμ

(l)
q t/�eiq·rψ (l)

q (r), where, for a given wave vector q, μ
(l)
q

is the chemical potential. The corresponding Bloch energy

is E(l)(q) = ∫
E (l)

(q)(r)dr with the energy density satisfying

E (l)
(q)(r) =

∣∣�(∇⊥ + iq)ψ (l)
q (r)

∣∣2

2m

+
[
Vlatt(r) + �

(l)
q (r)

2

]∣∣ψ (l)
q (r)

∣∣2
, (3)

and the interaction potential �
(l)
q (r) = ∫

U (r̄)|ψ (l)
q (r′)|2dr′.

Assuming that the two wave vectors satisfy the relation
q′ = R̂(θ )q with R̂(θ ) the two-dimensional rotation ma-
trix, the rotation transformation of the superfluid-fraction
tensor can then be expressed as f̂s(θ ) = R̂(θ )f̂s(0)R̂(θ )†.
The tensor f̂s(θ ) is diagonalizable, and the eigenvalues
are

λ± =
(fs,11 + fs,22) ±

√
(fs,11 − fs,22)2 + 4f 2

s,12

2
. (4)

As mentioned earlier, an experiment [41] was proposed
and performed to study the band structure of a BEC system.
An applied force, due to the abrupt shift of the center of the
magnetic trap, can access the band structure or the effective
mass of the system. Let q denote a wave vector in the lowest
Bloch band E(1)(q) and q′ denote the direction of the applied
force which makes an angle θ to q. We further choose q′ to be
parallel to the x axis and by observing the response along the
same x direction. Consequently, the experiment will access
directly the first diagonal element of the reciprocal effective
mass tensor, i.e., fs,11(θ ). It is found that

fs,11(θ ) = fs,11(0) cos2 (θ ) + fs,22(0) sin2 (θ )

+ fs,12(0) sin (2θ ), (5)

013631-3



CHE-HSIU HSUEH, WEN-CHIN WU, AND MAKOTO TSUBOTA PHYSICAL REVIEW A 95, 013631 (2017)

[fs,11(θ)/fs,11(0)] cos(θ)
-1.5 -1 -0.5 0 0.5 1 1.5

[f
s , 1

1(
θ
) /

f s
,1

1(
0)

]s
in

(θ
)

-1.5

-1

-0.5

0

0.5

1

1.5
PM
PC
AM

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5
SC−ν = 1/4
SC−ν = 1/2
SC−ν = 1

FIG. 3. The polar plot of fs,11(θ )/fs,11(0) for the six cases
presented in Fig. 2. Left: PM, PC, and AM phases. Right: SCν=1,
SCν=1/2, and SCν=1/4 phases.

which can be numerically calculated. When q 
 1,
E(1)(q) can be expanded as E(1)(q) − E(1)(0) ≈∑

i,j fs,ij (0)(�2qiqj /2m) = fs,11(θ )(�2q ′2
1/2m) by defining

q1 = q ′
1 cos θ and q2 = q ′

1 sin θ . As a result,

fs,11(θ ) ≈ 2m[E(1)(q) − E(1)(0)]

�2q2
, (6)

where θ = arctan(q2/q1).
Figure 3 shows the polar plots of fs,11 associated with

various phases presented in Fig. 2. A similar technique is
presented in Ref. [65]. According to formulas (5) and (4), the
fs,11 loop should be biconcave unless fs,22 ≈ fs,11 and fs,12

is small, i.e., λ+ ≈ λ−. In the limit of λ+ = λ−, superfluid-
fraction tensor is reduced to a scalar, and the corresponding
system is completely isotropic. For an amorphous structure
(e.g., superglass), the fs,11 loop should be approximately
isotropic owing to its randomly distributed density droplets.
The concavity–convexity of the fs,11 loop identifies the
isotropy of the system; more precisely, we can define an
anisotropy parameter η ≡ (λ+ − λ−)/(λ+ + λ−). The larger
η is, the more anisotropic the system is. The values of η

for the six cases presented in Fig. 2 are calculated to be
0.16,0.39,0.63,0.4,0.92, and 0.64, respectively, for the AM,
PC, SCν=1, SCν=1/2, PM, and SCν=1/4 phases. As expected,
AM phase has the smallest η. The orientation of the fs,11

loop indicates the direction of a principal axis, with the other
axis being along the vertical direction. For the PC, SCν=1,
and SCν=1/2 phases, the principal axes along 45◦ and 135◦
are expectable as they are mainly composed of single square
cells. In contrast, the orientations of principal axes are not
predictable for the AM and PM phases. The orientation of a
principal axis [arctan(1/2) + arctan(3/2)]/2 is for the SCν=1/4

phase.
The values of fs,11(0) for the six cases presented in Fig. 2

are calculated to be 0.93, 0.15, 0.015, 4.54 × 10−5, 0.01, and
7.85 × 10−7, respectively, for the AM, PC, SCν=1, SCν=1/2,
PM, and SCν=1/4 phases. By comparing the cases with the
same or approximate rc, for instance, PC with SCν=1/2 and PM
with SCν=1/4, it is easy to identify how the different strength of
potential affects the resulting structures, and the phenomenon
how the “defects” revive the superfluidity in the AM, PC, and
PM phases.

FIG. 4. Schematic plot of left: rhombic lattice and right: square
lattice.

For the SCν=1/4 state, there are two possible configurations:
rhombic lattice and square lattice (Fig. 4). Which one is the
most energetically favorable? To answer this question, we
count the bond-leg number of each atom droplet. There are
two bonds with length 2, four bonds with length

√
5, and two

bonds with length 4 for a droplet of rhombic lattice; in addition,
there are four bonds with length 2, and four bonds with length
2
√

2 for a droplet of square lattice. As the interaction energy
is inversely proportional to the power γ (here γ = 6) of the
bond length, we are able to easily estimate the interaction

energy. The interaction energy 2/26 + 4/
√

5
6 + 4/

√
13

6 =
0.065 of the rhombic lattice is smaller than 4/26 + 4/

√
2

6 =
0.070 of the square lattice. By this simplified arithmetic,
the rhombic lattice is consequently favorable for γ = 6. In
fact, the rhombic lattice is more energetically favorable only
when γ > 3, i.e., if the long-rang behavior of interaction
is in dipole–dipole form, the square lattice is energetically
favorable.

In this work, numerical simulations using a continuous
mean-field model show that quantum crystallographic struc-
tures can be investigated in a two-dimensional ultracold atom
system loaded on an external periodic potential in the absence
of defects. Such a system spontaneously possesses supersolid-
ity originating from a soft-core interaction, and the formation
of various structures arises from the mismatch between the
supersolid and the external periodic potential. To classify these
quantum crystallographic structures, not only the real space
density but also the momentum space density and the interac-
tion potential are presented. Most notably, we report a probably
measurable quantity on the superfluid characteristic of an
anisotropic system. Here, at least qualitatively, we have estab-
lished a simple but effective model to study quantum crystal-
lography that can be easily generalized to higher dimensional
or multicomponent systems, as well as consider additional
effects such as synthetic gauge fields or spin-orbit-coupling
effects.
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