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We propose to simulate a Dirac field near an event horizon using ultracold atoms in an optical lattice. Such a
quantum simulator allows for the observation of the celebrated Unruh effect. Our proposal involves three stages:
(1) preparation of the ground state of a massless two-dimensional Dirac field in Minkowski space-time; (2) quench
of the optical lattice setup to simulate how an accelerated observer would view that state; (3) measurement of the
local quantum fluctuation spectra by one-particle excitation spectroscopy in order to simulate a De Witt detector.
According to Unruh’s prediction, fluctuations measured in such a way must be thermal. Moreover, following
Takagi’s inversion theorem, they will obey the Bose-Einstein distribution, which will smoothly transform into
the Fermi-Dirac as one of the dimensions of the lattice is reduced.

DOI: 10.1103/PhysRevA.95.013627

I. INTRODUCTION

The path towards quantum gravity opened a territory
full of surprises: quantum field theory in curved space-time
[1]. Bekenstein’s phenomenological thermodynamics of black
holes [2] received a strong support from Hawking, when he
found that a black hole must emit thermal radiation [3]. The
discovery hinted that thermal effects might appear without any
underlying stochasticity. Fulling, Davies, and Unruh proposed
that a similar effect existed in an essentially flat space-time,
i.e., Rindler space-time: an accelerated observer through an
empty Minkowski space-time will perceive a thermal bath
of particles, at a temperature proportional to its acceleration
[4–6]. Both phenomena are intimately related: in both cases,
an event horizon, which prevents communication between
different regions of space-time, is developed. Furthermore,
in order to observe Hawking’s radiation, one must stay at
rest near a black hole, and therefore feel an acceleration. A
further surprise was revealed when Takagi studied the relation
between dimensionality and the Unruh thermal spectrum [7].
In 3+1 dimensions [(3+1)D], an accelerated detector of
bosonic particles in Minkowski space-time will record a Bose-
Einstein distribution, and a detector of fermionic particles will
find a Fermi-Dirac distribution. But, this is only true if the
dimension of space is odd. Otherwise, an apparent statistics
inversion phenomenon takes place: bosons are detected with
a Fermi-Dirac distribution, while fermions are detected with
a Bose-Einstein distribution. The Unruh effect is not just an
exotic curiosity: it bears a deep relation to entanglement [8]
and black-hole thermodynamics, and it plays a central role
in Jacobson’s derivation of Einstein equations as equations of
state for space-times in thermal equilibrium [9]. These results
point to a fundamental nature of the Unruh effect as a quantum
counterpart of the principle of equivalence, which it corrects
[10]. Moreover, the Unruh effect can be regarded as a particular
case of parametric amplification of the vacuum fluctuations
[11], which puts it in the same class of phenomena as the
dynamical Casimir effect [12–14]. The latter can be seen as
a flat space-time analog of the Hawking effect and connected
with the Unruh thermal bath close to the black-hole horizon.
The intriguing relation between the Unruh and dynamical

Casimir effects has been also explored in the context of brane
physics [15,16].

The fundamental relevance of the Unruh effect provides a
strong motivation to measure it and related phenomena in the
laboratory [17] (see also [18] for some more recent proposals).
Given the difficulty of the task, a different approach has been
to develop analog gravity systems where Hawking radiation
might show up [19,20]. One of the first ideas [21] was to build a
sonic analog of a black hole in a moving medium, whose speed
of sound replaces the speed of light. If the relative velocity
between parts of the propagating medium is larger than the
speed of sound, an effective horizon appears. The medium can
be either water [22,23] or a Bose-Einstein condensate (BEC)
[24–28], which can be employed also to probe the dynamical
Casimir effect [29–32]. A specific proposal for measuring the
Unruh effect in this setting, using an accelerated impurity as
De Witt detector, was proposed in [33] (impurities can be
used also as detectors of Casimir forces and quantum friction
[34]). Other very interesting approaches are to use a nonlinear
optical medium in which a refractive index perturbation moves
at high speed [35–39], or to exploit the geometric properties
of graphene sheets [40–42]. The use of engineered lattices of
superconducting qubits [11] has been already used to probe the
dynamical Casimir effect [43] and proposed for Unruh physics.

In this work, we take a different strategy and propose
an alternative framework for simulating the Unruh effect,
which is based on the quantum simulation of Dirac fermions
using ultracold fermionic atoms in a two-dimensional (2D)
optical lattice [44,45]. The possibility of simulating the Dirac
Hamiltonian in certain space-time metrics was recently put
forward by some of us, where the information about the
metric is encoded in the tunneling terms shaped by the
lasers [46]. Building upon that framework, we propose to
start the experiment by setting up an optical lattice whose
dynamics simulates the massless Dirac Hamiltonian in (2+1)D
in Minkowski space-time, where the Fermi velocity, analog to
the speed of sound in a BEC, plays the role of the speed of light.
By achieving the ground state, we can assume that our quantum
state is the Dirac vacuum in Minkowski space-time. Now, we
can quench the system by suddenly changing the tunneling
terms in the lattice to the values corresponding to the Dirac
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Hamiltonian in a Rindler metric. In other terms, the same Dirac
physics, Minkowski vacuum of Dirac fermions, but viewed by
an accelerated observer. Canonical observation of the Unruh
effect should be performed now by a local De Witt detector [1],
a device whose purpose is to couple minimally to the quantum
fluctuations of the field and interchange energy [7]. The full
spectrum of local fluctuations obtained is predicted to follow
both Unruh and Takagi’s predictions.

What is special about our approach? Our setup is a quantum
simulator, i.e., a quantum computer of special purpose [45] that
allows for a systematic study of gravitating quantum matter.
For instance, within our quantum simulator it is possible
to change the Fermi velocity or the shape of the metric.
More importantly, it provides a framework for systematically
studying quantum many-body systems [47]. Beyond the free
fields studied in this work, let us emphasize that the setup
we propose for simulating the Unruh effect can be used also
for studying interacting fermions in curved space-time, and
that it allows for the subtle manipulations needed to simulate
experiments in relativistic quantum information [48]. Another
parameter which can be easily tuned is the dimensionality
of the artificial space-time, thus allowing us to probe the
aforementioned inversion theorem of Takagi [7].

The investigation of the Unruh effect bears a strong relation
to the study of boundary effects. Indeed, the horizon can be
considered as a boundary for fields which are accessible to the
accelerated observer. Ensuring that the boundary conditions do
not spoil the unitarity of the theory imposes certain conditions
on the Hamiltonian [49] which, as we will show, are fulfilled
naturally for the Dirac Hamiltonian in Rindler space-time,
and provides a procedure to perform the right discretization.
Surprisingly, our Hamiltonian has the same form as one of the
candidates to solve the Riemann conjecture via the Hilbert-
Polya approach, H = xp [50–53]. In a different line, our model
bears relation to the hyperbolically deformed Hamiltonians
[54,55] and to the techniques of off-diagonal confinement in
optical lattices [56].

As our work is meant to be directed to a wide audience,
we try as much as possible to keep it self-contained. In Sec. II
we provide a pedagogical overview of the relativistic physics
for an accelerated observer, both classical and quantum.
Section III introduces the Dirac Hamiltonian in Rindler space-
time and discusses its discretization. Readers mainly interested
in the proposed quantum simulation of the Unruh effect could
go directly to Sec. IV, where we detail our quench strategy,
provide numerical simulations of the expected results, and
suggest a possible experimental implementation. We finish in
Sec. V with conclusions and proposals for further work.

II. REVIEW OF RINDLER SPACE-TIME AND QFT IN
CURVED SPACE-TIME

This section is a review of the physics of an accelerated
observer. We will discuss in a pedagogical fashion the basics
of the Rindler metric, the thermalization theorem, and the
Unruh effect.

A. Rindler space-time

Let us briefly review Rindler physics, i.e., Minkowski
space-time viewed by an accelerated observer [57–59]. Let us

ξ =
√

x2 − t2

η =atanh(t/x)

t 

x

ξ =
0,

η =
∞

ξ =
0,η =−∞

FIG. 1. Rindler coordinates on (1+1)D Minkowski space-time,
η (Rindler time) and ξ (Rindler space). For convenience, the speed
of light c is taken to be 1 and both (x,t) and (ξ,η) are measured in
arbitrary units of length. The Rindler wedge, delimited by dashed
lines, is the domain of validity of the coordinate patch. Constant η

lines (green) are spacelike, and constant ξ lines (red) are timelike.
For simplicity, we plot the trajectories only in the right wedge, x > 0,
as the ones for the wedge x < 0 can be obtained by reflection around
the y axis. Note that as detailed in Sec. IV, both wedges are realized
and are at the same footing in our proposal.

consider an observer moving with constant acceleration a = 1
(for convenience in the following we take the speed of light
to be c = 1) in the positive x axis, at rest at t = 0 and x = 1.
Physics seen by this observer is more properly described in
a comoving reference frame, obtained by the Fermi-Walker
transport procedure. Let η be the comoving time coordinate
for this observer, and ξ the comoving space coordinate. They
are called Rindler coordinates, and can be found using this
transformation (see Fig. 1)

t = ξ sinh η,

x = ξ cosh η.
(1)

In particular, the considered trajectory corresponds to ξ = 1
for all η. Notice the similarity with polar coordinates, where
ξ plays the role of a radius and η is an angle in hyperbolic
geometry. The principle of equivalence states that physics seen
by a noninertial observer can be absorbed by a change in her
metric. Indeed, in these coordinates, the Minkowski metric
becomes

ds2 = −ξ 2dη2 + dξ 2 + dy2 + dz2, (2)

which is known as the Rindler metric. Notice that the Rindler
time direction corresponds to a symmetry of the metric, i.e.,
it constitutes a Killing vector which is inequivalent to the
usual Minkowski time direction. In fact, it corresponds to a
boost transformation. In the polar coordinates view, it is the
generator of hyperbolic rotations. Furthermore, the pole ξ = 0
corresponds to a singularity in the coordinate system because
the coefficient of dη2 vanishes. This is the hallmark of an event
horizon. In fact, one can consider the Rindler metric (2) as a
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particular example of optical metric where the only nontrivial
entry of the metric is g00, which becomes position dependent.
These are called optical metrics because propagation of light
along the geodesics is equivalent to “Galilean” propagation in
a refractive medium with a position-dependent refractive index
n(x), which implies the “local” speed of light cloc(x) = 1/n(x).
The corresponding optical metric is of the form

ds2 = −c2
loc(x,y,z)dt2 + dx2 + dy2 + dz2. (3)

For Rindler space-time, c2
loc(ξ ) = ξ 2. As ξ → 0, the local

speed of light vanishes, which implies that signals cannot
propagate beyond that point. Thus, space-time is separated into
two parts which do not communicate: the two Rindler wedges
ξ > 0 and ξ < 0. It is remarkable that an event horizon can
appear even in a flat space-time.

Let us return to the proposed accelerated observer, which
in Rindler space-time just sits at rest at ξ = 1. From her point
of view, light moves at her left more slowly than usually,
and faster at her right. Near the horizon, ξ = 0, light moves
more and more slowly, coming to stop at ξ = 0, i.e., its local
speed of light is zero (while the actual speed of light stays
obviously constant to 1). Let us now consider objects which
are static with respect to the accelerated observer, i.e., objects
at rest in Rindler space-time at different values of ξ . Tracing
back their trajectories to Minkowski space-time, it can be
checked that they correspond also to accelerated trajectories,
with acceleration a(ξ ) = 1/ξ . This implies that, in order to
keep pace with an observer with acceleration a in front of you,
you must accelerate faster than that [58]. This result is known
as Bell’s spaceship paradox.

B. Thermalization theorem

The interplay between thermodynamics and general relativ-
ity gives rise to surprising properties. Let us restrict ourselves
to space-times which contain a timelike Killing vector, i.e.,
space-times whose metric can be said to be time invariant,
where we have a well-defined concept of energy. In that case,
Tolman-Eherenfest’s theorem [7,60] states that for any field
in thermal equilibrium within a stationary curved space-time,
the product of the local temperature and the modulus of the
local timelike Killing vector is constant, T g

1/2
00 = const. There

is a simple way to visualize this result. Photons emitted at one
point P in space with frequency ν will reach another point in P ′
with a red-shifted frequency ν(P ′) = ν(P )

√
g00(P )/g00(P ′).

Thus, the same factor should be applied to energies and to
temperatures. Thus, in Rindler space-time, temperature at any
point is inversely proportional to the distance to the horizon.
Or, in other words, it is proportional to the acceleration of
an observer stationary at that point. Notice that this does not
entail a nonzero temperature. The theorem still holds if the
temperature is zero everywhere.

But, the biggest surprises show up when we introduce
quantum mechanics [1]. Let us consider a free-fermionic field
in Minkowski space-time, with Hamiltonian HM , described in
terms of local creation operators c

†
x . The physical vacuum

is the ground state of its Hamiltonian |0M〉, and it does
not correspond to the Fock vacuum |�〉, which is defined
by cx |�〉 = 0 for all x. In the physical vacuum, all the

negative-energy single-particle modes will be occupied

|0M〉 =
∏

ωM
k <0

b
†
k|�〉, (4)

where b
†
k creates the kth mode, and �ωM

k is its energy.
According to the usual convention, b

†
k creates a particle if

ωM
k > 0 and an antiparticle if ωM

k < 0. Therefore, the physical
vacuum is built by occupying all the antiparticle states, and
none of the particle ones.

Let us now consider an accelerated observer moving
through this vacuum. She will see physics displayed not
on Minkowski space-time, but on a Rindler metric (2). Let
HR be the appropriate Hamiltonian operator, which is also
a free-fermionic Hamiltonian. Its single-particle modes are
known as the Rindler modes d

†
q . They have energies �ωR

q and
are solutions to the wave equation in the Rindler metric (here
the index q labels the eigenstates, but does not correspond
to momentum in the acceleration direction since translational
invariance is broken). The ground state of HR is

|0R〉 =
∏

ωR
q <0

d†
q |�〉. (5)

Again, the Rindler modes will qualify either as particles, if
ωR

q > 0, or antiparticles if ωR
q < 0. The pure state |0M〉 does

not need to be an eigenstate of HR , much less its ground
state. From the point of view of the accelerated observer, who
measures energies with HR , |0M〉 is not the true vacuum any
more. How does this state look like to her? It is crucial to
realize that the Rindler metric has a horizon, which separates
space into two parts which cannot communicate. Thus, she will
not detect |0M〉, but the reduced density matrix which results
of tracing out the hidden part

ρR = TrL|0M〉〈0M |, (6)

where TrL means a trace over the left-out degrees of freedom.
A reduced density matrix can always be formally written as a
thermal state

ρR = exp(−HE), (7)

where HE is called the entanglement Hamiltonian [8,61]. Since
the Minkowski vacuum (4) is a Slater determinant, we can
use Wick’s theorem in reverse to prove that the entanglement
Hamiltonian must be a free-fermionic Hamiltonian [62]. In
other terms, the accelerated observer will see a thermal state
of free particles. The Minkowski vacuum is invariant under
Lorentz boosts, which correspond to time translations in
Rindler space-time. For ρR , this property implies

0 = ρ̇R = − i

�
[ρR,HR]. (8)

Thus, [HE,HR] = 0, i.e., the entanglement Hamiltonian and
the Rindler Hamiltonian must commute. In fact, they can be
nontrivially proved to be proportional, and the constant of
proportionality can be read as an inverse temperature

ρR = exp

(
− HR

kBTU

)
, (9)
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where

kBTU = �a

2π
. (10)

Here, TU is known as the Unruh temperature and this result,
which is far more general than the particular case studied here,
is the thermalization theorem [7]. Thus, the Unruh temperature
does not appear because of any underlying stochasticity. The
loss of information which gives rise to the thermal effect
is related to the presence of the horizon. An important
consequence of thermalization theorem is that Minkowski
vacuum appears to be stationary to an accelerated observer.
Indeed, while Minkowski vacuum is clearly not an eigenstate
of Dirac Hamiltonian in Rindler space-time and, thus, evolves
nontrivially in Rindler time, what an accelerated observer
detects is invariant under such time evolution as the thermal
state is a diagonal density matrix in the Rindler eigenbases.
This observation is crucial in our proposal for simulating the
Unruh effect with ultracold atoms (see Sec. IV).

C. Unruh effect

Let us consider the canonical transformation between
Minkowski (b†k) and Rindler modes (d†

q)

d†
q =

∑
k

Uqkb
†
k. (11)

This is a Bogoliubov transformation in disguise because a
positive-energy Rindler mode (particle) requires both positive
and negative Minkowski modes for its expansion (particle
and antiparticle). In fact, as the acceleration is position
dependent, the relevant Bogoliubov transformation has to be
defined locally. In the continuous limit, the global Bogoliubov
transformation (11) is even ill defined as the eigenstates are
not normalizable. In order to properly define it, we have to
consider normalized states [7], for instance, wave packets
centered around a generic point r. On physical terms, this
means that we can associate a well-defined acceleration to the
Rindler wave packet. For practical purposes, the wave-packet
normalization is equivalent to restricting the scalar product
of the unnormalized modes to a small region Dr,ε such
that |r′ − r| � ε of space around r. With this definition, the
occupation of each Rindler mode on the Minkowski ground
state is given by

nq,r ≡
∫

Dr,ε

〈0M |d†
q |r′〉〈r′∣∣dq |0M〉 =

∑
ωM

k <0

|Ũqk(r)|2, (12)

and the thermalization theorem ensures that

nq,r = 1

exp
[
�ωR

q /kBTU (r)
] + 1

, (13)

with kBTU (r) = �

2πx
according to Eq. (10), where x is the

spatial distance of the point r from the horizon.
But, the Unruh effect goes beyond the thermalization

theorem because it is defined operationally, in terms of what a
local observer can measure. The so-called De Witt detector
[1,7] is a device carried along with the observer, which
couples minimally to the fermionic field at a spatial point
r, and can emit and absorb particles. Under a large variety of
circumstances it can be proved that the probability amplitude

of absorption and emission is given solely by the Wightman
function

G(t) ≡ 〈0M | c
†
x(t)(t) cx(0)(0) |0M〉. (14)

Here, x(t) is the trajectory for the observer (for simplicity
we consider trajectories parallel to the x axis and we omit
remaining constant spatial coordinates) and c

†
x(t) is the

creation operator for a fermion at event (x,t). The Fourier
transform of G(t), G(ω) is the detector response function,
which should be experimentally accessible, as we will discuss
later.

The formula (14) makes equal sense in Minkowski or in
Rindler space-times, if we are allowed to abuse notation and
let x and t denote the coordinates in both. In Rindler space-
time, the trajectory of an accelerated observer will be just a
constant x(t) = x0. Let us define two different basis changes,
from Rindler space-localized states to Rindler and Minkowski
modes, respectively. At time t = 0, if c

†
x creates a particle at

point x, we have

b
†
k =

∑
x

Mkxc
†
x,

d†
q =

∑
x

Rqxc
†
x, (15)

where the unitary matrices Mkx and Rqx are the single-particle
wave functions of Minkowski and Rindler modes, respectively,
and determine the unitary transformation Uqk in (11), Uqk =∑

x RqxM̄kx . Here and in the following by the bar we denote
the complex conjugate of the matrix elements. So, we get

Gx0 (ω) ≡
∫

dt e−iωt 〈0M |c†x0
(t)cx0 (0)|0M〉

=
∑
q,q ′

δ
(
ω − ωR

q

)
R̄qx0Rq ′x0

∑
ωM

k <0

ŪqkUq ′k. (16)

Thus, the detector response function is strongly dependent on
the form of the Rindler and Minkowski modes, through U

and R.
Going beyond the thermalization theorem, Unruh predicted

that the distribution function G(ω) will be thermal. But, a
surprise is hiding behind Eq. (16) due to the spatial dependence
of the Rindler and Minkowski modes. If the dimension of
space is odd, then the response function of a fermionic
field will follow the Fermi-Dirac distribution function, as
one would expect. But if the dimension of space is even,
Gx0 (ω) will follow a Bose-Einstein distribution. The opposite
is true for a free bosonic field. This fact, known as Takagi’s
inversion theorem [7], stems from dimensional effects in wave
propagation, analogous to those observed for light propagating
radially. In odd dimension, the Huygens principle holds, and
a pointlike perturbation after a time t is concentrated in
a spherical shell of radius vt , where v is the propagation
velocity. In even dimension, however, not all the scattered
waves propagate at the same v, the Huygens’ principle does
not hold and the perturbation becomes radially spread with
time.

Alternative physical meanings of the detector response
function (16) are worth mentioning. The first is a measure
of quantum fluctuations: Gx0 (ω) is the power spectrum of the
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quantum noise [63]. The second is related to the dynamical
Casimir effect. Let us consider a physical plane in space,
whose interaction with our fermionic field can be expressed as
a Dirichlet boundary condition. Now, let us move this plane
with constant acceleration a. Then, the stress-energy tensor at
any point will depend on its current distance to the plane. In
fact, it can be proved [7,64] that the limit a → ∞ can be made
meaningful, thus providing a well-defined stress-energy tensor
for the Rindler vacuum, which induces quantum fluctuations
that are probed by expression (16).

III. DIRAC FERMIONS IN A RINDLER LATTICE

In this section, we describe the behavior of Dirac fermions
in Rindler space-time for one and two spatial dimensions. In
particular, we explicitly construct the corresponding Hamil-
tonian in a square lattice. Indeed, since the Rindler metric
has a timelike Killing vector field, we can use a Hamiltonian
formalism and discretize it to get a simple tunneling model.
The resulting model bears a surprising resemblance to the xp

Hamiltonian used in the Hilbert-Polya approach to proving
the Riemann conjecture. This point is further detailed in the
Appendix.

A. Dirac Hamiltonian in Rindler space-time

Let us consider a relativistic massless fermionic field in
two dimensions, governed by the Dirac equation in Minkowski
space-time

γ a∂aψ = 0, (17)

where the γ a are a representation of the Clifford algebra,
{γ a,γ b} = 2ηab, where ηab = Diag(−1,1,1) is the Minkowski
metric and a,b = 0,1,2. In (17), as well as in the rest of
the section, sums over repeated indices are left implicit
according to Einstein’s convention. As it stands, the equation
is manifestly Lorentz covariant. Let us shift to a Hamiltonian
view, which is more convenient for simulation. In other words,
we single out the time derivative

i∂0ψ = Hψ = −iγ0γ
j∂jψ, j = 1,2. (18)

Let us make the following choice for the γa matrices in two
dimensions, −γ2 = σx , γ1 = σy , γ0 = iσz. We obtain

i∂tψ = −i(∂xσx + ∂yσy)ψ. (19)

Equation (17) can be formulated on a general (curved)
background metric gμν as well. For spinor systems it is
very convenient to introduce the vielbein, which is a set
of vectors defined on the tangent manifold ea

μ(x), such that
gμν(x) = ea

μ(x)eb
ν (x)ηab. The parallel transport for the vielbein

vectors defines the spin connection wab
μ , and allows a compact

expression for the covariant derivative of a spinorial field [58]

∂μψ → Dμψ ≡
(

∂μ + 1

4
wab

μ γab

)
ψ, (20)

where γab ≡ 1
2 [γa,γb]. By making use of it, the Dirac equation

reads as

γ μDμψ = 0, (21)

where the curved gamma matrices γμ are defined by γμ =
γae

a
μ, and the curved indices μ = t,x,y are lowered and

raised by contracting with the metric gμν and its inverse gμν .
When we single out the time derivative, we obtain again a
Schrödinger equation of the form

i∂tψ = −iγt

(
γ j∂j + 1

4γ jwab
j γab + 1

4γ twab
t γab

)
ψ, (22)

where j = x,y.
Let us now consider the specific case of the 2D Rindler

metric (2) ds2 = −x2dt2 + dx2 + dy2. The only nonvanish-
ing element of the spin connection is w01

t = x/|x|. With the
aforementioned choice for the γa matrices, we get

i∂tψ = −i

[(
|x|∂x + 1

2

x

|x|
)

σx + |x|∂yσy

]
ψ. (23)

Thus, the Hamiltonian density becomes

HR = −i

[(
|x|∂x + 1

2

x

|x|
)

σx + |x|∂yσy

]
, (24)

which is the single-particle Rindler Hamiltonian. Its second-
quantized form is simply

HR =
∫

dx dy ψ̄†HRψ. (25)

The same expression can obviously be derived by taking the
Legendre transformation of the Dirac Lagrangian in Rindler
space-time.

In intuitive terms, the |x| term is related to the volume form√−g = |x|. The 1
2 term comes for the covariant derivative

and it is essential to ensure the Hermiticity of HR . Indeed, this
factor cancels the so-called deficiency indices [49,65], i.e.,
allows us to treat the horizon at x = 0 as a boundary, ensuring
that any boundary condition can be imposed while respecting
self-adjointness of the Hamiltonian.

This property is more evident once (25) is cast in symmetric
fashion, i.e., the spatial derivatives act symmetrically both on
ψ and ψ†:

HR = 1

2

∫
dx dy (Hψ)†ψ + 1

2

∫
dx dy ψ†Hψ

= i

2

∫
dx dy |x|[(∂xψ

†)σxψ + (∂yψ
†)σyψ

− ψ†σx∂xψ − ψ†σy∂yψ]. (26)

In this form, the propagation in Rindler metric is sensitive only
to the overall scale factor which determines a Fermi velocity
that changes linearly along the x direction.

It is worth noticing that the equivalent symmetric formula-
tion of single-particle Hamiltonian (24) is

HR = √
x /p

√
x, (27)

which is also manifestly Hermitian. It will be further discussed
in the Appendix, in relation with the Riemann conjecture.

B. Discretizing the Rindler Hamiltonian

The Minkowski and Rindler Dirac Hamiltonians in one
and two spatial dimensions can be suitably discretized on the
lattice [46]. As shown in detail in the Appendix, Sec. A 1, a
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JAVIER RODRÍGUEZ-LAGUNA et al. PHYSICAL REVIEW A 95, 013627 (2017)

convenient way of doing this is to consider a 1D chain or a 2D
square lattice with noninteracting spinless fermions

H = −
∑
〈r,r′〉

trr′c†rcr′ + H.c., (28)

where the sum runs over all pairs of nearest-neighbors sites
r,r′. Since the 1D Dirac models can be realized as a slice
along x (defined as the direction perpendicular to the Rindler
horizon) of the 2D Dirac ones, we focus on the latter case.
Hamiltonian (28) can represent the dynamics of each of the
chiral components of the Minkowski Dirac Hamiltonian if the
tunneling terms trr′ have all the same modulus and the sum of
their phases around each plaquette is π . This corresponds to the
well-known π -flux Hamiltonian [66–68]. All possible choices
of phases respecting the π -flux condition are equivalent, as
they are related by gauge transformations. We will focus on
the one corresponding to the symmetry gauge for the synthetic
gauge field associated to the phases. Precisely,

HM = −
∑
m,n

t0(ei π
2 (m−n)c

†
m+1,n + ei π

2 (m−n)c
†
m,n+1)cm,n + H.c.,

(29)

where we adopt Cartesian coordinates to parametrize the lattice
r = (m d,n d) and denote with d the lattice spacing.

The discretized version of the Rindler Dirac Hamiltonian
(26) can also be chosen to be of the form (28), but with
spatially modulated tunnelings trr′ . Each tunneling rate has
to be proportional to the average x coordinate of each link,
which represents the distance from the horizon. We place the
horizon at x = 0 accordingly to the coordinates chosen in (3).
The tunneling phases have to satisfy the same π -flux condition
as for the Dirac Hamiltonian in Minkowski space. For the
symmetric gauge choice of (29) we have

HR = −
∑
m,n

t ′0
[
(m + 1

2 ) ei π
2 (m−n)c

†
m+1,n + m ei π

2 (m−n)c
†
m,n+1

]

× cm,n + H.c. (30)

The numerical simulation and the experimental implementa-
tion in optical lattices of the Hamiltonians (29) and (30) will
be discussed in the next section. We would like to remark
here that in principle any other lattice realization of the Dirac
Hamiltonian like the ones in bichromatic [69], hexagonal
[70,71], and brick-wall lattices [44], which do not involve
artificial gauge fields, can be considered and deformed by
shaping the tunneling term to reproduce the Dirac Hamiltonian
in Rindler space-time. Other artificial lattice Dirac systems
such as nanopatterned 2D electron gases, photonic crystals,
microwave lattices [72], or polaritons [73] could also be
used. Since the Unruh effect is a single-particle and purely
kinematic effect, it could be studied using both bosonic and
fermionic systems. The latter offers a simple route to explore
the relativistic (linear dispersion relation) regime, as detailed
in the next section.

IV. SIMULATING THE UNRUH EFFECT
WITH COLD ATOMS

In this section, we present our proposal to study the Unruh
effect for Dirac fermions in an optical lattice, in one and two

spatial dimensions. The crucial idea behind our proposal is
that all measurements made by an accelerated observer on the
Minkowski vacuum of the Dirac field can be simulated by
quenching the Dirac Hamiltonian from the one in Minkowski
space-time to the one in Rindler space-time, which amounts
to quench the tunneling amplitudes from constant to properly
position-dependent values. As a by far nontrivial consequence
of thermalization theorem (cf. Sec. II B), the Minkowski
vacuum will now be seen as a thermal state in Rindler, which
we will subsequently probe with a suitable analog of De Witt
detectors, yielding the local fluctuation spectrum predicted
by the Unruh effect. As a thermal state corresponds only
to populations of Rindler modes, the Minkowski vacuum is
stationary, that is to say that is invariant under time translations
in Rindler space-time (this property is not so surprising
because Rindler time translations correspond to Lorentz boosts
in the original Minkowski coordinates).

We start by providing an overview of the experimental pro-
cedure. Our scheme relies crucially on one-particle excitation
spectroscopy, which we discuss in detail. The robustness of our
scheme is then validated by performing a numerical simulation
of the response function in realistic experimental conditions.
We conclude by proposing an experimental implementation
of the protocol which is accessible using state-of-the-art
techniques.

A. Strategy

As explained in Sec. II C, the observation of the Unruh
effect requires a measurement of the Wightman two-point
correlation function in the frequency domain (14) for an
accelerated observer in the Minkowski vacuum. In other
terms, we have to measure the Fourier transform of two-point
correlations in time. For a Dirac system as the one we consider,
the Minkowski vacuum is the Fermi sea, and what needs to
be measured is the overlap between the state corresponding
to a one-hole excitation at different times. Furthermore, this
one-hole excitation must follow an accelerated trajectory.

Traditionally, an accelerated observer is considered in order
to observe the Unruh effect, with the Minkowski vacuum at
rest and the one-hole excitation moving. For instance, this is
the approach considered in [33], where the one-hole excitation
is created by the coupling to an impurity. However, due to the
equivalence principle, the measurement can actually be done
in any reference frame. We choose to perform it in the rest
frame of the observer and the one-hole excitation. There, the
time evolution is governed by the Dirac Hamiltonian in Rindler
space-time [Eq. (24)], and the response function is simply the
overlap between the one-hole excitation at rest at different
times. The measurement of the Wightman spectral function
can then be interpreted as the creation of a one-hole excitation
at a fixed location x0 in the Fermi sea, the evolution of this
state with the Dirac Hamiltonian in Rindler space-time for a
time t , and the creation of a particle at x0. This is exactly what
one-particle excitation spectroscopy, a standard technique in
cold atom experiments, determines [74].

Thus, our protocol to observe the Unruh effect consists of
three steps:

(1) Preparation of the Minkowski vacuum by achieving the
ground state of the Dirac Hamiltonian with a uniform Fermi
velocity (Dirac Hamiltonian in Minkowski space-time).
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(2) Quench to an accelerated frame governed by the Dirac
Hamiltonian with a spatially dependent Fermi velocity (Dirac
Hamiltonian in Rindler space-time). The quench introduces an
event horizon in the middle of the gas, effectively disconnect-
ing it in two halves.

(3) Measurement of the Wightman function in the ac-
celerated (Rindler) frame using local one-particle excitation
spectroscopy at point x0.

The first two steps provide a convenient method for
preparing the Minkowski vacuum as the ground state of a
Hamiltonian which can be easily implemented experimentally,
and for making it evolve into an accelerated (Rindler) frame.
The third step, local one-particle excitation spectroscopy, is
the crucial ingredient of our proposal. It creates a one-hole
excitation in the gas, whose dynamics in the accelerated
(Rindler) frame produces the Bogoliubov transformation
(11). And it is this transformation which is responsible for
the thermalization theorem and the Unruh effect. Given its
importance, we describe it in detail in the next section.

B. Measurement of the Wightman function

Our proposal for observing the Unruh effect relies on the
use of one-particle excitation spectroscopy for measuring the
Wightman function. This technique consists in transferring a
fraction of atoms of the gas to an auxiliary energy band which is
initially unoccupied and has a considerably smaller bandwidth,
so that it can be neglected. The process requires a field coupling
both bands, and can be implemented in a variety of fashions
(radio-frequency, one-photon, or two-photon laser transitions)
depending on the atomic species chosen. In our case, we
require the process to be local since the Wightman function is
defined locally (at point x0) and the Unruh temperature varies
as a function of the distance to the horizon.

If we consider the ensemble of the two bands as an effective
two-level system, the effect of the coupling can be modeled in
the interaction picture as

Wx0 (t) = W0[eiωtb†x0
cx0 (t) + e−iωt c†x0

(t)bx0 ], (31)

where ω represents the detuning between the frequency of the
field and the energy of the auxiliary band where the operator b

†
x0

(bx0 ) creates (destroys) an atom, and we assume an integration
over all momenta. Since the measurement is performed after
the quench, the operator c

†
x0 (t) [cx0 (t)] evolves with the Rindler

Hamiltonian.
Now, let us compute the occupation of the auxiliary band

at a later time. As it is highly excited, we can assume it to be
initially empty. The initial state is thus

|�〉0 = |�(t = 0)〉 = |0〉b |�〉. (32)

Taking a sufficiently small coupling W0 allows us to treat (31)
at first order in perturbation theory. We find

|�(t)〉 ∼ |0〉b |�〉 + W0

∫ t

0
dt ′eiωt ′ b†x0

|0〉b cx0 (t)|�〉. (33)

Then, the occupation Nb of the auxiliary state for t 
 1/ω is

Nb = 〈�(t)|b†x0
bx0 |�(t)〉

= W 2
0

∫ t

0

∫ t

0
dt ′dt ′′eiω(t ′−t ′′)〈�|cx0 (t ′′)cx0 (t ′)|�〉

∝
∫ t

−t

eiωt ′ 〈�|cx0 (t ′)cx0 (0)|�〉 ∝ G(ω), (34)

where we have used translation invariance in time. The
calculation above not only demonstrates that local one-particle
excitation spectroscopy measures the Wightman spectral
function. It also clearly shows that it is the time evolution
under the Rindler Hamiltonian which is responsible for the
observed thermal response. We have calculated the occupation
Nb assuming that the pulse started at t = 0, i.e., immediately
after the quench (we have used the original Minkowski vacuum
to start with). However, the integral (34) depends only on the
duration of the pulse, and not on the actual moment at which
the pulse starts. This is an experimental manifestation of the
stationary of Minkowski vacuum in Rindler space-time and of
the time invariance of the associated populations as Rindler
particles.

C. Validity range of the scheme

Let us now discuss in detail the range of validity of
our approach and review some possible limitations. In our
scheme, we do not implement the Dirac Hamiltonian (both
in Minkowski and Rindler space-times) in the continuum, but
only a lattice version of it. This introduces a characteristic
length scale in the system, the lattice spacing, and an associated
UV energy cutoff. Measurements of the Wightman function
below this length scale are not meaningful. However, the finite
spatial resolution that one-particle excitation spectroscopy
will have in the experiment naturally smears out these dis-
cretization artifacts. We will show below that a measurement
of the response function convolved over two lattice sites is
sufficient to suppress most of them. Another consequence of
implementing the Dirac Hamiltonian in an optical lattice is
that the relativistic dispersion relation only holds in a certain
range of energies, in the vicinity of the Dirac points. Thus, the
measurements must be restricted to this energy range, which is
given by the local tunneling rate. This limitation is common to
other proposals for simulating relativistic effects with cold
atoms. For instance, using the Bogoliubov excitations of
a Bose-Einstein condensate as relativistic particles is only
valid in the phononlike regime of the Bogoliubov dispersion
relation, and breaks down away from it.

Our protocol relies on a change of reference frame, from a
rest frame to an accelerated one. This step is done by quenching
the Hamiltonian from Minkowski to Rindler space-time.
The change of reference frame should be instantaneous, an
approximation which is valid if the quench time is much shorter
than the smallest characteristic time scale of the system given
by the inverse of the largest tunneling rate. We will see in
Sec. IV E that experimentally this is a reasonable assumption.
The main effect of the quench is to introduce an artificial
horizon in the middle of the lattice that effectively disconnects
the left and right halves. Placing the horizon exactly in the
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middle of the system is important to minimize the distortions
induced by the finite system size. Finally, let us remark that
quenching the Hamiltonian of a quantum system normally
triggers a temporal evolution of its initial state. In our case,
however, as we have observed at the end of Sec. II B and further
argued in this section, the Minkowski vacuum looks stationary
to the accelerated observer and this dynamics is absent. Indeed,
the Rindler Hamiltonian is proportional to the entanglement
Hamiltonian of both halves of the system (7). Thus, the density
matrices of both halves are time invariant as they are diagonal
and depend only on the populations.

The Unruh effect implies that measurements of the Wight-
man function at different distances from the horizon, and thus
different accelerations, will yield different values of the Unruh
temperature. In order to compare these measurements, the
rates should be measured with respect to the proper time τ .
For the Rindler metric [Eq. (3)], τ = ξ t with ξ ∝ |x|. Thus,
frequencies must be scaled by 1/ξ . At the same time, the
Fourier transformation of the Wightman function G(t) has to
be performed with respect to the proper time. In the frequency
domain, it is then given by ξG(ω/ξ ).

Finally, up to now we have been assuming that the
Minkowski vacuum can be exactly realized in the experiment.
Or, in other terms, that it is possible to prepare perfectly the
ground state of the Dirac Hamiltonian in the homogeneous
tunneling lattice at half-filling (exactly up to the Dirac points).
In real experiments, however, the actual temperature of the
fermionic gas will not be zero but rather on the order of
the tunneling rate. We will show that the signatures of the
Unruh effect can still be appreciated when starting with a
finite-temperature sample.

D. Numerical simulations

In order to validate our scheme and address the effects
presented above, we have performed numerical simulations,
which we present in this section. The calculations have been
done using the π -flux realizations of the Dirac Hamiltonian
[Eqs. (29) and (30)] in one and two spatial dimensions.
In both cases we have simulated numerically the complete
scheme, starting with an initial state in Minkowski space-time,
assuming an instantaneous quench, and computing then the
Wightman response function as will measured by one-particle
excitation spectroscopy [see Eq. (13)].

In the calculations we fix the system sizes Lx , Ly . The
natural energy scale of the system is the bandwidth of the
Dirac Hamiltonian in Minkowski space-time [proportional to
the tunneling strength t0 in (29)]. Therefore, all energies (i.e.,
frequencies and temperatures) are measured in units of t0. The
amplitude t ′0 that characterizes the tunneling strength of the
Dirac Hamiltonian in Rindler space-time (30) is in principle
arbitrary due to the overall scale invariance of the Rindler
space. We choose it so that the maximal tunneling rate is equal
to the Minkowski value t ′0 = 2t0/Lx . The lattice spacing is
fixed as d = 1 and we attach (x,y) = (m,n) coordinates to
each site in a symmetric way with respect to the horizon,
i.e., the x = 0 line. Thus, while n always runs over integers,
n = 1,2 . . . ,Ly , m runs over integers for Lx = 2N + 1 odd,
m = −N,−N + 1 . . . ,N , and over half-integers for Lx =
2N even, m = −N + 1/2,−N + 3/2, . . . ,N − 1/2. Note that

fixing the horizon exactly in the middle of the gas is important
to minimize the distortions introduced by the finite size of the
system.

As we mentioned in the previous section, in a discrete
realization of the Dirac Hamiltonian only measurements
performed at length scales above the lattice spacing d are
meaningful. The finite spatial resolution of the measurements
will automatically perform the required coarse graining. We
simulate it numerically by considering a convolution of the
Wightman function (16) with a Gaussian of standard deviation
corresponding to two lattice sites along the x direction. The
raw data obtained before the convolution, and further details
concerning it are included in the Appendix, Sec. A 3.

The frequency dependence of the response is evaluated
at five different positions, at linearly increasing distances
from the horizon. The top panel of Fig. 2(a) shows the
convoluted results obtained for a 1D system of size Lx =
500. The tallest (red) curve is the closest to the horizon,
and the lowest (blue) one is the most distant. For frequen-
cies close to zero (i.e., the Fermi energy), the response
functions all have a behavior resembling a Fermi-Dirac
distribution, with strong lattice artifacts at large negative
frequencies.

In order to compare the different results, we rescale the
curves with respect to the proper time τ . The proper frequency
is then ω/ξ , and the proper rate of detection is ξG(ω/ξ ).
For our choice of units t0 = d = 1 = Lx

2 t ′0, ξ = 2x/Lx . Thus,
ξ = 0 corresponds to the horizon and ξ = 1 to the edge of the
system. Figure 2(b) presents the same curves as Fig. 2(a), but in
rescaled units. For frequencies close to ω = 0, they reproduce
Fermi-Dirac distributions whose temperature increases as we
approach the horizon. The distributions are not normalized
since they are defined up to a global constant.

Notice that in Fig. 2 we have restricted the displayed
frequency range to the regime where the energies are lower
than the local tunneling range |ω| < |t(x)| since it is only
there that the dispersion relation remains linear and the
description of the particles in terms of Dirac fermions is
valid. In rescaled units, this condition becomes |ω/ξ | < 1.
In the following, we will restrict ourselves to this frequency
range.

Figure 3 shows the corresponding results for a 2D system,
which differs strongly from its 1D counterpart as predicted
by Takagi’s inversion theorem. Figure 3(a) shows the rescaled
response function for a 100 × 100 lattice, measuring at linearly
increasing positions from the horizon as in the 1D case. The
displayed curves include the spatial Gaussian convolution,
along with an energy coarse graining �ω = 0.2. The latter
simulates the finite-energy resolution of the measurement,
limited by the finite system size. The raw data, prior to con-
volution and coarse graining, are presented in the Appendix,
Sec. A 3. As predicted by Takagi, the results are now similar
to a Bose-Einstein distribution.

Finally, in Fig. 3(b) we study the transition between 1D
and 2D, by showing the rescaled response functions for
a set of lattices with dimensions 100 × 1 (red), 100 × 2,
100 × 4, and 100 × 8 (black), always measured at a point
25 lattice sites away from the horizon. Notice that the Fermi-
Dirac distribution disappears very fast when we increase the
transverse dimension Ly .
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FIG. 2. (a) Wightman response function in the frequency domain
for a 1D system of size Lx = 500 after the quench. The frequency
ω is measured in terms of the tunneling strength, t , which is the
natural energy scale of the system, while G(ω) is a pure number.
The colors denote different distances to the horizon m, expressed
in lattice sites: blue (lower) is far away and red (taller) is closest
to it. (b) Wightman response function of the same system in the
frequency domain, measured with respect to the proper time τ = ξ t .
The proper frequency is ω/ξ , while taking the Fourier transform with
respect to τ requires rescaling G(ω) → ξG(ω/ξ ). As explained in
the main text, ξG(ω/ξ ) represents what a static De Witt detector in
Rindler space-time would observe. Notice that the curves collapse to
Fermi-Dirac distributions of increasing temperatures as we approach
the horizon. For |ω/ξ | > 1 lattice artifacts (deviations from the
relativistic dispersion relation) distort the response.

As a last step, we study the robustness of our protocol under
an increase in the physical temperature of the gas. This results
in an imperfect preparation of the Minkowski vacuum, which
is the starting point of the protocol. Figure 4(a) compares
the rescaled response functions for a 1D system at physical
temperature T = 0 and 1

10 , measured at two different points,
one close to the horizon and one far from it. At T = 1

10 the
distributions are rounded near ω = 0, but we can still see that
the one closest to the horizon is more curved and presents
a larger probability for positive-energy excitations. The 2D
case is more robust, as shown in Fig. 4(b). There, we can see
that the rescaled distributions at T = 1 measured near and far
from the horizon are clearly distinguished, and keep the same
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FIG. 3. (a) Wightman response function in the proper frequency
domain for a 2D system of size 100 × 100 after the quench. The
frequency ω is measured in terms of the tunneling strength, t , which
is the natural energy scale of the system, while G(ω) is a pure number.
As previously, the colors denote different distances from the horizon
m expressed in lattice units: blue (+ signs) is far away, red (full
squares) is closest to it. (b) Same for strips of different widths, 100 × 1
to 100 × 8.

global features than at T = 0. The explicit expression used to
calculate the response functions for a thermal gas is given in
the Appendix, Sec. A 3.

E. Experimental implementation

Our proposal to implement experimentally the Dirac Hamil-
tonian in Minkowski and Rindler space-times is based on the
recent experimental realizations of the Hofstadter model with
ultracold atoms [75–77], but in the symmetric gauge and using
fermionic atoms instead.

As sketched in Fig. 5, a two-dimensional square lattice
with bare tunneling matrix elements J along the x and y

directions, and lattice spacing d = λL/2 (where λL is the
wavelength of the lattice beams), is subjected to a potential
gradient oriented along the diagonal direction of the lattice.
This leads to an energy offset between neighboring sites
� 
 J which inhibits tunneling. The offset value could
depend on the state of the atom, but should be identical along
the x and y directions. A pair of Raman laser beams collinear
with the lattice beams, of wave vectors k1,2 and frequencies
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FIG. 4. (a) Comparison between the Wightman response func-
tions in the proper frequency domain for a 1D system of size Lx = 100
after the quench, for two different physical temperatures T = 0 and
1

10 , and at two different locations, near and far from the horizon.
The frequency ω is measured in terms of the tunneling strength, t,
which is the natural energy scale of the system, while G(ω) is a pure
number. The two response functions at T = 1

10 resemble Fermi-Dirac
distributions at finite temperature, but the one measured closer to the
horizon corresponds to a higher temperature than the one measured
far away. (b) Same comparison for a 2D system of size 100 × 100.
The response curves keep their global features when increasing the
system temperature from T = 0 to 1. The response function far from
the horizon, m = 45, shows a local maximum at positive frequencies
before decaying. This behavior is analogous to the one expected for
a thermal gas of Dirac fermions in the homogeneous tunneling lattice
(see Appendix, Sec. A 3, Fig. 7). Indeed, in Rindler space-time the
limit m → ∞ corresponds to zero acceleration and converges to the
results of Minkowski space-time.

ω1,2, result in an additional optical potential

VK (r) ∝ V 0
K (r)

2
cos(q · r + ωt), (35)

with q = k1 − k2 and ω = ω1 − ω2. The potential amplitude
V 0

K (r) is assumed to be a slowly varying function of r. The
effect of the Raman beams is to restore tunneling along the
two directions when the condition ω = �/� is fulfilled, but
with a spatial dependence of the phase. In the high-frequency
limit �ω 
 J , the system is then described by the effective

Hamiltonian

H = −
∑
m,n

[
t

(
m + 1

2
,n

)
eiφm,nc

†
m+1,ncm,n

+ t(m,n) eiφm,nc
†
m,n+1cm,n

)
+ H.c. (36)

Here, the phase factor is φm,n = q · r = mφx + nφy . The
Dirac Hamiltonians (29) and (30) are special cases of (36).
For the Raman laser propagation directions displayed in Fig. 5
and a Raman laser wavelength λR = 2λL, the phases are φx =
−φy = π/2, which correspond to the π -flux Hamiltonian in
the symmetric gauge. The laser-assisted tunneling amplitudes
are then given by

t(m,n) � tJ1
[
V 0

K (m d,n d)/
√

2�
]

� tV 0
K (m d,n d)/2

√
2�, (37)

where J1(x) is the Bessel function of the first kind. This ex-
pression is valid in the limit � 
 V 0

K (m d,n d) and for slowly
varying V 0

K (r), which allows to use as average amplitude of the
potential its value at the center of the link. This scheme allows
for the simulation of the whole family of optical metrics [41]
considered by some of us in [46], and also of extensions of this
family to include a mild time dependence in the metric [78].

The realization of the Dirac Hamiltonian in Minkowski
space-time requires laser-assisted tunneling amplitudes
t(m,n) = t0 homogeneous across the cloud, which correspond
to a constant value of the Raman optical potential amplitude.
This could be realized using Gaussian Raman beams of waist
w0 much larger than the cloud size [see Fig. 5(a)]. In order
to implement the Dirac Hamiltonian in Rindler space-time,
we need instead tunneling amplitudes which increase linearly
along the x direction t(m,n) = t ′0m or, equivalently, a Raman
optical potential amplitude proportional to x. Using a TEM10

Hermite-Gauss mode [79] for the y Raman beam results in the
large beam limit in a Raman optical potential

V R
K (r) ∝

√
2

(
x

w0

)
V 0

K cos(q · r + ωt), (38)

which, as follows from (37), leads to the required spatial
dependence of t [see Fig. 5(b)]. The quench between the two
situations (Minkowski and Rindler) could be performed by a
sudden change of the mode of the y Raman beam, on a time
scale of ∼10 μs. This is well below the shortest time scale
of the system, given by the inverse of the highest tunneling
rate, which will typically be on the order of ∼10 ms. We thus
consider the quench as instantaneous. Finally, this scheme
can be easily modified, adding for example a superlattice
potential along the y direction, in order to interpolate between
the 1D and 2D situations and observe the inversion of
statistics.

For measuring the Wightman function G(ω), we propose to
perform local spectroscopy of the energy bands and determine
their occupation as a function of energy. This information is
contained in the transfer rate from an atomic state experiencing
the Dirac Hamiltonian in Rindler space-time after the quench,
to an auxiliary atomic state with a different dispersion relation.
It could thus be measured using one-particle excitation spec-
troscopy, as demonstrated in [80] and more recently used to
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FIG. 5. (a) Experimental scheme for implementing the π -flux model in the symmetric gauge with homogeneous tunneling amplitudes
(Minkowski). A linear potential gradient of amplitude � is superimposed along the diagonal direction of a 2D lattice. Tunneling is restored
using a pair of Raman beams of frequencies ω1,2 and wave vectors k1,2 which create a modulated potential of frequency ω = �/� and wave
vector q (red snapshot). This leads to complex tunneling with the required spatial dependence of the phase (inset). The tunneling amplitude is
homogeneous over the system when using Gaussian Raman beams of large waist compared to the size of the cloud. (b) The Dirac Hamiltonian in
Rindler space-time is realized when one of the Raman beams has instead a TEM10 Hermite-Gauss spatial mode, leading to a linear dependence
of the tunneling amplitude with respect to x = 0 (event horizon). (c) The measurement of the detector response function could be realized by
local band spectroscopy, using a spectroscopy beam focused at different distances to the horizon (green).

characterize spin-orbit-coupled Fermi gases [81,82]. In order
to perform local measurements and determine the dependence
of the detector response function with the distance to the
horizon, the transfer could be performed using a spectroscopy
beam [74] focused at different x positions [see Fig. 5(c)].
Note that the finite waist of this measurement beam, larger
than the lattice spacing, would remove from the measurement
some of the discretization artifacts discussed previously, and is
equivalent to the convolution procedure used in the numerics
(see Appendix, Sec. A 3). Experimentally, the most challeng-
ing requirement for this local spectroscopy scheme is to realize
π -flux model using an atomic species where one atomic state is
subjected to the Dirac Hamiltonian in Minkowski and Rindler
space-times, whereas the second (auxiliary) state experiences
a different dispersion relation. This situation could be achieved
exploiting the ground (1S0) and long-lived metastable excited
state (3P0) of the fermionic isotopes of Yb or Sr since the
different polarizability of the two states leads to different
optical potentials for a broad range of lattice and Raman beam
wavelengths λL and λR = 2π

k1,2
. λL would then be chosen such

that the auxiliary band has a negligible bandwidth compared
to the initial one. In this scheme, the potential gradient
leading to the site offset � should be realized optically as
well. The spectroscopy would be performed using a single
laser tuned to the clock transition. This ensures an excellent
energy resolution, below the tunneling energy scale, as recently
demonstrated experimentally in Refs. [83,84].

V. CONCLUSIONS AND FURTHER WORK

We have developed a proposal for a quantum simulator of
the Unruh effect in 1D and 2D massless fermionic fields using

ultracold atoms in an optical lattice. The addition of interacting
fields and disorder is possible in our approach, which therefore
constitutes a full framework for the study of the theoretical
implications of quantum field theory in curved space-time.
Moreover, our simulator provides a setting for the study of
relativistic quantum information theory in an experimentally
accessible system.

The implementation of this quantum simulator is within
experimental reach using state-of-the-art experimental tech-
niques. The detection methods proposed here are potentially
relevant also for detecting topological properties in simulators
of topological insulators and to assess the properties of
quantum systems out of equilibrium.

In this work, we have restricted ourselves to the study
of the Rindler metric, i.e., Minkowski space-time viewed
by an accelerated observer. Nonetheless, the formalism and
experimental tools described here may be extended to the
study of more complex space-times, for instance, nonstatic
or even nonstationary ones. Our work can also be considered
as a mandatory step prior to the inclusion of matter back-
reaction in the artificial metric, and to the simulation of
dynamical gravity fields. Thus, this work paves the way to
experiments that are not only fascinating per se, but are
also able to access phenomena that are not fully under-
stood theoretically, such as gravitating quantum matter in
interaction.

Finally, the recent conceptual developments towards a
combination of quantum mechanics and general relativity, such
as quantum graphity [85,86] or the Maldacena-Susskind notion
of relating entanglement and space-time in order to avoid the
firewall problem [87], might also be amenable to quantum
simulation using a similar approach.
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APPENDIX: EIGENSTATES OF THE RINDLER
HAMILTONIAN IN 1D

Let us restrict ourselves to 1D. Since the x < 0 and x > 0
regions are effectively separated, we may restrict ourselves to
the right half-line. Consider the spinless 1D version of Eq. (27),
HR(1D) = √

xp
√

x. Notice that x∂x = ∂ln(x). Let us define u ≡
ln(x), taking the horizon to −∞. So, HR(1D) = −i(∂u + 1/2).
The eigenvalue equation is

−i(x∂x + 1/2)ψ(x) = −i(∂u + 1/2)ψ(u) = ωψ(u). (A1)

The solutions to that equation have the form

ψ(u) = A exp
[(

iω − 1
2

)
u
] = A xiω−1/2, (A2)

so they are plane waves in u = ln(x). Figure 6 shows the
behavior of these wave functions.

In order to ensure that the Hamiltonian is truly Hermitian,
we can check that the eigenfunctions corresponding to differ-
ent eigenvalues are orthogonal. Indeed, they are∫ ∞

0
dx exp[(−iω − 1/2)u] exp[(iω′ − 1/2)u]

=
∫ ∞

−∞
du exp(−iωu) exp(iω′u) = δ(ω − ω′). (A3)
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FIG. 6. One-dimensional Rindler modes [Eq. (A2)] for different
values of ω. Both x and ω are measured in arbitrary units of length
and frequency, respectively.
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FIG. 7. Wightman response function for a 2D thermal gas of
Dirac fermions in Minkowski space. The frequency ω is measured in
terms of the tunneling strength, t , which is the natural energy scale
of the system, while G(ω) is a pure number. As expected from the
behavior of the density of states of the 2D Fermi gas in a π -flux lattice,
the response has a maximum at positive frequency ω. The response
above coincides with the one obtained in Rindler space-time in Fig.
4 at very large distance from the horizon.

Let us insert the spinor structure. For x > 0,

−i(x∂x + 1/2)σx

(
ψ1

ψ2

)
= ω

(
ψ1

ψ2

)
, (A4)

which leads to (∂u + 1/2)2ψ1 = −ω2ψ1, and an equivalent
equation for ψ2. The solution is very similar to the nonspinorial
case

(
ψ1(x,t)

ψ2(x,t)

)
= A

(
1

±1

)
xiω−1/2e−iωt . (A5)

1. Discretization of the Rindler Hamiltonian

The implementation of an analog of equations (19) or (27)
in an optical lattice requires a suitable discretization. In this
section, we will discuss the 1D case.

Let us discuss how to discretize HR(1D) = √
xp

√
x, the

1D Rindler Hamiltonian, appropriately. Consider an open
1D lattice with spacing d, and lattice points xm = md, with
m ∈ {−(L − 1)/2, . . . ,(L − 1)/2} and even L. Thus, the wave
functions only take components ψm ≡ ψ(xm). Let us use a
central differences discretization for p = −i∂x , i.e., (pψ)m =
−i(ψm+1 − ψm−1)/(2d). Let us call R the discrete version of
the HR(1D), for later convenience:

(Rψ)m = √
xm(p

√
xψ)m

= − i

2
[
√

m(m + 1)ψm+1 −
√

m(m − 1)ψm−1]

=
∑
m′

Rm,m′ψm′ . (A6)

Thus, the matrix entries for the Hamiltonian Rm,m′ are
nonzero only when the difference between the spatial indices
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FIG. 8. (a) Raw response function in the frequency domain
for a 1D system prior to Gaussian convolution as in (A17). The
frequency ω is measured in terms of the tunneling strength, t , which
is the natural energy scale of the system, while G(ω) is a pure number.
The system size is Lx = 500, and the color (and point type) denoting
the distance to the horizon are the same as in Fig. 2(a). (b) Raw
response function in the frequency domain for a 2D system prior
to Gaussian convolution as in (A17) and the frequency rescaling
described in Sec. IV C. The system size, Lx = 500, and the color
code (and point type) denoting the distance to the horizon are the
same as in Fig. 3(a).

is one: |m − m′| = 1. In that case,

Rm,m+1 = − i

2

√
m(m + 1). (A7)

This means that the tunneling between sites m and m + 1 must
be −(i/2)

√
m(m + 1), independently of d. This is not surpris-

ing since both R and Rindler space-time are scale invariant.
A good approximation is obtained by replacing the geometric
mean by the arithmetic mean: Rm,m+1 ≈ −(i/2) (m + 1/2).

The discrete Hamiltonian (A7) can be analytically diago-
nalized [51]. Its spectrum becomes continuous with constant
energy level density as L → ∞, but the convergence rate is
very slow: the distance between levels scales as ≈1/ ln(L).

Let us now focus on the 2D case. In order to formulate the
Rindler Hamiltonian on a square lattice it is convenient to start
with the symmetric continuous formulation (26). Explicitly,
by writing the spinor in terms of its chiral components,

ψ(x,y) = (a(x,y)
b(x,y)), we have

HR = i

2

∫
dx dy |x|[∂xa

†(x,y) − i∂ya
†(x,y)]b(x,y) + H.c.

(A8)

We can now exploit the bipartition of the lattice for discretizing
separately the two chiralities in the two checkerboard sub-
lattices and write the kinetic term in terms of the tunneling
between the two:

HR = i

4
t ′0

∑
k,l

(
|k + l + 1

2
| a†

k+l+1,k−l

− |k + l − 1

2
| a†

k+l−1,k−l − i |k + l| a†
k+l,k−l+1

+ i |k + l| a†
k+l,k−l−1

)
bk+l,k−l + H.c. (A9)

At this point, we notice that the above Hamiltonian can be
rewritten as the π -flux Hamiltonian once we do not distinguish
fermions in the different sublattices. Denoting the annihilation
(creation) operators by cm,n (c†m,n),

HR = t ′0
2

∑
m,n

[
i |m + 1

2
| c†m+1,n + (−1)m+n |m| c†m,n+1

]
cm,n

+ H.c. (A10)

By applying the gauge transformation

c†m,n → ei π
4 (m2−4n2−2mn−3m+4n)c†m,n, (A11)

we can recover the π -flux Hamiltonian in the symmetric
gauge (30).

2. Relation to the Riemann conjecture

The Dirac Hamiltonian is of interest in very different
areas, not only of physics, but also of mathematics. Indeed,
fermionic models are regularly used as mathematical tools in
differential geometry and analytic number theory. For instance,
by studying the number of nontrivial solutions of a Dirac
operator in a given manifold, it is possible to determine the
topological properties of the manifold itself as proved by the
celebrated Atiyah-Patodi-Singer index theorem [88].

The Dirac Hamiltonian in Rindler space-time considered
in this paper and its nonspinorial 1D equivalent H = √

xp
√

x

provide a handle for proving the Riemann conjecture, which
is one of the most famous and relevant open problems in
mathematics. Riemann conjectured that the nontrivial zeros
of the Riemann zeta function ζ (s) in the complex plane all
have real part 1

2 [89]. One of the established routes towards
proving this conjecture, the Hilbert-Polya route, is especially
interesting for physicists as it attempts the construction of
a Hermitian operator whose eigenvalues are the imaginary
parts of the nontrivial Riemann zeros. In physics, natural
occurrences of Hermitian operators are, of course, quantum
Hamiltonians [50]. In 1999, Berry and Keating proposed the
H = xp Hamiltonian and showed how the statistical behavior
of its eigenvalues corresponded to the statistical average
behavior of the imaginary parts of the nontrivial Riemann
zeros [90]. In fact, the classical Hamiltonian H = xp must
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be supplemented with a quantization prescription. The most
natural one is

H = √
xp

√
x = −i(

√
x∂x

√
x) = −i(x∂x + 1/2), (A12)

i.e., the 1D version of the Dirac Hamiltonian in Rindler
space-time. The discovery of this Berry-Keating Hamiltonian
led to a series of attempts to extend the model in several
directions [51,52], including a recent spinorial extension,
which is Eq. (27) [53].

3. Response function for a thermal gas and Gaussian
convolution

In Sec. II C, we have derived the expression for the
Wightman response function in the frequency domain G(ω)
for the ideal case of fermionic atoms at zero temperature
[Eq. (16)]. For a realistic gas at finite temperature T considered
at the end of Sec. IV C, the Minkowski vacuum |0M〉, appearing
in (16), has to be replaced by the thermal mixed state ρM (T ):

ρM (T ) =
∑

k

1

1 + exp
[
�ωM

k /kBT
]b

†
k|�〉〈�|bk. (A13)

It follows that the response function for a thermal gas is

Gx0 (ω) = Tr[ρM (T )c†x0
cx0 ]

=
∑
q,q ′

δ
(
ω − ωR

q

)
R̄qx0Rq ′x0Cqq ′ , (A14)

where

Cqq ′ =
∑

k

ŪqkUq ′k
1

1 + exp
[
�ωM

k /kBT
] . (A15)

Note that for T → 0, Cqq ′ → ∑
ωM

k <0 ŪqkUq ′k , and one recov-
ers the zero-temperature response function (16). For T larger
of TU , the response function becomes identical to the one of an
ordinary thermal Fermi gas in Minkowski spacetime, shown
in Fig. 7. As defined in the main text, Eqs. (11) and (15),
the unitary matrices Uqk and Rqx are determined from the
single-particle modes of Dirac Hamiltonian in Minkowski and
Rindler space-time.

In Sec. II C, in order to smear out lattice artifacts, we
have considered a convolution of the response function with a
Gaussian. In fact, as explained in Sec. IV E, such convolution is
what is really detected by one-particle excitation spectroscopy.
The Gaussian convolution consists of the following. By
defining

F (x − x0) = 1√
2πσ

exp[−(x − x0)2/2σ 2], (A16)

the convoluted response function reads as

GF
x0

(ω) =
∑
q,q ′

δ
(
ω − ωR

q

)∑
x

F (x − x0)R̄qxRq ′xCqq ′ ,

(A17)

where x’s are the abscissas of the lattice sites x = m (the
lattice space is taken to be one for convenience). The response
functions presented in Figs. 2–4 are obtained by taking σ = 2.
The row data are shown in Fig. 8.
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[55] M. Vekić and S. R. White, Phys. Rev. Lett. 71, 4283 (1993).
[56] V. G. Rousseau, G. G. Batrouni, D. E. Sheehy, J. Moreno, and

M. Jarrell, Phys. Rev. Lett. 104, 167201 (2010).
[57] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation

(W. H. Freeman, San Francisco, 1973).
[58] R. M. Wald, General Relativity (University of Chicago Press,

Chicago, 1984).
[59] R. Sachs and H. Wu, General Relativity for Mathematicians

(Springer, Berlin, 1983).
[60] R. C. Tolman and P. Ehrenfest, Phys. Rev. 36, 1791 (1930).

[61] H. Li and F. D. M. Haldane, Phys. Rev. Lett. 101, 010504 (2008).
[62] I. Peschel, J. Phys. A: Math. Gen. 36, L205 (2003).
[63] P. Candelas and D. W. Sciama, Phys. Rev. Lett. 38, 1372 (1977).
[64] P. Candelas and D. Deutsch, Proc. R. Soc. London, Ser. A 354,

79 (1977).
[65] R. M. Reed and B. Simon, Methods of Modern Mathematical

Physics II (Academic, New York, 1975).
[66] J. Kogut and L. Susskind, Phys. Rev. D 11, 395 (1975).
[67] I. Affleck and J. B. Marston, Phys. Rev. B 37, 3774 (1988).
[68] L.-K. Lim, A. Lazarides, A. Hemmerich, and C. Morais Smith,

Europhys. Lett. 88, 36001 (2009).
[69] T. Salger, C. Grossert, S. Kling, and M. Weitz, Phys. Rev. Lett.

107, 240401 (2011).
[70] P. Soltan-Panahi et al., Nat. Phys. 7, 434 (2011).
[71] L. Duca, T. Li, M. Reitter, I. Bloch, M. Schleier-Smith, and

U. Schneider, Science 347, 288 (2015).
[72] M. Polini, F. Guinea, M. Lewenstein, H. C. Manoharan, and

V. Pellegrini, Nat. Nanotechnol. 8, 625 (2013).
[73] T. Jacqmin, I. Carusotto, I. Sagnes, M. Abbarchi, D. D.

Solnyshkov, G. Malpuech, E. Galopin, A. Lemaı̂tre, J. Bloch,
and A. Amo, Phys. Rev. Lett. 112, 116402 (2014).

[74] T.-L. Dao, A. Georges, J. Dalibard, C. Salomon, and I. Carusotto,
Phys. Rev. Lett. 98, 240402 (2007).

[75] M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B. Paredes,
and I. Bloch, Phys. Rev. Lett. 111, 185301 (2013).

[76] H. Miyake, G. A. Siviloglou, C. J. Kennedy, W. C. Burton, and
W. Ketterle, Phys. Rev. Lett. 111, 185302 (2013).

[77] C. J. Kennedy, W. C. Burton, W. C. Chung, and W. Ketterle,
Nat. Phys. 11, 859 (2015).
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