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In the ultracold gases of alkali-earth-metal-like atoms, a new type of Feshbach resonance, i.e., the orbital
Feshbach resonance (OFR), has been proposed and experimentally observed in ultracold 173Yb atoms [R. Zhang
et al., Phys. Rev. Lett. 115, 135301 (2015)]. When the OFR of the 173Yb atoms occurs, the energy gap between
the open and closed channels is smaller by two orders of magnitude than the van der Waals energy. As a
result, quantitative accurate results for the low-energy two-body problems can be obtained via multichannel
quantum defect theory (MQDT), which is based on the exact solution of the Schrödinger equation with the van
der Waals potential. In this paper we use MQDT to calculate the two-atom scattering length, effective range,
and binding energy of two-body bound states for the systems with OFR. With these results we further study
the clock-transition spectrum for the two-body bound states, which can be used to experimentally measure the
binding energy. Our results are helpful for the quantitative theoretical and experimental research for the ultracold
gases of alkali-earth-metal-like atoms with OFR.
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I. INTRODUCTION

Feshbach resonance [1] is a powerful tool for the control of
interaction between ultracold atoms [2]. In ultracold gases
of alkali-metal atoms the magnetic Feshbach resonances
are widely used for tuning of s-wave scattering lengths
[2]. For the gases of ultracold alkali-earth-metal-like atoms,
recently we found a new type of Feshbach resonance, i.e.,
the orbital Feshbach resonance (OFR) [3]. With the help of
OFR, one can precisely control the s-wave scattering length
between two fermionic alkali-earth-metal-like atoms in 1S 0

and 3
P 0 electronic orbital states with different nuclear spin, by

changing the magnetic field [3]. Orbital Feshbach resonance
has been experimentally observed in the ultracold gases of
173Yb atoms [4,5]. It is also shown that using the ultracold
gases of alkali-earth-metal-like atoms with OFR, one can study
several interesting problems, including the Kondo effect, the
strong-interacting ultracold Fermi gases with narrow Feshbach
resonance, and the Leggett mode [3,6–14].

When the OFR of 173Yb atoms occurs, the energy gap
between the open and the closed channel is about 105 Hz. It
is, by two orders of magnitude, smaller than the characteristic
energy of the interatom interaction (i.e., the van der Waals
energy), which is of the order of 107 Hz [4,5,15,16]. As a result,
a simple zero-range two-channel Huang-Yang pseudopotential
can be used as an approximation for the interatom interaction
[3,16]. In this model, the two-body interaction is described
by two parameters, i.e., the scattering lengths a± for the two
independent scattering channels |±〉, which will be defined
below. It is estimated that for 173Yb atoms the quantitative
precision of the OFR point given by the two-channel Huang-
Yang pseudopotential is about 80% [3,16].

To obtain more accurate results, one needs to take into
account the effects from the finite-range van der Waals
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interaction potential. To this end, one can numerically solve the
multichannel Schrödinger equation with a model interaction
potential that behaves as a van der Waals potential in the
long-range limit (e.g., the Lennard-Jones potential) [12].
Nevertheless, there is also an analytical approach for the
multichannel low-energy two-body problem with a van der
Waals potential, i.e., the multichannel quantum defect theory
(MQDT) [17–20], which is based on the analytical solution
of the single-channel Schrödinger equation with a van der
Waals potential [21]. In ultracold atomic gas physics, this
MQDT approach was originally developed for alkali-metal
atoms. Previous research for these systems shows that when
the interchannel energy gap is much smaller than the van der
Waals energy, the result given by the MQDT is quantitatively
very accurate [18,20]. Thus, this approach is also applicable for
the ultracold alkali-earth-metal-like atoms with an OFR with
small energy gaps between the open and the closed channels,
e.g., the ultracold 173Yb atoms.

In this paper, using the MQDT, we solve the low-energy
two-body problems for alkali-earth-metal-like atoms with an
OFR. We derive the analytical expressions of the two-atom
scattering length and effective range [Eqs. (36) and (37)],
as well as the algebraic equation satisfied by the binding
energy of two-body bound state [Eq. (48)]. All the results
are expressed in terms of the scattering length a± as well as
the characteristic length β6 of the van der Waals potential.
Our results show that the OFR for 173Yb atoms is a narrow
resonance [7]. Using these results, we further investigate the
clock-transition spectrum of these systems, which can be used
for the experimental measurement of the binding energy. Our
results are helpful for both theoretical and experimental study
for ultracold alkali-earth-metal-like atoms with OFR.

The remainder of this paper is organized as follows. In
Sec. II we show the MQDT approach for our system and
calculate the two-atom s-wave scattering length and effective
range. In Sec. III we calculate the binding energy and wave
function of the two-atom bound state, as well as the clock-
transition spectrum. A summary and discussion of our results
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FIG. 1. (a) Energy-level diagram of a single atom. For the OFR,
the open channel |o〉 is the two-body internal state with one atom in
|g,↓〉 and the other in |e, ↑〉 (the red closed circles), while the closed
channel |c〉 is the state where one atom is in |g,↑〉 and the other is
in |e,↓〉 (the red open dotted circles). Here δe = μe(m′

I − mI )B is
the Zeeman energy difference between the single-atom states |e,↓〉
and |e,↑〉 and δg = μg(m′

I − mI )B is the one between states |g,↓〉
and and |g,↑〉. The Zeeman energy difference δ in Eq. (3) can be
expressed as δ = δe − δg = (δμ)B, with δμ = (μe − μg)(m′

I − mI ).
(b) Potential curves U (±)(r). In the region r > b, we have U (+)(r) ≈
U (−)(r) ≈ −�

2β4
6 /mr6. In our problem both the energy gap δ and the

scattering energy ε are much smaller than −�
2/mβ2

6 .

are presented in Sec. IV. Details of our calculations are shown
in the Appendixes.

II. SCATTERING LENGTH AND EFFECTIVE RANGE

We consider two fermionic alkali-earth-metal-like atoms in
1S 0 (g) and 3

P 0 (e) electronic orbital states, with nuclear-spin
magnetic quantum numbers mI (↑) and m′

I (↓) (Fig. 1). The
two-body internal state, with one atom in |g,↓〉 and the other
in |e,↑〉, can be defined as

|o〉 ≡ 1√
2

(|g〉(1)|↓〉(1)|e〉(2)|↑〉(2) − |e〉(1)|↑〉(1)|g〉(2)|↓〉(2)),

(1)

with |e(g)〉(j ) (j = 1,2) and |↑(↓)〉(j ) (j = 1,2) the electronic-
orbital and nuclear-spin states of the j th atom, respectively.
Similarly, we also define the state with one atom in |g,↑〉 and
the other in |e,↓〉 as

|c〉 ≡ 1√
2

(|g〉(1)|↑〉(1)|e〉(2)|↓〉(2) − |e〉(1)|↓〉(1)|g〉(2)|↑〉(2)).

(2)

The Hamiltonian for the two-atom relative motion is given
by

Ĥ = −�
2

m
∇2

r + δ|c〉〈c| + U (r), (3)

where m is the single-atom mass, r is the relative position of
these two atoms, and

δ = (δμ)B

is the Zeeman energy difference between states |c〉 and |o〉,
with δμ and B the magnetic moment difference of these two
states and the magnetic field, respectively. Here δμ can be
expressed as

δμ = (μe − μg)(m′
I − mI ),

where μe (g) is the magnetic moment for the electronic orbital
state |e〉 (|g〉). Without loss of generality, here we assume that
δμ > 0. In Eq. (3) U (r) is the interatom interaction potential.
It is diagonal in the bases

|±〉 = 1√
2

(|c〉 ∓ |o〉) (4)

and can be expressed as

U (r) = U (+)(r)|+〉〈+| + U (−)(r)|−〉〈−|, (5)

where U (±)(r) is the potential curve with respect to state |±〉
[Fig. 1(b)]. When the two atoms are far away enough from
each other, U (±)(r) can be approximated as the same van der
Waals potential, i.e., we have

U (+)(r > b) ≈ U (−)(r > b) ≈ −�
2β4

6

mr6
. (6)

Here β6 is the characteristic length of the van der Waals
potential and the range b satisfies the condition

b < β6. (7)

In this paper we focus on the systems where the energy gap
δ between the states |c〉 and |o〉 is much smaller than the van
der Waals energy �

2/mβ2
6 . As shown below, our finial result

is independent of the exact value of b.
We consider the s-wave scattering of two atoms incident

from channel |o〉, with relative momentum �k. Here we assume
that the scattering energy

ε = �
2k2

m
(8)

is smaller than the interchannel energy gap δ. As a result, in the
scattering process the channel |o〉 is open, while the channel
|c〉 is closed.

The s-wave scattering length and effective range are
determined by the two-atom scattering wave function |ψε,δ(r)〉,
which satisfies the Schrödinger equation

Ĥ |ψε,δ(r)〉 = E|ψε,δ(r)〉 (9)

with the boundary conditions

lim
r→0

[r|ψε,δ(r)〉] = 0 (10)

and

lim
r→∞〈c|ψε,δ(r)〉 = 0. (11)
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We point out that if we solve Eq. (9) only with the the boundary
condition (10), we can get two linearly independent special
solutions. The solution of Eq. (9) and conditions (10) and (11),
i.e., the scattering wave function |ψε,δ(r)〉, can be expressed
as the superposition of these two special solutions. Following
the idea of MQDT, below we will first derive the two special
solutions of Eq. (9) and the condition (10) for the simple case
with δ = 0 and then derive the two special solutions of (9) and
(10) for nonzero δ. Finally, we will construct the scattering
wave function |ψε,δ(r)〉 with these special solutions and the
condition (11). With this wave function we can derive the
s-wave scattering phase shift, scattering length, and effective
range.

A. Special solutions of Eqs. (9) and (10) for δ = 0

When δ = 0, the Hamiltonian Ĥ given by Eq. (3) is diagonal
in the bases {|+〉,|−〉}. Therefore, in this case we can choose
the two special solutions of Eq. (9) and (10) as

|ψ (+)
ε,δ=0(r)〉 = φ(+)

ε (r)

r
|+〉, (12)

|ψ (−)
ε,δ=0(r)〉 = φ(−)

ε (r)

r
|−〉. (13)

Substituting Eqs. (12) and (13) into Eq. (9), we obtain two
equations for the components φ(±)

ε (r):

−�
2

m

d2

dr2
φ(±)

ε (r) + U (±)(r)φ(±)
ε (r) = εφ(±)

ε (r). (14)

Furthermore, using the expression (6) of the potential U (±)(r)
in the region r > b, in this region we can reduce these two
equations to

− d2

dr2
φ(±)

ε (r) − β4
6

r6
φ(±)

ε (r) = mε

�2
φ(±)

ε (r). (15)

Thus, when r > b the components φ(±)
ε (r) can be expressed as

the superpositions of two special solutions f 0
ε (r) and g0

ε (r) of
Eq. (15), which were analytically derived by Gao in Ref. [21].
These two solutions have energy-independent normalization in
the limit r → 0, as described in Eqs. (17) and (18) of Ref. [21]
and illustrated in Fig. 2.

According to the above discussion, we can choose φ(±)
ε (r)

to satisfy

φ(±)
ε (r) = f 0

ε (r) − K0
±g0

ε (r) for r > b. (16)

The properties of the parameters K0
± can be investigated with

the following two facts. First, in the region with r � β6 the
interaction potentials U (±)(r) are potential wells with the depth
being on the order of the van der Waals energy �

2/mβ2
6 or even

larger. Thus, for our case with ε � �
2/mβ2

6 the behaviors
of φ(±)

ε (r � β6) are almost independent of ε. Explicitly, for
r � β6 the functions φ(±)

ε (r) can be formally expressed as
φ(±)

ε (r) = F (±)(ε)R(±)(r), whereas the functions F (±)(ε) are
independent of r and G(±)(r) are independent of ε. Second,
the expressions of f 0

ε (r) and g0
ε (r) [21] show that these two

functions are also almost ε independent when r � β6 for ε �
�

2/mβ2
6 , as illustrated in Fig. 2. Applying these two facts

and Eq. (16) in the region b < r � β6, we can obtain the
conclusion that F (±)(ε) = 1 and the parameters K± are also
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FIG. 2. Special solutions (a) f 0
ε (r) and (b) g0

ε (r) of Eq. (15),
derived by Gao in Ref. [21]. Notice that in Ref. [21] the equation
is solved for both positive and negative values of ε. Here we show
the results for the cases with ε taking the values ε1 ≡ 0.019�

2/mβ2
6 ,

ε2 ≡ −0.019�
2/mβ2

6 , ε3 ≡ 0.013�
2/mβ2

6 , and ε4 ≡ −0.026�
2/mβ2

6 .
When |ε| is much smaller than �

2/mβ2
6 , in the region r � β6 both

f 0
ε (r) and g0

ε (r) are almost independent of the values of ε.

almost independent of ε. That is one of the basic ideas of
quantum defect theory [17,22,23].

For ε > 0, in the limit r → ∞ the functions f 0
ε (r) and g0

ε (r)
satisfy [21]

lim
r→∞ f 0

ε (r) =
√

2

πk
[Zff (ε) sin(kr) − Zfg(ε) cos(kr)],

(17)

lim
r→∞ g0

ε (r) =
√

2

πk
[Zgf (ε) sin(kr) − Zgg(ε) cos(kr)]

(18)

and the functions Zij (ε) (i,j = f,g) are given in Ref. [21].
Substituting Eqs. (17) and (18) into Eq. (16) and using the
expressions of Zij (ε), one can obtain

lim
r→∞ φ

(±)
ε=0(r) ∝

[
r − (2π )(K0

± − 1)

�(1/4)2K0±
β6

]
. (19)

That result was derived by Gao as Eq. (9) of Ref. [17]. On
the other hand, since in our case with δ = 0 the states |+〉
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and |−〉 are two independent scattering channels, we also
have limr→∞ φ

(±)
ε=0(r) ∝ (r − a(±)

s ), where a(±)
s is the s-wave

scattering length for each channel. Thus, Eq. (19) implies the
relation between parameter K0

± and the scattering length a(±)
s

[17]:

K0
± = 2πβ6

2πβ6 − a
(±)
s �(1/4)2

. (20)

B. Special solutions of Eqs. (9) and (10) for δ �= 0

Now we consider the special solutions of Eq. (9) and
condition (10) for the case with δ �= 0. As mentioned above,
in this section we ignore the boundary condition (11). When
δ �= 0, it is convenient to expand |ψε,δ(r)〉 in the bases {|c〉,|o〉}.
Since the potential U (±)(r) satisfies the condition (6), for r > b

the interaction U is independent of the internal state of these
two atoms and thus the channels |c〉 and |o〉 are decoupled and
Eq. (9) can be simplified as

[
− d2

dr2
− β4

6

r6

]
[r〈o|ψε,δ(r)〉] = ε[r〈o|ψε,δ(r)〉], (21)

[
− d2

dr2
− β4

6

r6

]
[r〈c|ψε,δ(r)〉] = (ε − δ)[r〈c|ψε,δ(r)〉].

(22)

Therefore, similar as in Sec. II A, for r > b the component
r〈o|ψε,δ(r)〉 can be expressed as the superpositions of func-
tions f 0

ε (r) and g0
ε (r), and r〈c|ψε,δ(r)〉 can be expressed as the

superpositions of f 0
ε−δ(r) and g0

ε−δ(r). Thus, we can choose

the two special solutions of |ψ (α,β)
ε,δ (r)〉 of Eq. (9) to satisfy

∣∣ψ (α)
ε,δ (r > b)

〉

= 1

r

{[
f 0

ε (r) − K0
oog

0
ε (r)

]|o〉 − K0
cog

0
ε−δ(r)|c〉}, (23)

∣∣ψ (β)
ε,δ (r > b)

〉

= 1

r

{−K0
ocg

0
ε (r)|o〉 + [

f 0
ε−δ(r) − K0

ccg
0
ε−δ(r)

]|c〉}.
(24)

Here the parameter K0
ij (i,j = o,c) is also determined by the

detail of the potential curves U (±)(r) in the region r < b. As
shown in Appendix A, with an analysis that is similar to that in
Sec. II A, we can find that for our case with ε � �

2/mβ2
6 and

δ � �
2/mβ2

6 , the values of K0
ij (i,j = o,c) are independent

of both ε and δ [18]. Therefore, we can obtain the values of
K0

ij (i,j = o,c) from the behavior of |ψ (α,β)
ε,δ (r)〉 in the limit

δ → 0 with the following analysis. In Sec. II A we already
obtained two special solutions |ψ (±)

ε,δ=0(r)〉 for Eqs. (9) and

(10) with δ = 0. Therefore, |ψ (α,β)
ε,δ=0(r)〉 should be the linear

combinations of |ψ (±)
ε,δ=0(r)〉. This fact and Eqs. (12), (13),

(16), (23), and (24) yield that

K0
cc = K0

oo = 1
2 (K0

+ + K0
−), (25)

K0
co = K0

oc = 1
2 (K0

− − K0
+). (26)

Moreover, with the relation (20) the parameters K0
ij (i,j = o,c)

can be further expressed as functions of β6 and the scattering
length a(±)

s .

C. Scattering wave function and phase shift

Now we calculate the scattering wave function |ψε,δ(r)〉
that satisfies Eq. (9) as well as both of the boundary conditions
(10) and (11). This scattering state is the superposition of the
two special solutions |ψ (α,β)

ε,δ (r)〉 of Eqs. (9) and (10), which
were derived in Sec. II B. Namely, |ψε,δ(r)〉 can be expressed
as

|ψε,δ(r)〉 = B
{∣∣ψ (α)

ε,δ (r)
〉 + C

∣∣ψ (β)
ε,δ (r)

〉}
, (27)

where the coefficient C is determined by the condition (11)
and the coefficient B could be an arbitrary r-independent
constant. In addition, according to this result and Eqs. (23) and
(24), in the region r > b the component 〈c|ψε,δ(r)〉 is a linear
combination of functions f 0

ε−δ(r) and g0
ε−δ(r). In our system

with ε < δ, these two functions have asymptotic behaviors
[21]

f 0
ε−δ(r → ∞) = r1/2 lim

r→∞

[
Wf I (ε − δ)I2ν(κr)

+Wf K (ε − δ)
1

π
K2ν(κr)

]
, (28)

g0
ε−δ(r → ∞) = r1/2 lim

r→∞

[
WgI (ε − δ)I2ν(κr)

+WgK (ε − δ)
1

π
K2ν(κr)

]
, (29)

where

κ =
√

m(δ − ε)

�
,

I2ν and K2ν are Bessel functions, and the functions Wij (z)
(i = f,g; j = I,K) are defined in in Ref. [21]. Here the ν is a
parameter that is determined by the energy ε − δ, as described
in Ref. [21]. Substituting Eqs. (28) and (29) into Eq. (27),
we can express limr→∞〈c|ψε,δ(r)〉 in terms of the parameter
C. Moreover, matching this expression with the boundary
condition (11) and using the facts I2ν[(κr) → ∞] = ∞ and
K2ν[(κr) → ∞] = 0, we find that

C = KcoWgI (ε − δ)

Wf I (ε − δ) − KccWgI (ε − δ)
.

Substituting this expression into Eq. (27), we obtain the
component of the scattering wave function |ψε,δ(r)〉 in the
open channel

〈o|ψε,δ(r > b)〉 = B

r

{
f 0

ε (r) − Keff[ε,δ]g0
ε (r)

}
, (30)

where the function Keff[ε,δ] is defined as

Keff[ε,δ] = K0
oo + K0

ocK
0
co

χ (ε − δ) − K0
cc

. (31)

Here K0
ij (i,j = o,c) are given in Eqs. (25) and (26), with

K0
± being given in Eq. (20), and the function χ (z) (z < 0) is
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defined as

χ (z) = Wf I (z)

WgI (z)
. (32)

Substituting Eqs. (17) and (18) into Eq. (30), we can further
obtain the behavior of 〈o|ψε,δ(r)〉 in the limit r → ∞.
Comparing this expression with the relation

lim
r→0

〈o|ψε,δ(r)〉 ∝ 1

r
[cot η0(k) sin(kr) + cos(kr)], (33)

where η0 is the s-wave scattering phase shift, we finally find
that cot η0(k) can be expressed as

cot η0(k) = Zff (ε) − Keff[ε,δ]Zgf (ε)

Keff[ε,δ]Zgg(ε) − Zfg(ε)
. (34)

Moreover, since Keff[ε,δ] is determined by the parameters K
(0)
ij

(i,j = o,c) and K
(0)
ij is a function of the scattering lengths a(±)

s
and the characteristic length β6 of the van der Waals interaction
potential, tan η0(k) given by Eq. (34) is essentially a function
of a(±)

s , β6, δ, and ε. Here we point out that the expression
(34) of cot η0(k) has the same form as the one for the case
with a single-channel van der Waals potential (i.e., Eq. (5) of
Ref. [17]), while the parameter K0 for the single-channel case
should be replaced by Keff[ε,δ] for our case.

D. The s-wave scattering length and effective range

Using Eq. (34), we can calculate the two-atom s-wave
scattering length as and effective range reff , which are defined
via the low-energy expansion of k cot η0(k):

k cot η0(k) = − 1

as

+ 1

2
reffk

2 + O(k3). (35)

Substituting Eq. (34) into Eq. (35) and using direct calculations
that are quite similar to the single-channel case [17], we can
obtain

as(δ) = 2π

[�(1/4)]2

Keff[0,δ] − 1

Keff[0,δ]
β6, (36)

reff(δ) = [�(1/4)]2

3π

Keff[0,δ]2 + 1

(Keff[0,δ] − 1)2
β6

+ [�(1/4)]2

π

�
2K ′

eff[0,δ]

mβ6(Keff[0,δ] − 1)2
, (37)

where K ′
eff[ε,δ] = dKeff[ε,δ]/dε. In addition, with the help

of the relation δ = (δμ)B, we can further express as and reff

as functions of the magnetic field B. It is clear that we have
as = ∞ at the magnetic field B0, which satisfies the condition

Keff[0,(δμB0)] = 0. (38)

That is the OFR.
In the calculation for as and reff we are required to derive the

value of the function χ (−δ), which appears in the expression
(31) for Keff[0,δ]. The exact value of χ (−δ) can be obtained
from its definition (32) and the expressions of the W functions
that are given in Ref. [21]. Nevertheless, it is also proved that
[19] for sufficient small |z| the expression of χ (z) (z < 0)
can be approximated as [see Eq. (57) of [19]; notice that the

25 30 35 40 45 50 55 60
B(G)

-5

-3

-1

1

3

5

a
s
/a

0

×104

Exact MQDT
MQDT with Eq.(39)
2-Channel-HY
SFRM in Ref.[3]
Eq.(42)

FIG. 3. The s-wave scattering length as of 173Yb atoms, as a
function of magnetic field. Here we show the results given by the
MQDT [i.e., Eq. (36)] with the exact value of χ (−δ) (red solid
line), the MQDT with the approximation (39) (black triangle), the
two-channel Huang-Yang (HY) pseudopotential [i.e., Eq. (41)] (blue
dashed line), the approximated expression (42) (black circles), and
the simple finite-range model (SFRM) in Ref. [3] (blue stars).
We consider the case with mI = −5/2 and m′

I = 5/2 and take
a(+)

s = 1900a0, a(−)
s = 200a0, β6 = 169.6a0 with a0 the Bohr radius,

and μe − μg = 2π� × 112 Hz/G. The results of the SFRM are given
by Eq. (12) of Ref. [3] with the parameter r0 = 112.9a0.

function χc0
l=0 in this reference means −χ for our case]

χ (z) ≈
z̃
3 + πz̃2

30 − 2π
√

z̃

(
1+ z̃

3

)
�[1/4]2

1 − 2π
√

z̃

(
1− z̃

3

)
�[1/4]2

, (39)

with z̃ = |z|mβ2
6/�

2. Therefore, when the energy gap δ is small
enough (i.e., the magnetic field B is small enough) we can use
the approximation (39) to simplify the calculations for as and
reff . Similarly, according to Eq. (28) of Ref. [19] (notice that
Kc0

l in that reference means −Keff for our case), when both δ

and the scattering energy ε are small enough, the expression
(34) of cot η0 can be approximated as

cot η0 ≈
[
πk̃4

15
− 2πk̃

�
[

1
4

]2

1−K̃ − (1+K̃)
(

1
3 k̃2+ π

30 k̃4
)

−K̃− 1
3 k̃2+ π

30 k̃4

]−1

×
[

1 − 4k̃4

15
ln k̃ + 2

15

(
22

5
+ ln 2 − γ

)
k̃4

]−1

,

(40)

where k̃ = kβ6, γ = 0.5772 . . . is the Euler constant and K̃

is the value of Keff[ε,δ] given by Eq. (31), with the value of
χ (ε − δ) given by the approximation (39).

In Fig. 3 we illustrate the scattering length as for 173Yb with
a(+)

s = 1900a0, a(−)
s = 200a0 [5], and β6 = 169.6a0 [15], with

a0 the Bohr radius. Here we consider the case with mI = −5/2
and m′

I = 5/2. We calculate as with both the exact value of
the function χ (−δ) and the approximation (39). It is shown
that the approximation (39) works very well for B � 60 G.

013624-5



YANTING CHENG, REN ZHANG, AND PENG ZHANG PHYSICAL REVIEW A 95, 013624 (2017)

0 100 200 300
B(G)

5

10

15
|r e

ff
|/

β
6

Exact MQDT
MQDT with Eq.(39)

B0

FIG. 4. Effective range reff of 173Yb atoms given by the MQDT
with the exact value of χ (−δ) (red solid line) and the MQDT with the
approximation (39) (blue dashed line). The red dotted line indicates
the OFR point B0. In our calculation we use the same parameters as
in Fig. 3.

For comparison, we also show as given by the zero-
range two-channel Huang-Yang pseudopotential, which can
be expressed as [3,16]

as = −[a(+)
s + a(−)

s ] + 2
√

mδ/�2a(+)
s a(−)

s

[a(+)
s + a

(−)
s ]

√
mδ/�2 − 1

. (41)

As show in Fig. 3, the difference between the OFR points given
by the MQDT and the zero-range two-channel Huang-Yang
pseudopotential is about 9 G and the relative difference is
about 20%. This difference is due to the fact that the zero-range
pseudopotential does not include the van der Waals physics and
thus is less accurate than the MQDT approach. In Fig. 3 we
also compare the result given by the MQDT and the one given
by the simple finite-range model (SFRM) in Ref. [3] (i.e.,
Eq. (12) of Ref. [3]), where the interaction potential is simply
described by a finite-range boundary condition satisfied by the
wave function at the position r = r0. It is shown that for our
case the SFRM is quantitatively consistent with the MQDT
when r0 = 112.9a0 ≈ 0.67β6.

On the other hand, around the OFR point B0 where as = ∞,
we can expand the scattering length as as a series of B − B0.
By neglecting the high-order terms that are proportional to
(B − B0)n (n � 1), we obtain the approximate expression of
as :

as ≈ abg

(
1 − �B

B − B0

)
. (42)

Our calculation show that for 173Yb we have abg = −98a0

and �B = −660 G. As shown in Fig. 3, this approximate
expression is quantitatively consistent with the MQDT result
[i.e., Eq. (36)] in a large range of magnetic field.

In Fig. 4 we illustrate the effective range reff for the OFR of
173Yb atoms with mI = −5/2 and m′

I = 5/2. Our calculation
shows that at the OFR point we have |reff| ≈ 908.7a0 ≈ 5.4β6

and thus the resonance parameter sres ≡ 4πβ6/�(1/4)2reff

is about 0.18. This means that OFR for 173Yb is a narrow
resonance in the sense of an effective range [2,7]. Here we also
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FIG. 5. Real part (blue solid line) and imaginary part (red dashed
line) of the factor k cot η0 defined by Eq. (33), as functions of
the scattering energy ε. Here we consider the system with the
parameters of Fig. 3 and illustrate the results for the cases with
(a) B = 30 G (δ = 2π� × 1.7 × 104 Hz) and (b) B = 50 G (δ =
2π� × 2.8 × 104 Hz). It is clearly shown that Im[k cot η0] = 0 for
ε < δ and Im[k cot η0] �= 0 for ε > δ. The black triangles are the
results for Re[k cot η0] (ε < δ) given by the approximation (40). Our
calculation for the case with ε > δ is based on the boundary condition
limr→∞〈c|ψε,δ(r)〉 ∝ ei

√
m(ε−δ)r/�/r and the direct generalization of

the approach in Secs. II A–II C for that case.

compare the results given by the exact value of the function
χ (−δ) and the approximation (39) and show that an apparent
difference between these two results appears for B � 100 G.

It is pointed out that the effective range diverges in the limit
B → 0, as shown in Fig. 4. That is due to the fact that the
function dχ(z)

dz
|z=−δ , which is proportional to K ′[0,δ], diverges

in the limit δ → 0. This result may also be understood with the
following analysis. We consider the scattering of two atoms
incident from the channel |o〉. When the scattering energy ε

is smaller than the energy gap δ between channels |c〉 and
|o〉, the channel |o〉 is open and |c〉 is closed. Thus, there is
only elastic scattering |o〉 → |o〉. Accordingly, the parameter
k cot η0 defined by Eq. (33) is real. Nevertheless, when ε > δ,
both channels |o〉 and |c〉 are open. As a result, there are
both elastic scattering |o〉 → |o〉 and inelastic scattering |o〉 →
|c〉. Thus, the boundary condition (11) should be replaced
by limr→∞〈c|ψε,δ(r)〉 ∝ ei

√
m(ε−δ)r/�/r , which includes both

real and imaginary parts. As a result, the imaginary part of
k cot η0 becomes nonzero, as illustrated in Fig. 5. Therefore,
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as a function of k, the factor k cot η0 is not analytical at the
point k = √

δ. As a result, when δ = 0 (i.e., B = 0) the factor
k cot η0 is not analytical at k = 0 and thus the effective-range
expansion (35) is not applicable for finite k. Accordingly, the
expansion coefficient reff diverges in the limit B → 0.

III. TWO-ATOM BOUND STATE

In this section we investigate the two-atom bound state in
the system with OFR. We will calculate the binding energy
and wave function with MQDT and study the clock-transition
spectrum for the bound state, which may be observed in the
experiments.

A. Binding energy and wave function

In our system the two-body bound-state wave function
|φb(r)〉 and the bound-state energy Eb satisfy the Schrödinger
equation

Ĥ |φb(r)〉 = Eb|φb(r)〉 (43)

as well as the conditions

lim
r→0

(r|φb(r)〉) = 0, (44)

lim
r→∞ |φb(r)〉 = 0, (45)

and

Eb < 0. (46)

Here we consider the cases where the binding energy |Eb| is
much smaller than �

2/mβ2
6 . In these cases we can derive Eb

with the MQDT approach introduced above. With the analysis
shown in the above section, we can obtain two special solutions
|ψ (α)

Eb,δ
(r)〉 and |ψ (β)

Eb,δ
(r)〉 for Eqs. (43) and (44). In the region

r > b, the solutions |ψ (α,β)
Eb,δ

(r)〉 also satisfy Eqs. (23) and (24)
with K0

ij (i,j = o,c) being given by Eqs. (25) and (26) and
ε = Eb. The bound-state wave function |φb(r)〉 can be ex-
pressed as the superposition of these two special solutions,
i.e., we have

|φb(r)〉 = Cα

∣∣ψ (α)
Eb,δ

(r)
〉 + Cβ

∣∣ψ (β)
Eb,δ

(r)
〉
, (47)

with Cα,β the superposition coefficients. Furthermore, sub-
stituting the behaviors of the functions f (0)

ε (r) and g(0)
ε (r)

in the long-range limit r → ∞, i.e., Eqs. (26) and (27) of
Ref. [21], we can derive the long-range behavior of the
special solutions |ψ (α,β)

Eb,δ
(r)〉. Substituting this behavior into

the expression (47) and then into the boundary conditions (44)
and (45), we can finally derive the algebraic equation satisfied
by the bound-state energy Eb,

χ (Eb) = Keff[Eb,δ], (48)

with the function χ (z) and Keff[z,δ] introduced in Sec. II C.
We can obtain the energy Eb by solving Eq. (48).

0 25 50
B(G)

B(G)

-1

-0.8

-0.6

-0.4

-0.2

0

E
b
(2

π
h̄
×

H
z)

0 25 50
0

0.25

0.5

Z

(b)

(a)

×104

B0

B0

FIG. 6. (a) Bound-state energy Eb and (b) closed-channel pop-
ulation Z of 173Yb atoms. Here we show the value of Eb given by
the MQDT (red solid line) and the simple expression Es ≡ −�

2/ma2
s

(red dashed line). In our calculation we use the same parameters as
in Fig. 3. Here the pink dotted line indicates the OFR point B0.

Furthermore, we can also calculate the closed-channel
population Z of the two-body bound state, which is defined as

Z ≡

∫
|〈c|φb(r)〉|2dr∫

[|〈c|φb(r)〉|2 + |〈o|φb(r)〉|2]dr
. (49)

Using the Feynman-Hellmann theorem, it can be proved that
the value of Z is given by the derivative of the bound-state
energy Eb with respect to the energy gap δ between the open
and closed channels:

Z = ∂Eb

∂δ
. (50)

In Figs. 6(a) and 6(b) we illustrate the bound-state energy
Eb and the closed-channel population Z for 173Yb atoms,
as functions of the magnetic field B. For comparison, we
also show the energy given by the simple expression Es ≡
−�

2/ma2
s , with as the s-wave scattering length given by the

MQDT. For a wide Feshbach resonance that is dominated by
the open channel, we have Eb ≈ Es and Z ≈ 0 in a broad
region around the resonance point. Nevertheless, as shown in
Figs. 6(a) and 6(b), in most of the resonance region of 173Yb
atoms the behaviors of Eb and Es are quite different from
each other and the closed-channel population Z is significantly
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ωL ωL

(a)

|e,

|e,

|g,
|g,

kL

kL

Process (I) Process (II)

mImI

FIG. 7. (a) Schematic diagram for the experiment of clock-
transition spectrum. The π -polarized clock laser can induce a
one-body transition between states |g,↑〉 and |e,↑〉, as well as the
transition between |g,↓〉 and |e,↓〉. As defined in Sec. II, mI and
m′

I are the magnetic quantum numbers for the nuclear spin states ↑
and ↓, respectively. (b) and (c) Two processes of clock-laser-induced
dissociation of a dimer, where one atom (the yellow atom) is in the e

state and the other atom (the blue atom) is in the g state. Process (I):
The atom in the g state absorbs a photon and transits to the e state. The
two-atom mass center gains photon recoil momentum �kL. Process
(II): The atom in the e state emits a photon and transits to the g state.
The two-atom mass center gains photon recoil momentum −�kL.

nonzero. These results also imply that the OFR for 173Yb is
a narrow resonance in which the contribution from the closed
channel is quite significant. That is consistent with our previous
analysis based on the effective range.

B. Clock-transition spectrum

Now we investigate the clock-transition spectrum for the
ultracold gases of alkali-earth-metal-like atoms in the two-
body bound state |φb(r)〉 (i.e., the ultracold gases of dimers).
It is clear that in each dimer one atom is in the electronic
orbital g state and the other atom is in the e state. Therefore,
if a pulse of clock laser with π polarization, which can induce
the one-body transition (clock transition) between states |g,j 〉
and |e,j 〉 (j = ↑,↓), is applied to these two atoms, the dimer
may be dissociated into two free atoms via the following two
first-order processes (Fig. 7).

Process (I). The atom in the g state absorbs a photon and
transits to the e state. After this process both of the atoms
are in the e state. Since in |φb(r)〉 one atom is in nuclear-spin
state ↑ and the other atom is in state ↓ and the π -laser beam
does not change the nuclear-spin state, after this process we

have one atom in state |e,↑〉 and the other atom in state |e,↓〉.
Furthermore, the center of mass (c.m.) of these two atoms can
obtain a recoil momentum �kL from the laser photon, with kL

being the wave vector of the clock laser.
Process (II). The atom in the e state emits a photon and

transits to the g state. With similar analysis, we know that
after this process one atom is in state |g,↑〉 and the other atom
is in state |g,↓〉 and the c.m. can also obtain a recoil momentum
−�kL.

Now we study the properties of the clock-transition spec-
trum, i.e., the dissociation rate as a function of the clock-laser
angular frequency ωL. We first consider the energy condition
of the above two processes. Before the transition process, the
energy of these two atoms is

E0 = Ee↑ + Eg↓ − |Eb| + �
2|K|2
4m

, (51)

where �K is the c.m. momentum. Here Elj (l = e,g; j = ↑,↓)
is the energy of the one-atom internal state |l,j 〉, which can be
expressed as Eg↑ = μgmIB, Eg↓ = μg(m′

I )B, Ee↑ = εeg +
μemIB, and Ee↓ = εeg + μe(m′

I )B, with εeg the energy gap
between the e state and g state for B = 0. The term Ee↑ + Eg↓
in Eq. (51) is nothing but the threshold energy of the open
channel |o〉. Now we consider process (I) in which the atoms
absorb a photon. Due to the energy conservation, this process
can occur under the condition

E0 + �ωL > E(I)
min, (52)

where E(I)
min is the minimum energy of the final states of process

(I). Furthermore, since the finial state of process (I) is a
scattering state of two atoms in states |e,↑〉 and |e,↓〉, with
mass-center momentum �(K + kL), the minimum energy of
the final state of process (I) is

E(I)
min = Ee↑ + Ee↓ + �

2|K + kL|2
4m

. (53)

Thus, the energy condition (52) for process (I) can be rewritten
as

ωL > ωI(K) ≡ Ee↓ − Eg↓ + |Eb|
�

+ �(|kL|2 + 2K · kL)

4m
.

(54)

Similarly, since in process (II) the atoms emit a photon, this
process can occur under the condition

E0 − �ωL > E(II)
min, (55)

where E(II)
min is the minimum energy of the final states of process

(II), which can be expressed as

E(II)
min = Eg↑ + Eg↓ + �

2|K − kL|2
4m

. (56)

Using this result, we can reexpress the energy condition (55)
for process (II) as

ωL < ωII(K) ≡ Ee↑ − Eg↑ − |Eb|
�

− �(|kL|2 − 2K · kL)

4m
.

(57)

The above analysis yields that the laser-induced dissociation
process can only occur under the condition (54) or (57).
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In particular, the dissociation process cannot occur in the
frequency region ωII < ω < ωI. Thus, the clock-transition
spectrum includes two branches corresponding to processes
(I) and (II), respectively.

Our above analysis can be verified by the quantitative
calculation for the dissociation rate based on Fermi’s golden
rule. We consider two atoms with the initial wave function

|�(R,r,t = 0)〉 = 1

(2π )3/2

∫
dK φ(K)eiK·R|φb(r)〉, (58)

where R and r are the mass-center position and the relative
position of these two atoms, respectively, |φb(r)〉 is the two-
atom bound-state wave function we obtained in the preceding
section, and φ(K) is the wave function of the c.m. motion in
the momentum space. We further assume that the laser beam
is applied from the time t = 0.

At time t the probability of the two atoms being in the bound
state can be denoted by P (t). Fermi’s golden rule yields that
(Appendix B) when t is short we have [24]

P (t) ≈ 1 − �t. (59)

Here � is the dissociation rate. Furthermore, as shown in
Appendix B, for our system it can be proved that

� =
∫

dK|φ(K)|2γ (K), (60)

where γ (K) is the dissociation rate corresponding to the mass-
center momentum �K, which can be expressed as

γ (K) = γI(K) + γII(K). (61)

Here γl(K) (l = I,II) is the dissociate rate for process l and is
given by

γl(K) = π

�

∑
j=1,2

∫
dk

∣∣∣∣
∫

dr〈�l
j (k,r)|�(r)|φb(r)〉

∣∣∣∣
2

× δ

(
�ωl(K) + ξl

�
2|k|2
2m

− �ωL

)
, (62)

with ξI = 1, ξII = −1, and ωI,II(K) defined in Eqs. (54)
and (57). Here the operator �(r) is defined as �(r) =
��
2 (|e〉(1)〈g|eikL·r/2 + |e〉(2)〈g|e−ikL·r/2) + H.c., where � is the

Rabi frequency of the laser. In Eq. (62) |�l
j (k,r)〉 (l = I,II;

j = 1,2) is the final state of process l, i.e., the scattering
wave functions of two atoms with incident momentum k and
two-atom internal states

|I,1〉 ≡ 1√
2
|e〉(1)|e〉(2)[|↑〉(1)|↓〉(2) + |↓〉(1)|↑〉(2)], (63)

|I,2〉 ≡ 1√
2
|e〉(1)|e〉(2)[|↑〉(1)|↓〉(2) − |↓〉(1)|↑〉(2)], (64)

|II,1〉 ≡ 1√
2
|g〉(1)|g〉(2)[|↑〉(1)|↓〉(2) + |↓〉(1)|↑〉(2)], (65)

|II,2〉 ≡ 1√
2
|g〉(1)|g〉(2)[|↑〉(1)|↓〉(2) − |↓〉(1)|↑〉(2)]. (66)

Notice that we have 〈l,j |o〉 = 〈l,j |c〉 = 0 for l = I,II and j =
1,2. Thus, |�l

j (k,r)〉 are orthogonal to the initial two-body
bound state |φb(r)〉.

Furthermore, Eq. (60) implies that if the mass-center
momentum is mainly distributed in a small region around a
central momentum K0, we have � ≈ γ (K0). In the following
we consider the simple case with K0 = 0. We further calculate
γ (0) for 173Yb atoms for the cases with a different magnetic
field. Our calculation is based on the binding energy Eb and
the closed-channel population Z derived with the MQDT in
Sec. III A. On the other hand, since in our system both Eb and
the energy gap δ between the channels |c〉 and |o〉 are much
smaller than the van der Waals energy, in the bound state
|φb(r)〉 the two-atom relative position r is mainly distributed
in the region r � β6. Thus, in our calculation we ignore the
contribution from the two-atom relative function |φb(r)〉 in
the region r � β6 and use the approximated bound-state wave
function

|φb(r)〉 = √
1 − Z

e−r/ro

√
2πror

|o〉 +
√

Z
e−r/rc

√
2πrcr

|c〉 (67)

and the approximated scattering-state wave functions

∣∣�l
j (k,r)

〉 = (1 − P12)

4π3/2

{[
eik·r + −1

ik + 1
al

eikr

]
|l,j 〉

}

(l = I,II; j = 1,2), (68)

with states |l,j 〉 being defined in Eqs. (63)–(66). Here we
also have ro = �/

√
m|Eb|, rc = �/

√
m(|Eb| + δ), aI = aee,

and aII = agg , where aee (agg) is the scattering length of two
atoms that are both in the e state (g state). In Eq. (68), P12

is the permutation operator for atoms 1 and 2. Explicitly,
P12 represents the transformations r → −r, |l,1〉 → |l,2〉, and
|l,2〉 → |l,1〉 for l = I,II.

In Fig. 8 we show γ (0) as a function of ωL for 173Yb
atoms with various magnetic fields. It is clear that for each
magnetic field the clock-transition spectrum has two branches,

-5 -3 -1 0 1 3 5
h̄(ωeg − ωL)(2π×Hz) ×104

0

25

50

γ
(0

)(
H

z)

B=40G
B=20G
B=5G

ωL − eg/ (2π × Hz)

FIG. 8. Clock-transition spectrum for two 173Yb atoms in the
bound state |φb(r)〉 with B = 5 G [|Eb| = � × (2π )5176.05 Hz, black
solid line], B = 20 G [|Eb| = � × (2π )2007.59 Hz, blue dashed line],
and B = 40 G [|Eb| = � × (2π )22.63 Hz, red dotted line]. In our
calculation we take mI = −5/2, m′

I = 5/2, � = (2π )103 Hz, εeg =
� × (2π )5.19 × 1014 Hz [25,26], agg = 199.4a0, aee = 306.2a0 [15],
and μe − μg = � × (2π )112 Hz/G. The maximum value of γ (0) for
B = 40 G is 772 Hz. For a given magnetic field, the right and left
branches of the spectrum correspond to transition processes (I) and
(II), respectively.
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corresponding to process (I) (right branch with ωL > ωI) and
process (II) (left branch with ωL < ωII), as we have analyzed
before. Furthermore, it is also shown that when the magnetic
field is close to the OFR point B0, the spectrum becomes
sharper. This result may be explained as follows. When the
system is close to the OFR point, the wave packet of the bound
state becomes very wide in the real space and thus very narrow
in the momentum space. Therefore, in this case the bound state
has significant overlap (the Frank-Condon factor) only with
the scattering states |�l

j (k,r)〉 with incident momentum and
scattering energy being in a small region and thus the transition
spectrum becomes narrow.

Our above results, together with Eqs. (54) and (57), show
that both the position and the shape of the clock-transition
spectrum are related to the binding energy Eb and the wave
function of the two-body bound state |φb(r)〉. Thus, in the
experiments one can detect the properties of |φb(r)〉 via the
clock-transition spectrum.

IV. SUMMARY

In this paper we solve the two-body problem of two alkali-
earth-metal-like atoms with OFR via the MQDT approach,
in which the effect induced by the van der Waals interaction
potential can be analytically included. We derive the analytical
expression of the scattering length [Eq. (36)] and the effective
range [Eq. (37)], as well as the algebraic equation (48) for
the binding energy of the two-body bound state. We further
investigate the clock-transition spectrum for our system, which
can be used for the experimental detection of the bound state.
As in the analysis for the Raman spectrum of ultracold alkali-
metal atoms [27–29], here we take into account the momentum
recoil effect induced by the clock laser. Since the MQDT
approach is quantitatively applicable for the system where
all the characteristic energies are much smaller than the van
der Waals energy, e.g., the 173Yb atoms near the OFR point,
our results are helpful for both theoretical and experimental
research for these systems.
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APPENDIX A: THE ε AND δ DEPENDENCES OF K 0
i j

In this Appendix we show that the parameters K0
ij (i,j =

o,c) in Sec. II B are independent of ε and δ. This fact can be
understood with the following analysis, which is quite similar
to that in Sec. II A.

First, in the region with r � β6 the interaction potentials
U (±)(r) are potential wells with the depth being on the order
of the van der Waals energy �

2/mβ2
6 or even larger. Thus,

for our case with ε � �
2/mβ2

6 and δ � �
2/mβ2

6 , for r � β6,
ε and δ can be omitted from the Schrödinger equation (9).

Thus, we know that there exist two special solutions of Eq. (9)
and the condition (10), which are independent of ε and δ for
r � β6. We denote these two solutions by |�1(r)〉 and |�2(r)〉.

Second, since both |ψ (α,β)
ε,δ (r)〉 introduced in Sec. II B and

|�1,2(r)〉 are special solutions of Eqs. (9) and (10), |ψ (α,β)
ε,δ (r)〉

can be expressed as linear superpositions of |�1,2(r)〉. Namely,
we have ∣∣ψ (l)

ε,δ(r)
〉 =

∑
j=1,2

A
(l)
j |�j (r)〉. (A1)

Here the coefficients A
(l)
j (l = α,β; j = 1,2) are determined

by the following two conditions given by Eqs. (23) and (24).
(a) For b < r � β6, if r

∑
j=1,2 A

(α)
j 〈c|�j (r)〉 is expanded as

a superposition of the functions f 0
ε−δ(r) and g0

ε−δ(r), then
the coefficient for f 0

ε−δ(r) is zero. (b) For b < r � β6, if

r
∑

j=1,2 A
(β)
j 〈o|�j (r)〉 is expanded as a superposition of the

functions f 0
ε (r) and g0

ε (r), then the coefficient for g0
ε (r) is zero.

Third, as shown above, in the region with b < r � β6 the
solutions |�1,2(r)〉 are independent of ε and δ. Furthermore,
as illustrated in Fig. 2, for |ε| � �

2/mβ2
6 and r � β6 both

f 0
ε (r) and g0

ε (r) are almost independent of the values of ε, for
both positive and negative ε [21]. Therefore, for our case with
ε � �

2/mβ2
6 and δ � �

2/mβ2
6 , in the region with b < r � β6

the functions f 0
ε (r), g0

ε (r), f 0
ε−δ(r), and g0

ε−δ(r) are also (ε,δ)

independent. Thus, the coefficients A
(l)
j (l = α,β; j = 1,2)

given by the above conditions (a) and (b) are (ε,δ) independent.
With this result and Eq. (A1), we know that the functions
|ψ (αβ)

ε,δ (r)〉 are (ε,δ) independent for b < r � β6. Using this
fact and Eqs. (23) and (24), as well as the fact that f 0

ε (r), g0
ε (r),

f 0
ε−δ(r), and g0

ε−δ(r) are (ε,δ) independent for b < r � β6, we
immediately obtain the conclusion that the K0

ij (i,j = o,c) are
independent of ε and δ.

APPENDIX B: CALCULATION OF DISSOCIATION RATE

In this appendix we calculate the dissociation rate of
the two-atom bound state and prove Eqs. (60)–(62). In the
Schrödinger picture, the Hamiltonian for our problem is given
by

H = −�
2∇2

R

4m
+ HI + Hrel + HL, (B1)

where R is the two-atom center-of-mass (c.m.) position. Here
HI describes the one-body internal-state energy and is given
by

HI =
∑
j=1,2

∑
l=e,g

∑
s=↑,↓

Els |l〉(j )〈l| ⊗ |s〉(j )〈s|, (B2)

with Els (l = e,g; s = ↑,↓) the one-body energy correspond-
ing to |l〉(j )|s〉(j ), as defined in Sec. III B. In Eq. (B1) Hrel and
HL are the Hamiltonians for the two-atom relative motion and
laser-atom coupling, respectively, and can be expressed as

Hrel = −∇2
r

m
+ U (r), (B3)

HL = ��

2

∑
j=1,2

|e〉(j )〈g|ei(kL·rj −ωLt) + H.c., (B4)
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where r is the two-atom relative position, U (r) is the total
interaction potential defined in Eq. (5), � is the Rabi frequency
of the clock laser beam, and kL and ωL are the wave vector
and angular frequency of this laser beam, respectively. In
Eq. (B4) rj (j = 1,2) is the position of the j th atom and
can be expressed as

r1 = R + r
2
, (B5)

r2 = R − r
2
. (B6)

As shown in Eq. (58) of Sec. III.B, we assume that at t = 0
the two-atom initial wave function is

|�(R,r,t = 0)〉 = 1

(2π )3/2

∫
dK φ(K)eiK·R|φb(r)〉, (B7)

where |φb(r)〉 is the wave function of the two-atom bound state.
We further assume that the laser beam is applied from t = 0.
Thus, for t � 0 the evolution of the two atoms is governed by
the total Hamiltonian H . At time t the two-atom wave function
can be denoted by |�(R,r,t)〉 and the probability of these two
atoms being at the bound state |φb(r)〉 can be expressed as

P (t) =
∫

dR

∣∣∣∣
∫

dr〈φb(r)|�(R,r,t)〉
∣∣∣∣
2

. (B8)

To calculate P (t) with the Fermi golden rule, we introduce
a unitary transformation

U = e−ikL·R�e , (B9)

where

�e = |e〉(1)〈e| ⊗ |e〉(2)〈e| − |g〉(1)〈g| ⊗ |g〉(2)〈g|. (B10)

We further define the wave function |�(R,r,t)〉 as

|�(R,r,t)〉 = U |�(R,r,t)〉, (B11)

i.e., |�(R,r,t)〉 is the two-atom state in the rotated frame
induced by U . It is easy to prove that we have

|�(R,r,t = 0)〉 = |�(R,r,t = 0)〉, (B12)

P (t) =
∫

dR

∣∣∣∣
∫

dr〈φb(r)|�(R,r,t)〉
∣∣∣∣
2

. (B13)

Furthermore, we can also prove that |�(R,r,t)〉 satisfies the
Schrödinger equation

i�
d

dt
|�(R,r,t)〉 = Hrot|�(R,r,t)〉, (B14)

with Hrot the Hamiltonian in the rotated frame, and can be
expressed as

Hrot = (−i�∇R + �kL�e)2

4m
+ HI + Hrel + hL, (B15)

with

hL = ��

2
e−iωLt (|e〉(1)〈g|eikL·r/2 + |e〉(2)〈g|e−ikL·r/2) + H.c.

(B16)

Equation (B15) shows that in the rotated frame the momentum
of the c.m. is conserved. Using this fact and Eqs. (B12) and
(B7), we can simplify the calculation of the probability P (t)
in Eq. (B13) and obtain

P (t) =
∫

dK|φ(K)|2p(K,t), (B17)

where p(K) is given by

p(K,t) =
∣∣∣∣
∫

dr〈φK(r,t)|φb(r)〉
∣∣∣∣
2

. (B18)

Here the wave function |φK(r,t)〉 satisfies the equation

i
d

dt
|φK(r,t)〉 = h(K)|φK(r,t)〉, (B19)

with

h(K) = −�
2∇2

r

m
+ HI + U (r) + (�K + �kL�e)2

4m
+ hL

(B20)

≡ h0(K) + hL, (B21)

as well as the initial condition

|φK(r,t = 0)〉 = |φb(r)〉. (B22)

Equations (B18)–(B22) show that to calculate p(K,t) we
need to solve a quantum evolution problem governed by the
Hamiltonian h(K). This problem is defined in the Hilbert space
Hr ⊗ HI , with Hr and HI the space for the two-atom spatial
relative motion and the two-atom internal state, respectively,
and the c.m. momentum �K just behaves as a classical
parameter (c-number). In this problem, the term hL induces
the transitions from the isolated state |φb(r)〉, which is a
discrete eigenstate of h0(K), to other continuous eigenstates
of h0(K), i.e., the scattering states of two atoms in either the
electronic-orbital state |e〉(1)|e〉(2) or |g〉(1)|g〉(2). Thus, we can
calculate p(K,t) using Fermi’s golden rule and obtain that
when the time t is small enough we have [24]

p(K,t) = 1 − γ (K)t, (B23)

where γ (K) is given by Eqs. (61) and (62) in Sec. III B.
Furthermore, substituting Eq. (B23) into Eq. (B17) and using
Eq. (59) in Sec. III B, we can obtain Eq. (60) in Sec. III B.
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