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Mobile impurity in a Fermi sea from the functional renormalization group
analytically continued to real time
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Motivated by experiments with cold atoms, we investigate a mobile impurity immersed in a Fermi sea in
three dimensions at zero temperature by means of the functional renormalization group. We first perform the
derivative expansion of the effective action to calculate the ground-state energy and Tan’s contact across the
polaron-molecule transition for several mass imbalances. Next we study quasiparticle properties of the impurity
by using a real-time method recently developed in nuclear physics, which allows one to go beyond the derivative
expansion. We obtain the spectral function of the polaron and the effective mass and quasiparticle weight of
attractive and repulsive polarons, and clarify how they are affected by mass imbalances.
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I. INTRODUCTION

The concept of quasiparticles has become a corner-
stone of quantum many-body physics. One of the fun-
damental problems is understanding the properties of a
polaron, a single mobile impurity in a bath of majority
particles [1–4]. While such an impurity effectively behaves
as a free particle, renormalization effects due to interac-
tions between the impurity and the bath are known to be
significant.

The polaron problem had been discussed originally in the
context of solid-state physics, where an electron interacts with
a bath of phonons, that is, bosons [5]. Recently, experiments
with ultracold atoms have allowed us to consider a similar
problem with fermions: an impurity immersed in a bath of
fermions [6,7]. Experiments using a mixture of two different
hyperfine states as well as a heteronuclear mixture have
been performed in two and three dimensions [8–11]. The
s-wave scattering length characterizing the interaction be-
tween impurities and fermions in the bath can be tuned via
the Feshbach resonance (FR) technique. This opens up a way
to realize a novel strongly coupled impurity system, whose
understanding requires a nonperturbative analysis.

A number of techniques in quantum many-body physics
have been applied to the analysis of the polaron problem. A
recently developed powerful numerical scheme, called the di-
agrammatic Monte Carlo (diagMC) method, was successfully
applied to the broad-FR case [12–15]. Analytical methods
including a variational calculation and a many-body T -matrix
approach were also employed [16–26].

The functional renormalization group (FRG) based on an
exact flow equation [27–31] offers an alternative route to
tackling quantum many-body problems. Since the FRG is
built on a philosophy different from that of the conventional
methods above, approximations in the FRG may provide
new insights into the mobile impurity problem. In [32],
Schmidt and Enss examined this problem in the broad-FR
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limit using a Blaizot–Méndez-Galain–Wschebor (BMW)-type
FRG [33] combined with the Padé approximation for analytic
continuation to real time [34]. Their approach yields accurate
results at imaginary time, but it comes at a high computational
cost.

In this paper, we study the Fermi polaron problem using the
FRG based on the derivative expansion, which is numerically
much less expensive than the BMW approach. While the
derivative expansion of the scale-dependent effective action
is able to capture critical phenomena accurately [29,30], it is
inadequate to describe the spectral properties of quasiparticles
because it fails to capture higher excited states and a continuum
incoherent background. Recently, however, a scheme to
circumvent such difficulties of the derivative expansion on the
basis of analytic continuation of flow equations to real time
has been developed and tested in nuclear physics [35–38]. In
this work, we apply this scheme to the polaron problem at zero
temperature and reveal not only the thermodynamic properties
of the system but also the spectral properties of quasiparticles
including highly excited states, thus going far beyond the
conventional realm of a derivative expansion. We remark that
this is the first application of this scheme to a nonrelativistic,
experimentally accessible system. This provides a viable
alternative to other renormalization-group-based approaches
to nonequilibrium physics [39,40].

This paper is organized as follows. In Sec. II we present
our model Hamiltonian. In Sec. III we explain the elements
of the FRG and describe flow equations in our formulation.
Section IV reports our main results on thermodynamic and
spectral properties of the Fermi polaron system. Section V is
devoted to a summary. In the appendixes we discuss technical
details of our formulation.

II. MODEL

We consider two-component fermions with an s-wave in-
teraction. Since the s-wave scattering length is experimentally
tuned via a molecule state in the closed channel, the natural
model reflecting the microscopic dynamics of the FR is the
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so-called two-channel model (with � = 1),

S =
∫

x,τ

⎡
⎣ ∑

σ=↑,↓
ψ∗

σ

(
∂τ − ∇2

2Mσ

− μσ

)
ψσ

+ φ∗
(

∂τ − ∇2

2Mφ

− μφ

)
φ + h(ψ∗

↑ψ∗
↓φ + H.c.)

⎤
⎦, (1)

where ψ↑ is the majority atom forming a noninteracting Fermi
sea, ψ↓ is the impurity atom, φ is the molecule field made of
↑ and ↓ atoms, and Mφ = M↑ + M↓. The Yukawa (Feshbach)
coupling h accounts for the formation and dissociation of
molecules. Physically, h is related to the width of the FR. It
is known [41,42] that the large-h limit corresponds to a broad
FR where the scattering amplitude is described solely by the s-
wave scattering length, while the small-h limit corresponds to a
narrow FR where, in addition to the s-wave scattering length,
the effective range is involved in the scattering amplitude.
The chemical potential μ↑ for the majority atoms is adjusted
to the Fermi energy EF = k2

F /(2M↑); the renormalization
due to the impurity can be neglected in the thermodynamic
limit. Determination of μ↓ and μφ is discussed in subsequent
sections.

In what follows, we use natural units � = 1 and set

2M↑ = 1, 2M↓ = α, and 2Mφ = 1 + α. (2)

III. FLOW EQUATIONS IN THE FUNCTIONAL
RENORMALIZATION GROUP

The starting point of the FRG is the functional differential
equation [27,28,43]

∂k�k = 1
2 STr

[(
�

(2)
k + Rk

)−1
∂kRk

]
, (3)

where �k and �
(2)
k represent the average action at a scale k

and an inverse of the two-point function, respectively. The
symbol STr denotes the supertrace where the summation
over momenta and frequencies, internal indices, and fields
is taken. Note that in the supertrace, a minus sign for fermions
is necessary. An important observation is that although the
above flow equation has a one-loop structure, it contains the
full field-dependent propagator and therefore allows one to
incorporate nonperturbative effects.

The average action �k includes all fluctuations with
momenta q � k. At the ultraviolet (UV) scale k = 	, �k

reduces to the classical action, while at the infrared (IR)
scale k → 0, one obtains the full quantum effective action.
These properties of the average action can be ensured through
the use of a regulator function Rk , which possesses the
following properties: limk→∞ Rk(p) = ∞, limk→0 Rk(p) =
0, and limp→0 Rk(p) > 0 [29]. While, in general, the flow
equation itself depends on the choice of the regulator function,1

the resultant physical properties in the IR limit are expected to
be unaltered. In this paper, we choose the so-called three-
dimensional sharp cutoff regulator: in the case of bosons,

1For a detailed discussion of the use of four-dimensional regulators,
see [44].

∂k
ψ↓

−1 = ∂̃k

φ

ψ↑

∂k
φ

−1 = ∂̃k ψ↓

ψ↑

FIG. 1. Diagrams corresponding to the flow equations, (5), of the
FRG. All the propagators in the loops are regularized with Rk .

Rk(p) = 0 for k � |p| and Rk(p) = ∞ for |p| < k. In the case
of finite-density fermions, the cutoff should be imposed on
momenta measured from the Fermi surface [45–47]. This sharp
regulator is particularly useful in treating the flow equations
analytically.

As the exact flow equation, (3), is too complicated to solve
exactly, some truncation procedure is practically required. We
adopt the following truncation for the imaginary-time average
effective action,

�k =
∫

P

[
ψ∗

↑
(−ip0 + p2 − k2

F

)
ψ↑ + ψ∗

↓P↓,k(P )ψ↓

+φ∗Pφ,k(P )φ + h(ψ∗
↑ψ∗

↓φ + H.c.)
]
, (4)

with P = (p0,p). Here, P↓,k and Pφ,k are inverse propagators
of the impurity and the molecule, respectively. For the sake of
simplicity we omit the interactions ψ∗

↑ψ∗
↓ψ↓ψ↑ and ψ∗

↑φ∗ψ↑φ

and neglect the renormalization of h.
By using the truncation, (4), we obtain the functional flow

equations [32], depicted schematically in Fig. 1:

∂kP↓,k(P ) = h2∂̃k

∫
Q

Gc
φ,k(Q)Gc

↑,k(Q − P ), (5a)

∂kPφ,k(P ) = −h2∂̃k

∫
Q

Gc
↓,k(Q)Gc

↑,k(P − Q), (5b)

where ∂̃k represents a derivative that acts only on the k

dependence of the regulator Rk , and Gc
k ≡ 1/(Pk + Rk).

Solving (5) is a challenging numerical problem. Instead
of solving these integrodifferential equations by brute force
we proceed in two steps as follows [35–37]: in the first
step, we solve (5) in the leading-order derivative expansion.
In the second step, we substitute solutions obtained from
the derivative expansion into the right-hand side of (5) and
integrate both sides from k = 	 to k = 0. In this way one
can find Pk without assuming any specific ansatz for the
form of Pk . In principle, one may feed the obtained Pk

into the right-hand side of (5) and integrate over k again.
If this procedure is iteratively repeated sufficiently many
times, one will gain exact solutions to (5). However, as
previous analyses [35] indicate, the first iteration already yields
reasonably accurate results and we explicitly demonstrate this
in the following.
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As the first step let us consider a truncation of Pk in the
leading-order derivative expansion which respects the Galilean
invariance of the theory,

P↓,k(P ) = A↓,k(−ip0 + p2/α) + m2
↓,k, (6a)

Pφ,k(P ) = Aφ,k[−ip0 + p2/(1 + α)] + m2
φ,k, (6b)

where A↓,k (Aφ,k) and m2
↓,k (m2

φ,k) represent the wave-
function renormalization and gap for the impurity (the
molecule), respectively. Then the regulated Green’s functions

read

Gc
↑,k(P ) = θ

(∣∣p2 − k2
F

∣∣ − k2
)

−ip0 + p2 − k2
F

, (7a)

Gc
↓,k(P ) = θ (|p| − k)

A↓,k(−ip0 + p2/α) + m2
↓,k

, (7b)

Gc
φ,k(P ) = θ (|p| − k)

Aφ,k[−ip0 + p2/(1 + α)] + m2
φ,k

, (7c)

where θ (x) is the usual Heaviside step function.
Plugging (7) into (5) we straightforwardly obtain

∂kP↓,k(P ) = h2k

4π2Aφ,k

{
k

∫ 1

−1
dx

θ
(
k2
F − 2k2 − p2 + 2pkx

)
−ip0 + k2

F − p2 + 2pkx − α
1+α

k2 + m2
φ,k/Aφ,k

+
√

k2
F − k2 θ

(
k2
F − k2

) ∫ 1

−1
dx

θ
(
k2
F − 2k2 + p2 + 2px

√
k2
F − k2

)
−ip0 + p2+αk2+k2

F +2px
√

k2
F −k2

1+α
+ m2

φ,k/Aφ,k

⎫⎬
⎭, (8a)

∂kPφ,k(P ) = h2k

4π2A↓,k

{
k

∫ 1

−1
dx

θ
(
p2 − 2pkx − k2

F

)
−ip0 + p2 − 2pkx − k2

F + 1+α
α

k2 + m2
↓,k/A↓,k

+
√

k2
F + k2

∫ 1

−1
dx

θ
(
k2
F + p2 + 2px

√
k2
F + k2

)
−ip0 + k2

F +(1+α)k2+p2+2px
√

k2
F +k2

α
+ m2

↓,k/A↓,k

⎫⎬
⎭. (8b)

To speed up numerical analysis we perform the remaining
integral over x analytically with the formula∫ 1

−1
dx

θ (a1 + a2x)

a3 + a2x
= �(a1,a2,a3), (9)

where a1,a2 ∈ R, a2 �= 0, Im a3 �= 0, and

�(a1,a2,a3) ≡ θ (a1 + |a2|)
|a2| {ln(|a2| + a3)

− ln[max(0,a1 − |a2|) + a3 − a1]}. (10)

The resulting form of (8) is presented in Appendix A.
In units where � = 2M↑ = 1, all dimensionful quantities

can be measured in units of the Fermi momentum kF of the ↑
atoms. It is then useful to define

t ≡ ln
k

kF

, ∂t = k
∂

∂k
, ĥ ≡ h√

kF

,

m̂↓,k ≡ m↓,k

kF

, m̂φ,k ≡ mφ,k

kF

. (11)

The flow equations for m↓,k , mφ,k , A↓,k , and Aφ,k can be
derived via expansion of (8) around the low-frequency and
low-momentum limit. The results read

∂tA↓ = −θ (1 − 2e2t )
ĥ2e2t

2π2Aφ

[
et(

1 − α
1+α

e2t + m̂2
φ/Aφ

)2

+
√

1 − e2t(
1+αe2t

1+α
+ m̂2

φ/Aφ

)2

]
, (12a)

∂t m̂
2
↓ = θ (1 − 2e2t )

ĥ2e2t

2π2Aφ

[
et

1 − α
1+α

e2t + m̂2
φ/Aφ

+
√

1 − e2t

1+αe2t

1+α
+ m̂2

φ/Aφ

]
, (12b)

∂tAφ = − ĥ2e2t

2π2A↓

√
1 + e2t[ 1+(1+α)e2t

α
+ m̂2

↓/A↓
]2 , (12c)

∂t m̂
2
φ = ĥ2e2t

2π2A↓

√
1 + e2t

1+(1+α)e2t

α
+ m̂2

↓/A↓
. (12d)

For α = 1, Eqs. (12) reduce to Eq. (A2) in [32].
The initial conditions at the scale k = 	 are given by

A↓,	 = Aφ,	 = 1, (13)

m̂2
↓,	 = −μ̂↓, (14)

m̂2
φ,	 = α

4π (1 + α)
ĥ2

(
2

π
et0 − 1

kF a

)
− 1 − μ̂↓, (15)

where t0 ≡ ln(	/kF ). These initial conditions are derived in
Appendix B for completeness. The value of μ̂↓ should be
chosen so that Min(m̂2

↓,k=0,m̂
2
φ,k=0) = 0 [32]; see Sec. IV for

a more precise explanation.
Once the solutions to (12) are obtained for all k, we

substitute them into the right-hand side of (8) and then perform
analytic continuation of (8) to real frequency ω via

p0 = −i(ω + iε), (16)
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where ε > 0 is an infinitesimal constant (see Appendix A for
flow equations at real frequency). Afterwards we integrate both
sides of (8) from k = 	 down to k = 0 and, finally, obtain the
retarded two-point functions P̂R

↓/φ(ω̂,p̂) = PR
↓/φ(ω̂,p̂)/k2

F in
Minkowski spacetime, with ω̂ ≡ ω/k2

F and p̂ ≡ p/kF . The
spectral functions are obtained as

A↓/φ(ω̂,p̂) = 1

π
Im

1

P̂R
↓/φ(ω̂,p̂)

. (17)

They should not be confused with the wave-function renor-
malization A↓/φ .

In this method, in which the analytic continuation is done
directly at the level of the flow equation, one can entirely
avoid a numerically expensive implementation of approximate
analytic continuation of Euclidean correlators to real time,
such as the Padé approximation [34] and the maximum entropy
method [48]. In addition, we note that the computional time
in this method is remarkably short. This is due to the fact that
our flow equations consist only of A↓/φ,k and m↓/φ,k , each of
which can be determined with the derivative expansion, and
we can analytically perform the integrals in momentum and
frequency with Eq. (9). This is in contrast to the approach in
Ref. [32], where one must take every point in the (ω,p) plane
and perform the loop integral in flow equations numerically.
These are the major advantages of the present scheme.

IV. RESULTS

In this section we proceed to numerical results. Parameters
in the present model have been chosen as follows.

(i) The (normalized) inverse scattering length (kF a)−1 is
varied from negative to positive values across the unitarity
limit. This enables us to probe the polaron-molecule transition.

(ii) As for the mass ratio α = M↓/M↑, we examine three
cases, α = 6.6, 1, and 0.5, covering both heavy and light
impurities. In choosing α = 6.6 � 40/6 we have in mind 40K
atoms immersed in the Fermi sea of 6Li atoms [10].2

(iii) In this work we limit ourselves to a broad-FR system,
which corresponds to the large-h limit of (1) [41,42]. We
have confirmed that the numerical results become insensitive
to ĥ provided ĥ � 150. Throughout this section we choose
ĥ = 300.

(iv) We set 	 = 103kF as in [32], which implies

t0 = ln 103 � 6.907. (18)

The flows are solved for tmin � t � t0. The lower limit tmin

should be chosen small enough to ensure convergence of the
flow. In this work, we set tmin = −5.0. We have confirmed that
at tmin, all flowing parameters already reach asymptotic values;
see Appendix C for an explicit check.

(v) We set ε̂ ≡ ε/k2
F = 10−3 throughout this work. For

completeness, the ε̂ dependence of spectral functions is
examined in Appendix D.

2We note that the experimental system of [10] corresponds to
a narrow FR and, also, at nonzero temperature. Thus a direct
comparison of [10] with our numerical results is not possible.

TABLE I. Polaron-molecule transition points for various mass
imbalances.

α Transition point

6.6 (kF a)−1 = 0.4006
1.0 (kF a)−1 = 0.973
0.5 (kF a)−1 = 1.390

A. Thermodynamic properties

We first examine the thermodynamic properties of the
impurity system. In order to realize a system with a single ↓
atom in the medium of ↑ atoms, we tune the chemical potential
of the ↓ atom. The ground-state energy is determined as the
minimal μ̂c

↓ that satisfies the following condition [32]:

m̂2
↓,k=0 � 0 and m̂2

φ,k=0 � 0 for ∀μ̂↓ � μ̂c
↓. (19)

If m̂2
↓,k=0 = 0 and m̂2

φ,k=0 > 0 at μ̂↓ = μ̂c
↓, the system is on the

polaronic side, i.e., forming a molecule is energetically more
costly than forming a polaron. On the other hand, if m̂2

↓,k=0 > 0
and m̂2

φ,k=0 = 0 at μ̂c
↓, the system is on the molecule side and

a molecule is formed in the ground state.
In Table. I, we summarize the resulting values of the

polaron-molecule transition points where both the polaron and
the molecule are gapless in the IR limit.

The tendency that the polaron-molecule transition moves
to higher 1/(kF a) for a lighter impurity is consistent with
previous studies [19,26,49]. The polaron-molecule transition
in our leading-order derivative expansion for α = 1 occurs at
(kF a)−1 = 0.973, which compares well with the prediction of
the diagMC, 0.90(2) [12,13], and that of the BMW-type FRG,
0.904(5) [32]. Close values are obtained in other approaches
as well [14,19–21,24,26].

FIG. 2. Ground-state energy of the impurity system for α = 6.6
(upper curve), α = 1 (middle curve), and α = 0.5 (lower curve).
Dotted vertical lines represent the location of the polaron-molecule
transition for each α.
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FIG. 3. Tan’s contact for α = 0.5 (upper curve), α = 1 (middle
curve), and α = 6.6 (lower curve). Dotted vertical lines are the same
as in Fig. 2.

Figure 2 displays the ground-state energy μ̂c
↓ of the impurity

μ̂c
↓.3 At the unitarity limit for α = 1 we obtain μ̂↓ = −0.535,

which should be compared with μ̂↓ = −0.57 [32] from the
BMW-type FRG, μ̂↓ = −0.618 [12] and −0.615 [13,14] from
the diagMC, μ̂↓ = −0.6066 from a variational method [16],
and μ̂↓ = −0.6156 from [17]. Furthermore, at 1/(kF a) = 1.0
with α = 1, we obtain μ̂↓ = −2.33, which lies slightly above
the value −2.62 from [12–14]. In the case of a heavy impurity
(α = 6.6) at unitarity, we obtain μ̂↓ = −0.385, not far away
from the value −0.44 from the T -matrix approach [51]. In the
case of a light impurity (α = 0.5) at unitarity, we obtain μ̂↓ =
−0.772, to be compared with ∼−0.9 from the diagMC [15]
and ∼−0.87 from a variational method [16].

Based on the above evaluation, we can determine the so-
called Tan’s contact, which is directly related to the slope of
the ground-state energy:

C = 8πMra
2 dE

da
= −8πMrkF

dμ̂c
↓

d[1/(kF a)]
, (20)

where Mr = (M−1
↑ + M−1

↓ )−1 is the reduced mass. We refer
to Appendix E for more details on (20). In Fig. 3, Tan’s
contact in a mobile impurity system is plotted. It clearly shows
the first-order nature of the transition: since the slope of the
ground-state energy is discontinuous at the polaron-molecule
transition point, Tan’s contact also shows a discontinuity [21].
A measurement of Tan’s contact may be useful to determine
the polaron-molecule transition experimentally.

B. Quasiparticle properties

Next we discuss the spectral properties of the impurity.
In Fig. 4 we plot the spectral density of the polaron in an
equal-mass system. There are two quasiparticle peaks [22]:
the high-energy branch, called the repulsive polaron; and the
lower-energy branch called the attractive polaron. Between

3We note that the ground-state energy in the FRG depends slightly
on the choice of the regulator Rk [50].

FIG. 4. Spectral density of the polaron at zero momentum
A↓(ω,p = 0) for α = 1. A↓ < 0.02 (A↓ > 0.2) in the white (red)
region.

these two peaks, there appears a molecule-hole continuum.
These spectral features are consistent with previous stud-
ies [24,32,52]. We have also examined the spectral den-
sity in a mass-imbalanced system and found that it shares
the same structure as in Fig. 4. In Fig. 5, we show the
renormalization-group scale dependence of the spectral den-
sity of the polaron in an equal-mass system. For t � −0.37,
the spectral density remains trivial or classical. At t = −0.38,
the horizontal branch suddenly splits into two branches
and a shallow continuum in between. After t = −0.38 the

FIG. 5. Scale evolution ofA↓(ω,p = 0) for α = 1. The color map
is the same as in Fig. 4.
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FIG. 6. Quasiparticle weight of the impurity for the attractive
and repulsive branches. Upper (lower dotted), middle (dotted), and
lower (upper dotted) curves represent, respectively, the results for
α = 0.5, α = 1, and α = 6.6. Dotted vertical lines represent the
polaron-molecule transition for each α.

two peaks are gradually deformed to the forms in the IR
limit, while the molecule-hole continuum increases the width,
especially on the polaron side, 1/(kF a) � 1. It is intriguing
that both the repulsive polaron and the attractive polaron
originate partly from the trivial unrenormalized spectrum in
the UV.

The quasiparticle weights are calculated from the zeros of
the real part of the two-point function in the IR limit. First, we
numerically determine the peak positions of the attractive and
repulsive polaron,

RePR
↓ (ω,p = 0)

∣∣
ω=ωatt/rep

= 0. (21)

The energy of the repulsive polaron determined in this way
was observed to converge to the asymptotic formula [53] for
small positive kF a. At the zeros, the quasiparticle weights are
determined as

Zatt/rep ≡ −[∂ωRePR
↓ (ω,p = 0)]−1

∣∣
ω=ωatt/rep

. (22)

The above definition implicitly relies on the fact that the
imaginary part of the p = 0 two-point function at the zeros
is vanishingly small in the present scheme at ε̂ � 1. (If the
imaginary part is not small, the definition above is no longer
valid and one needs to search for a quasiparticle pole on the
complex ω plane.) Considering that the repulsive polaron is a
high-energy metastable branch and naturally has a finite life
time [22,24,32], the absence of the decay width may be an
artifact of the present scheme.

In Fig. 6, we plot the quasiparticle weight of the attractive
and repulsive polarons. On the molecule side, the repulsive
polaron is dominant at every mass ratio. When the scattering
length is shifted to the polaronic side, the weight of the
repulsive polaron decreases and exchanges dominance with
the attractive polaron. Note that the crossing of Zrep and
Zatt does not occur exactly at the polaron-molecule tran-
sition. These features of the weight Z are consistent with
previous studies [14,21,24,32,49]. Quantitatively, for equal
masses (α = 1) at unitarity we obtain Zatt = 0.813, which
is close to the values of 0.78–0.80 from the variational

FIG. 7. A↓(ω,p) for α = 1 in the unitarity limit. A↓ < 0.02
(A↓ > 0.5) in the white (red) region.

method [21], the T -matrix method [49], and the BMW-type
FRG [32], as well as the value of 0.7586(27) from the
diagMC [14]. Note, however, that all of these results are
well above the value 0.39(9) obtained in an experiment on
6Li atoms [8]. In the case of a heavy impurity (α = 6.6) at
unitarity we obtain Zatt = 0.617, which is close to the value
of ∼0.64 from the T -matrix method [51] and the diagMC
[15].

Next we discuss the nature of the quasiparticles at p �= 0.
The polaron spectral density at finite momenta in the unitarity
limit is shown in Fig. 7. At zero momentum, neither the
attractive nor the repulsive polaron branch has a width. By
contrast, at finite momentum, the peaks merge with the
molecule-hole continuum and acquire a finite width. As the
momentum increases, the branches lose sharp peaks and
can no longer be clearly distinguished from the smooth
continuum.

From the finite-momentum real-time correlation functions,
we can extract the effective mass of the attractive and repulsive
polarons: m↓att and m↓rep. First, we determine the disper-
sion relation of the quasiparticles Eatt/rep(p) by solving the
equation

RePR
↓ (ω,p)

∣∣
ω=Eatt/rep(p) = 0. (23)

Then we fit the dispersion relation with the following fit
function:

Eatt/rep(p) − Eatt/rep(0) = p2

2m↓att/rep
+ O(p4). (24)

In Fig. 8, the effective mass of the attractive polaron
is shown. At (kF a)−1 = −0.5, the m↓att values for three
α’s are already close to the asymptotic value M↓ = α/2
in the free limit kF a → 0−. For equal masses (α = 1) at
unitarity we find m↓att/M↓ = 1.125, which lies above the
1.04(3) [54] and 1.09(2) [55] from fixed-node diffusion
Monte Carlo simulations but slightly below the 1.17 [16]
and 1.197 [17] from variational methods and ∼1.18 from a
T -matrix approach [49]. For equal masses at 1/(kF a) = 1.0,
we find m↓att/M↓ = 2.90, which is between the value of ∼2.5
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FIG. 8. Effective mass of the attractive polaron in units of the bare
mass M↓ = α/2 for α = 6.6 (upper curve), α = 1 (middle curve),
and α = 0.5 (lower curve). The dotted vertical line represents the
polaron-molecule transition for each α.

from a variational method [16] and the value of ∼3.5 from the
diagMC [12,13]. In the case of a heavy impurity (α = 6.6) at
unitarity, we obtain m↓att/M↓ = 1.22, whereas the T -matrix
approach yields 1.16 [51]. In the case of a light impurity
at 1/(kF a) = 1.0, we find m↓att/M↓ = 2.43, while Ref. [19]
reports ∼3.3.

At fixed 1/(kF a), we found m↓att/M↓ to be an increasing
function of α, which agrees with [19] but disagrees with [16].
Overall, the effective mass monotonically increases across the
polaron-molecule transition and eventually diverges at some
point. Deep in the molecular region, we found m↓att < 0 (not
shown in Fig. 8), in agreement with [26]; this is consistent
with the fact that the polaron is not a stable quasiparticle in
this region.

We also calculated the effective mass of the repulsive
polaron, finding that although m↓rep expectedly converges
to the bare mass α/2 at 1/(kF a) � 1, it decreases to 0
near the unitarity limit. The latter behavior contradicts other
studies [24,49] showing an enhancement of m↓rep towards
unitarity. This could indicate a shortcoming of the present
scheme in a strongly interacting regime. For a small negative
1/(kF a), we found that the repulsive polaron branch merges
with the molecule-hole continuum even at small momenta,
which makes m↓rep ill defined in this limit.

V. SUMMARY

We have examined a mobile impurity immersed in a Fermi
sea realized in cold atoms. We have calculated thermodynamic
quantities by means of the derivative expansion method in the
FRG and obtained results that are in reasonable agreement
with the diagMC simulations and other analytical methods.

The important aspect of the mobile impurity problem is
that the spectral properties are rich since, in addition to
the attractive polaron, the molecule-hole continuum and the
repulsive polaron appear in higher frequency regimes. To
extract spectral properties within the FRG, we have adopted a
real-time method originally developed in nuclear physics and
shown that it is successful in generating the spectral weights
at high frequencies, which are difficult to obtain within the
conventional derivative expansion method. The key point is
solving the flow equations [Eq. (5)] in an iterative manner.
Our analyses show that one iteration allows one to reproduce
qualitative features in the Fermi polaron system. A quantitative
agreement with the diagMC method may be obtained by
additional iterations, whose implementation is an interesting
future work. Applying our method to the other experimentally
achievable systems such as the Bose polaron [56,57], the
BCS-BEC crossover in two-component Fermi gases [58], and
Bose-Fermi mixture systems [59,60] may also be interesting.

The polaron problem may be one of the best systems to
analyze the accuracy and potential of a many-body technique,
thanks to its experimental accessibility and the applicability of
the diagMC method, in marked contrast to a number of models
discussed in nuclear and particle physics. Our consideration
may pave the way to an efficient algorithm in the real-time
FRG.
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APPENDIX A: FLOW EQUATIONS FOR
TWO-POINT FUNCTIONS

By means of the integration formula, (9), the flow equa-
tions, (8), are recast into the form

∂tP̂
R
↓ (ω̂,p̂) = ĥ2e2t

4π2Aφ,k

{
et�

(
1 − 2e2t − p̂2,2p̂et ,1 − p̂2 − α

1 + α
e2t + m̂2

φ,k

Aφ,k

− ω̂ − iε̂

)

+ θ (1 − e2t )
√

1 − e2t �

(
1 − 2e2t + p̂2

1 + α
,
2p̂

√
1 − e2t

1 + α
,
1 + p̂2 + αe2t

1 + α
+ m̂2

φ,k

Aφ,k

− ω̂ − iε̂

)}
, (A1)

∂tP̂
R
φ (ω̂,p̂) = ĥ2e2t

4π2A↓,k

{
et�

(
p̂2 − 1, − 2p̂et ,p̂2 − 1 + 1 + α

α
e2t + m̂2

↓,k

A↓,k

− ω̂ − iε̂

)

+
√

1 + e2t �

(
1 + p̂2

α
,
2p̂

√
1 + e2t

α
,
1 + p̂2 + (1 + α)e2t

α
+ m̂2

↓,k

A↓,k

− ω̂ − iε̂

)}
, (A2)
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where the analytic continuation, (16), has been performed.
The above flow equations are solved under the initial condi-
tions

P̂R
↓,	(ω̂,p̂) = A↓,	(−ω̂ − iε̂ + p̂2/α) + m̂2

↓,	, (A3)

P̂R
φ,	(ω̂,p̂) = Aφ,	[−ω̂ − iε̂ + p̂2/(1 + α)] + m̂2

φ,	. (A4)

APPENDIX B: VACUUM LIMIT

In this Appendix we derive initial conditions at k = 	 for flow
equations in the derivative expansion. The guiding principle
here is to adjust the initial parameters so as to reproduce
the vacuum two-body scattering correctly [45,47,61]. The
initial conditions for α = 1 have already been discussed in
the Appendix in [32] and we aim here to extend their results
to general α.

Let us consider a two-body system of ↑ and ↓ atoms in
vacuum. In the present formalism of the FRG, this “vacuum
limit” is not realized by the naive choice μ↑ = μ↓ = 0,
because atoms are gapless only for a < 0 (BCS side). On the
BEC side where a > 0, molecules are gapless, while atoms are
gapped due to the bound-state formation. This means that the
vacuum limit for a > 0 must be reached via a flow equation
with μ = μv(a) < 0 for atoms [45,47,61–64], where μv(a)
should be tuned with a (Fig. 9).

Let us therefore start with μ↑ = μ↓ = μv(a). Since there
is no flow of A↓ and m2

↓ in this case, one can let A↓ = 1 and
m2

↓ = −μv(a) for all k. The effective action in the derivative
expansion at the microscopic scale k = 	 is then given by

�k=	 =
∫

P

⎧⎨
⎩

∑
σ=↑,↓

ψ∗
σ

[
− ip0 + p2

2Mσ

− μv(a)

]
ψσ

+φ∗
(

Aφ,	

[
− ip0 + p2

2Mφ

− 2μv(a)

]

+ m2
φ,	(a)

)
φ

}
+ h

∫
x,τ

(ψ∗
↑ψ∗

↓φ + H.c.), (B1)

where we have introduced the “mass term” m2
φ,	 for φ. It

follows that

m2
φ,	 = m2

φ(a) − 2Aφ,	μv(a). (B2)

We need to tune both mφ(a) and μv(a) to recover correct IR
properties in vacuum. To proceed, let us recall the fact that it is
possible to compute the vacuum molecule propagator exactly

O

1

kF a

v�a�

FIG. 9. The a dependence of μv(a).

starting from the microscopic action, (B1), using the method
in [41] and [65], with the result (continued to Minkowski
space-time)

Pφ(ω,p; μv) = Aφ,	

(
− ω + p2

2Mφ

− 2μv

)
+ m2

φ(a)

− Mr

π2
h2	 + M

3/2
r

π
h2

√
−ω

2
+ p2

4Mφ

− μv,

(B3)

where Mr ≡ (M↑ + M↓)−1 = α
2(1+α) is the reduced mass, and

a sharp cutoff 	 on the spatial momentum was used to
regularize a UV divergence. The parameters in (B3) can be
related to the s-wave scattering length a and the effective
range re along the lines of [45] and [47] as follows. Given the
T matrix T (q) for on-shell two-body scattering (q, − q) →
(q′, − q′) in the center-of-mass frame with |q| = |q′| = q,
there is a relation

T (q) = − h2

Pφ

(−2μv + q2

2Mr
,0; μv

) . (B4)

On the other hand, the general scattering theory defines a and
re through

T (q) = − 2π

Mr

f (q) = − 2π

Mr

1

− 1
a

+ 1
2 req2 − iq

. (B5)

Therefore

Mr

2π
h2

(
−1

a
+ 1

2
req

2 − iq

)

!= Pφ

(
−2μv + q2

2Mr

,0; μv

)
(B6)

= −Aφ,	

2Mr

q2 + m2
φ(a) − Mr

π2
h2	 − i

Mr

2π
h2q. (B7)

Comparing each term, we find

m2
φ(a) = Mr

π2
h2	 − Mr

2πa
h2, (B8)

re = − 2π

M2
r

Aφ,	

h2
. (B9)

It should be stressed that these relations are correct for both
signs of a. Clearly, the limit h → ∞ corresponds to a broad
FR (re → 0). We remark that (B8) can also be derived by
integrating (12d) directly. If we set Aφ,	 = 1 and recall (B2),
it follows that we should take m2

φ,	 = m2
φ(a) − 2μv(a) as the

molecule initial condition in the vacuum.
In order to consider a finite-density system in general, we

need to tune μ↑ and μ↓ away from μv(a) so that the flow
equation solved for k → 0 yields the desired number density
n↑,↓. While this is a nontrivial procedure in an interacting
system, things become much simpler in the case of the polaron
problem: since the ↓ atoms have a vanishing density, the
↑ atoms form a noninteracting Fermi sea with the Fermi
momentum kF . This means that one may simply set μ↑ = k2

F

without solving the complicated flow equation. In summary,
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the molecule initial condition is given by

m2
φ,	 = m2

φ(a) − k2
F − μ↓ (B10)

= Mr

π2
h2	 − Mr

2πa
h2 − k2

F − μ↓. (B11)

This agrees with (15) when converted to dimensionless
units.

Although the functional form of μv(a) is not needed in the
text, we wish to include the derivation here for completeness.
On the BCS side (a < 0), atoms are gapless physical degrees
of freedom, so we simply set μv(a) = 0. On the BEC side
(a > 0), we demand instead that molecules be gapless. This
leads to

0
!= Pφ(0,0; μv)

= −2Aφ,	μv + m2
φ(a) − Mr

π2
h2	 + M

3/2
r

π
h2√−μv

= −2Aφ,	μv − Mr

2πa
h2 + M

3/2
r

π
h2√−μv. (B12)

This can be easily solved as

μv(a) = −κ2, (B13a)

κ = M
3/2
r h2

4πAφ,	

(
−1 +

√
1 + 4πAφ,	

M2
r h2a

)
. (B13b)

The a dependence of μv(a) is illustrated in Fig. 9. We mention
that μv(a) is equal to half the binding energy of the stable
dimer that exists at a > 0. Actually, in terms of re in (B9), we
can write

κ = − 1

2
√

Mr re

(
− 1 +

√
1 − 2re

a

)
, (B14)

which precisely agrees with the well-known formula in the
effective range model for a narrow FR [41,42,65]. When
a � |re|, we find κ � 1/(2

√
Mra), thus reproducing the

universal result

μv(a) = −θ (a)
1

4Mra2
(B15)

= −θ (a)
1 + α

2α

1

a2
(B16)

for a broad FR.
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FIG. 10. Flows of A↓ (blue curve) and m̂2
↓ (red curve) at unitarity

for α = 1.
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FIG. 11. Flows of Aφ (upper, blue curve) and m̂2
φ (lower, red

curve) at unitarity for α = 1.

APPENDIX C: FLOWING PARAMETERS

Let us examine the scale dependence of numerical solutions
to (12). Figures 10 and 11 show the flows in the unitarity
limit [1/(kF a) = 0] with ĥ = 300 and α = 1. As shown in the
figures, the flow of each parameter stops at around t = −4,
which can therefore be regarded as the k → 0 limit. We also
confirmed that the spectral densities have no dependence on
tmin as long as tmin < −4.

We observe that m̂2
↓ flows to 0 in the IR limit, which

indicates that the polaron state is the ground state at unitarity.
A↓ is only slightly renormalized by many-body effects. By
contrast, the renormalization of the molecule is significant;
Aφ and m̂2

φ become O(103) in the IR limit.

APPENDIX D: THE ε DEPENDENCE OF
SPECTRAL FUNCTIONS

In our formulation, analytic continuation of flow equations
is performed as p0 ⇒ −i(ω + iε), where ε is an infinitesimal
positive constant. In numerical implementation, however, ε

cannot be made arbitrarily small and it is important to
understand the ε dependence of spectral functions. As a case
study, we consider 1/(kF a) = 0.7 with ĥ = 300 and α = 1,
where the polaron is the ground state.

0 1 2 3
10�4
0.001
0.010
0.100

1
10
100

A
�
�

FIG. 12. Spectral function A↓(ω̂,0) of an impurity at 1/(kF a) =
0.7. Blue (upper) and red (lower) curves correspond to ε̂ = 0.01 and
ε̂ = 0.001, respectively.
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FIG. 13. Spectral function Aφ(ω̂,0) of a molecule at 1/(kF a) =
0.7. Blue (upper) and red (lower) curves correspond to ε̂ = 0.01 and
ε̂ = 0.001, respectively.

Figure 12 shows the spectral function of a mobile impurity
at a vanishing momentum. The two sharp peaks at low and high
frequencies correspond to attractive and repulsive polarons,
respectively. The widths of the peaks become narrower for
decreasing ε, indicating that their lifetimes are infinite in our
scheme. On the other hand, in between the attractive and
repulsive polarons, there exists the molecule-hole continuum.
This continuum spectrum is stable against variation of ε̂.

Figure 13 shows the spectral function of a molecule at
a vanishing momentum. There is a single sharp peak at
low frequency, which is the molecule state and is expected
to have an infinite lifetime. Similarly to the molecule-hole
continuum of the polaron, the incoherent background in the
high-frequency region is robust against variation of ε̂.

APPENDIX E: TAN’S CONTACT IN A
MASS-IMBALANCED FERMI GAS

Here, we discuss the so-called Tan’s contact [66–68] in a
system of mass-imbalanced fermions using the two-channel

model. Our consideration is based on those in [69] and [70].
Let us consider the two-channel Hamiltonian

H =
∫

x

[
−

∑
σ

ψ∗
σ

∇2

2Mσ

ψσ + φ∗
(

− ∇2

2Mφ

+ m2
φ(a)

)
φ

+ h(ψ∗
↑ψ∗

↓φ + H.c.)

]
, (E1)

where m2
φ(a) is the mass term introduced in (B8). Then

Tan’s energy relation [66] can be immediately obtained by
considering the expectation value of the above Hamiltonian,
which indeed corresponds to the one discussed in [69] and [70]
in the limit M↑ = M↓.

Next, we derive the so-called adiabatic relation [67], which
is important for our problem and enables us to calculate Tan’s
contact directly. To this end, let us recall the Feynman-Hellman
theorem,

dE

dλ
=

〈
dH

dλ

〉
, (E2)

where λ is a parameter of the Hamiltonian. By setting λ = a

and using (E1) we obtain the adiabatic relation

dE

da
= C

8πMra2
, (E3)

where

C = 4M2
r h2

∫
x
〈φ∗φ〉 (E4)

is nothing but Tan’s contact. Note that the above expressions
reduce to those in [69] and [70] if we set M↑ = M↓.
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