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Neutral helium microscopy is a new technique currently under development. Its advantages are the low energy,
charge neutrality, and inertness of the helium atoms, a potential large depth of field, and the fact that at thermal
energies the helium atoms do not penetrate into any solid material. This opens the possibility, among others, for
the creation of an instrument that can measure surface topology on the nanoscale, even on surfaces with high
aspect ratios. One of the most promising designs for helium microscopy is the zone plate microscope. It consists
of a supersonic expansion helium beam collimated by an aperture (skimmer) focused by a Fresnel zone plate
onto a sample. The resolution is determined by the focal spot size, which depends on the size of the skimmer,
the optics of the system, and the velocity spread of the beam through the chromatic aberrations of the zone plate.
An important factor for the optics of the zone plate is the width of the outermost zone, corresponding to the
smallest opening in the zone plate. The width of the outermost zone is fabrication limited to around 10 nm with
present-day state-of-the-art technology. Due to the high ionization potential of neutral helium atoms, it is difficult
to build efficient helium detectors. Therefore, it is crucial to optimize the microscope design to maximize the
intensity for a given resolution and width of the outermost zone. Here we present an optimization model for
the helium zone plate microscope. Assuming constant resolution and width of the outermost zone, we are able
to reduce the problem to a two-variable problem (zone plate radius and object distance) and we show that for
a given beam temperature and pressure, there is always a single intensity maximum. We compare our model
with the highest-resolution zone plate focusing images published and show that the intensity can be increased
seven times. Reducing the width of the outermost zone to 10 nm leads to an increase in intensity of more than
8000 times. Finally, we show that with present-day state-of-the-art detector technology (ionization efficiency
1 x 107%), a resolution of the order of 10 nm is possible. In order to make this quantification, we have assumed a
Lambertian reflecting surface and calculated the beam spot size that gives a signal 100 cts/s within a solid angle

of 0.02 sr, following an existing helium microscope design.
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I. INTRODUCTION

In a neutral helium microscope (NEMI) or scanning helium
microscope (SHeM), a beam of neutral helium atoms is created
by a supersonic expansion. An image is obtained by measuring
either a reflected or transmitted signal as the helium beam is
scanned across the sample. The energy of the beam is very
low (less than 0.1 eV for a wavelength of 0.1 nm), which
means that the atoms map the outermost electron density
distribution of the sample and do not penetrate into solid
material [1]. These properties make neutral helium microscopy
suited for the investigation of nanocoatings, fragile and/or
insulating surfaces, and surface structures with high aspect
ratios. By using, for example, a two-detector setup, it should
even be possible to create a nanostereo microscope which
can measure surface topography on the nanoscale. If a small
working distance is applied, the helium microscope can be
used to investigate samples presently examined with scanning
probe techniques, with the advantage that the helium beam
offers completely standardized imaging properties.

Neutral helium microscope images were published in
2008 [2]. They were transmission, shadow images of porous
structures, obtained by scanning a beam focused down to 2 um
using a Fresnel zone plate. Since then, two other research
groups have managed to obtain helium microscope images
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in reflection with micron-range resolution using pinhole
microscopes [3—6]. Such reflection images were published
in 2011 by Withman and Sanchez using a setup with just
a pinhole and no skimmer [3]. This setup still claims the
best resolution achieved so far with a helium microscope:
350 nm [7]. The theoretical resolution limit of a pinhole
microscope is discussed in detail in [8].

A helium atom focusing with a Fresnel zone plate was
carried out by Carnal er al. using a beam of metastable
helium [9]. Because the helium atoms do not penetrate into any
solids, any transmission optical element used must be of the
binary type with either completely transparent or completely
opaque areas. The focusing of a neutral, ground-state helium
beam with a zone plate was carried out by Doak et al. [10].
Both of these experiments used the classical Fresnel-Soret
zone plate. The Beynon-Gabor zone plate, which is also binary,
has been suggested as an alternative attractive candidate for
the focusing of helium atoms [11]. The main advantage of the
Beynon-Gabor zone plate is that it has no higher-order foci.
Unfortunately it is very challenging to fabricate. In 2015, an
optical diffraction element, “the atom sieve,” was introduced
and focusing down to 3.6 um diameter was demonstrated.
The atom sieve was inspired by the photon sieve, which was
invented in 2001 and originally intended for applications with
soft x rays [12]. It is a structure consisting of pinholes of
varying size, arranged across the Fresnel zones in such a
manner that it is possible to focus to a spot with a diameter
smaller than the smallest pinhole. In addition, higher-order
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diffraction and secondary maxima can be suppressed by
several orders of magnitude. The original photon sieve as
well as the first atom sieve are based on Fresnel-Soret zone
plates. Other configurations have been suggested, for example,
a Beynon-Gabor zone-plate-based photon sieve [13]. The great
advantage of the atom sieve is that it is much easier to
fabricate freestanding holes than freestanding rods, such as
they are needed in a standard binary Fresnel zone plate. This
is particularly important because the width of the outermost
zone is a critical factor for the achievable resolution, as will be
discussed in the next section. It is reasonable to assume that
fabrication of holes down to 10 nm should be possible [14].

A drawback of all zone plates is that only a fraction of
the incident beam intensity goes into the first-order focus. For
the Fresnel-Soret zone plate as well as for the Beynon-Gabor
zone plate, the fraction is around 10% (zone plate efficiency).
This is discussed in detail in [11]. The transmission window
for the atom sieve can be adjusted to yield an intensity which
is at least half the intensity of a standard Fresnel-Soret zone
plate [12]. Alternative zone plate designs, where the first zones
are blocked to facilitate zone plate stability and filtering of
the zero-order diffraction term, typically have a transmitted
intensity higher than the atom sieve but lower than the
Fresnel-Soret zone plate [15]. A further drawback is chromatic
aberration. This is particularly an issue for helium microscopy
because the beam has a pressure-dependent velocity spread.
This is discussed in detail in this paper.

It should be mentioned that there is an alternative class
of focusing element for neutral helium optics, namely, mir-
rors [16—18]. The advantage of mirrors is that they have no
chromatic aberrations so that the velocity spread of the beam
does not play a role, though there will be a certain signal loss
through diffraction and scattering from steps and point defects
as well as inelastic scattering. The fabrication limit induced
by the width of the outermost zone is also not an issue, so that
the mirrors can, in principle, be made much larger. The use
of graphene as a mirror coating gives an inert and very stable
surface [19]. Quantum reflection for focusing has also been
demonstrated [20]. Unfortunately, until now, it has not been
possible to control the curvature of mirrors with high enough
precision, so that Fresnel zone-plate-based optical elements
remain the most promising approach for the focusing of neutral
atom and molecular beams.

A diagram of a helium zone plate microscope can be found
in Fig. 1. The basic idea is simple: the supersonic expansion
helium beam is collimated by a conically shaped aperture,
which we refer to as skimmer. An image of the skimmer
opening is focused onto a sample plane by a Fresnel zone plate.
The resolution of the microscope is then determined by the
focal spot size of the beam on the sample plane. In this work,
we define the resolution as the full width at half maximum
intensity of the beam spot. The beam scattered off the sample
is then collected at a given solid angle using a detector, and
the variation in this signal, while the sample is scanned, is
used to create an image. Alternatively, the transmitted beam is
detected by a detector placed behind a porous sample.

The aim of this paper is to determine the geometry of the
zone plate system which gives the maximum signal intensity
in the beam spot on the sample for a given resolution and
given width of the outermost zone of the zone plate. Our basic
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FIG. 1. Diagram of a zone plate microscope setup. The parame-
ters kept constant are in gray boxes. xs is the distance between the
nozzle and the skimmer aperture, and Ry is the radius of the quitting
surface. b is the working distance, ® is the focal spot size. rs and
1, are the radius of the skimmer and the radius of the zone plate,
respectively, and a is the distance between the skimmer and the zone
plate. Note that the system is rotationally symmetrical about the main
axis.

assumption is that the beam is created in a supersonic expan-
sion. For completeness, here we cite the detailed description of
how we model the source. The description is taken from [8]. In
a supersonic expansion, the helium gas expands into vacuum
through a nozzle that must have a diameter much bigger than
the mean free path of the gas particles. The atoms then collide
with each other, until eventually collisions cease and the atoms
are traveling in free molecular flow without interacting. The
supersonic expansion is chosen over, for example, an effusive
source because it gives the highest center-line intensity [21].
A common way to describe a supersonic expansion the-
oretically is the quitting-surface model. Here, the spherical
quitting surface represents the distance from the nozzle where
the atoms have reached molecular flow and are no longer
interacting [22]. The velocity distribution of the atoms along
the surface can be described by the most probable velocity v
along the parallel direction (the radial direction from the center
of propagation). This velocity is given together with either a
single parallel temperature or, in a more detailed description,
by a pair of temperatures 7};,7 associated to the orthogonal
components of the velocity in spherical coordinates. At the
quitting surface, the perpendicular temperature 7, must be
much smaller than the parallel temperature 7j;. In this paper,
the conditions at the quitting surface are calculated solving the
Boltzmann equation [23-25]. Negligible collisional coupling
is assumed at a distance where the temperatures of the beam
fulfill 7, /T < 0.01. Stopping the integration at T /T} =
0.005 has shown to affect the flow parameters by less than
0.1% [26]. For a single temperature and constant density
along the quitting surface, an analytical approximation for the
intensity exists, obtained by Sikora in 1973 [22]. For a pair of
temperatures, a numerical integral must be implemented [27].
From now on, we will name the single-temperature solution
Sikora’s approximation and, following the convention in the
literature, the dual-temperature model ellipsoidal quitting-
surface model. Both models are explained in detail in Sec. II.
In practice, one often measures an intensity reduction due
to backscattering of atoms into the beam line. For a com-
plete analysis, an optimization of the expansion parameters
(nozzle-skimmer distance, beam pressure, temperature, etc.)
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is therefore important. This has been studied, for example,
in [28-30] and is not a topic of this paper. We take all expansion
parameters, i.e., the most probable velocity, the perpendicular
and parallel temperatures of the beam, the skimmer-nozzle
distance, and the position of the quitting surface relative to the
skimmer, to be constant.

We set two further parameters to be constant: the resolution
and the width of the outermost zone. The behavior of the
system with respect to the width of the outermost zone is
monotone and easy to calculate if need be. This leaves us
with four variables, as can be seen from Fig. 1: the skimmer
opening rs, the zone plate radius r,,, the object distance a,
and the image distance b. We show that this reduces to a two-
variable optimization problem using the optical equations of
the system, which we describe in the next section. The intensity
can then be calculated over a wide span of combinations and
plotted in a single graph.

II. THEORETICAL FOUNDATION

A. The optical system

The size of the focal spot generated by a Fresnel zone
plate by imaging an aperture of radius rg is given by a
convolution of the chromatic aberration term of the zone
plate, o.n, the aperture (here, the skimmer), and the Airy
diffraction term o [15]. Both 0.y, and o can be assumed
to be Gaussian contributions because the velocity spread is
essentially Gaussian [Eq. (14)] and the first ring of the Airy
term approximates well to a Gaussian [31]. The skimmer is
assumed to approximate to a step function and thus carries a
1/«/§ term in the convolution [8,15].

The assumption that the skimmer approximates to a step
function gives a maximum bound to the focal spot size. In
reality, the intensity distribution decreases significantly along
the skimmer radius for large skimmers placed close to the
quitting surface. This has been experimentally investigated
in [24,26]. In this paper, we assume that the quitting surface
is close enough to the skimmer so that the skimmer directly
determines the object of the optical system. In general, for
resolutions of the order of less than 1 ym, the skimmers needed
for optimal design are sufficiently small compared to the radius
of the quitting surface to justify such an assumption, regardless
of how close the quitting surface is to the skimmer. It must
be noted that the step function assumption is only used when
determining the optic equations of the system. For the intensity
model used in Sec. III to calculate the intensity of the focal
spot, the real intensity profile and angular spread of the beam
are considered with no further assumptions.

The standard deviation resulting from the convolution
is multiplied by 24/21n(2) to obtain its full width at half
maximum (FWHM):

M 2
® =2y2In2), |02, + 02 + (%)

2
_ K\/agm +ol 4 (%) , )

where oy, is the chromatic aberration, and o4 is the Airy
diffraction term limiting the resolution of the microscope. The
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magnification factor M of the optical system greatly influences
the focal spot size. It is given by the following equation [15]:

m=-1

a a-—f

where f is the focal length of the Fresnel zone plate which
depends on its radius and Ar as follows [15]:

, 2)

2rpAr
A

where A is the average de Broglie wavelength of the beam given
by A = h/mv, m is the mass of a helium atom, / is the Planck
constant, and  is the most probable velocity of helium atoms
along the radial direction. b corresponds to the distance of the
focused image from the zone plate and is also the working
distance of the microscope (Fig. 1). From combining Eqgs. (2)
and (3) while assuming constant Ar and A, one obtains b —
b(a,r,p), reducing the system from four to three variables. The
chromatic aberration term stems from the dependence of the
focal length on the wavelength. It can be proven to be [15,32]

f= ; 3)

& )

oy m — ’

Ts2
where § = v/,/2kgT)|/m is the parallel speed ratio, which is
used as a measure of the velocity spread of the beam. The
Airy term stems from the diffraction of helium atoms with the
Fresnel zone plate. It can be expressed in terms of the width

of the smallest zone Ar [15],

0.42a Ar
OAN= ——, >
a—f

where a is the distance between the aperture and the zone
plate. If a > f, the equation reduces to

(&)

o = 0.42Ar. (6)

For the strong demagnification (M <« 1) desired in a zone plate
microscope, this is the case [see Eq. (2)], and therefore Eq. (6)
will be used throughout the paper. This diffraction term will
have a constant influence on the focal spot size. Therefore, it is
convenient to define a corrected focal spot size @', obtained by
squaring Eq. (1), subtracting o3, and redefining the left-hand
side of the equation,

/ q)2 2
¢ = F — O\ (N
Equation (1) now simplifies to
Mrs\>
@/2=03m+(ﬁs>. ®)

The optical system has three variables: the distance between
the skimmer and the zone plate, a, the radius of the skimmer,
rs, and the radius of the zone plate, r,,. For a given focal spot
size @, the variables are interrelated through Eq. (1). In this
paper, we will mostly use the expression rs — rs(a,7,p):

, 32 2rpAr\ @2 1 ©)
rg = a— — - = |
N ) r2 282
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It is also interesting to obtain a — a(rs,r),

1
rp \2
3[02 - (35)]

This equation sets the expected limitations for a zone plate mi-
croscope. If the chromatic aberration and the Airy diffraction
term add up to more than the desired focal spot, the solution
is nonreal and therefore the setup is nonphysical. Therefore,
Eq. (10) sets a limit to the maximum physical zone plate radius
for a given focal spot size. By imposing a real square root, one
obtains

a=rflrs +1]. (10)

rap < V259, (11)

A Fresnel zone plate consists of a finite series of alternate
zones. In the optimization presented in this paper, the radius of
the zone plate is varied continuously from very small values.
In practice, the finite value of the number of zones limits the
zone plate radius step through the following equation [15]:

T,

— 42];2 = ﬁ, T > AF. (12)
It is therefore important to keep this limitation in mind when
designing a zone plate setup. We will see that for most cases
of interest, the assumption r,, > Ar holds and it suffices to
round the zone plate radius to a multiple of Ar. A detailed
discussion regarding zone plates in the low-N limit can be
found in [39].

Equation (11) also gives the theoretical minimum resolution
of a zone plate microscope. By imposing that @’ is real, one
obtains

o2 )
— 205, ® 2 Koa=Ar, (13)
which means that the minimum resolution of a zone plate
microscope is given by the smallest achievable pattern on a
zone plate. This is a well-known result previously derived for
light optics [15].

B. The intensity models

As discussed in Sec. I, the most general model of the
intensity field of a supersonic helium beam is the ellip-
soidal quitting-surface model. The velocity distribution over
the quitting surface is assumed to be elliptical Maxwell-
Boltzmann [22],

. m 2 m
fen@) = n<2nkBT|) (anBTL)

xexp|:——( v — )

m- s

T vl], (14)
where m is the mass of a helium atom, kg is Boltzmann’s
constant, and 7}, and T, are the parallel and perpendicular
temperatures, respectively. v is the most probable velocity of
the beam along the radial direction and v, and v, are the
parallel and perpendicular components of the velocity, respec-
tively, corresponding to the radial and angular components in
spherical coordinates.
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Integrating Eq. (14) over the quitting surface, across the
skimmer, and over the zone plate surface, one obtains the
following intensity equation:

TT}I() 3 —8%(1—€?cos®h)
27m2R2L/ / / g(8)rp cos (,3)6 e —€?
x D(b)dpdrda, (15)

where Ry is the radius of the quitting surface. n = 1/7? is the
geometrical efficiency of the zone plate for the first diffraction
order, corresponding to about 10% of the incoming signal [15].
Iy is the total intensity from a nozzle of diameter dy [21],

[2ks T, v ( 2\
B 0( d ) e (_) . (16)
kBTo 4 y+1\y+1

where Py and 7 are the thermodynamic pressure and temper-
ature of the helium gas before it undergoes the expansion.
y = Cp/Cy =5/3 for helium. « =2 is a peak factor as
defined in [21]. All other parameters are defined in detail in
Appendix B.

Unfortunately, the ellipsoidal quitting-surface model has no
simple analytical solutions and is often slow to compute over
a wide space of solutions. Using the quitting-surface model
with a single radial velocity distribution, it can be shown that
for S > 5, rs < Rp — xs, the intensity arriving at a zone plate
small enough to justify a constant radial intensity distribution
reads [22]

Iy =«

Ionmry, 2[ rs(Rg + a) T
— (1 —exp{ -S| —"—— ,
(Rp + a)? Rp(Rp — xs +a)

a7)

s =

where Rp — xs is the axial distance between the quitting
surface and the tip of the skimmer. This equation was obtained
independently by Sikora and Andersen [22] and thus we refer
to it as Sikora’s approximation, as mentioned in Sec. I. The
radius of the skimmer can be obtained from Eq. (9), reducing
the intensity equation to two independent variables:

Ionrrrzzp Ionnrzzp
(Rp+a)*  (Re+a)

32 2rpAr 2
X exp —m a — Y
(Rr +a)

252 1 :
X — =3 |:—:| . (18)
i 2 |LRr(RF — xs +a)

Assuming that a is much bigger than the focal length, f =

zr‘ii, it follows that the maximum intensity of a helium beam
monotonically increases with 1/Ar. Therefore, to obtain the
maximum intensity, Ar is chosen to be constant and equal to
the smallest realizable value.

We can use this equation together with Eq. (9) to obtain
an analytical equation for the position of the intensity maxima

given that either a or r, is taken to be constant,

]S (rzp,a) =

Vis(rp,a) = (0,0), 321 <0, a,.{pl <0, (19)
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which corresponds to a subset of the solutions of the following
equation:

2 2
v (RFF"ZE a)? <1 mP {_SZ[RF:;(f?Rj jc_sa-f)- a)i| ,) -

(20)

The derivatives with respect to the zone plate radius and the
skimmer-zone plate distance a can both be solved analytically.
The derivative of Eq. (18) with respect to the skimmer-zone
plate distance a is a simple cubic equation giving the a
corresponding to the maximum intensity at a given zone plate
radius,

a’® +2a*(Rg — ~/30'r,p) + aRp(Rp — 4r,p+/3T)

28297 + 7 (' — 1)
_ 2 zp
= rzp¢3rRF[ o057, | (21)

where ' = %(ﬂﬂ)2 is a constant of the problem which
gives the relative size of the smallest aperture of the zone
plate compared with the average wavelength of the beam,
usually I" > 1.

This approximation has been obtained under the following
assumptions, all of them justified in Appendix A:

— 3]+ GV3Try)

(Re +a)(a — ~/3Tr)[ F27

r7

I Ria? <t
(22)
a® + RFer\/ﬁ ~a?, 23)
(a — \/3_Frzp)2 ~ ala — 2x/3_FrZP), 24)
Rp — x5 K a. (25)

Therefore, a™* is obtained by solving the cubic equal-
ity (21) for a, which gives a single real positive solution.
The explicit analytical expression for a™** has been included
in Appendix A. In this work, the cubic equation was solved
numerically using MATLAB.

MATLAB was used to perform the numerical calculations in
this work. Particularly the function ROOTS was used to solve
Eq. (21) and INTEGRAL3 was used to calculate the integral in
Eq. (15). In Sec. III B, the MAX function was used to obtain
several global maxima of Sikora’s approximation, embedded
within a “for loop.”

III. RESULTS AND DISCUSSION
A. An example: ® = 0.9 um, Ar = 323 nm

To illustrate the power of our model, we consider some
of the best results published so far of focusing helium with a
zone plate [33]. Here a 0.9 pwm focus was achieved with a set to
1.528 m and Ar to approximately 323 nm (from the two zone
plates that were used, we chose to study the one referred to as
“the MIT zone plate”). In Fig. 2, we compare this setup to the
best configuration achievable according to our model, keeping
the same focal spot size and Ar. The original setup is marked
by a yellow cross, which can be seen to be placed far away

PHYSICAL REVIEW A 95, 013611 (2017)

%108
— 3
£
© 5
(0]
2 25
o
o4
5 2
N
o3
€
£ 15
—c‘<o2
[0}
2
S !
®
a

0 0.2 0.4 0.6 0.8 1 1.2
Zone plate radius (m) %107

FIG. 2. Intensity (part/s) in a 0.9 um focal spot of a zone plate
helium microscope for a span of values of r,, and a and for a constant
Ar = 323 nm. The solid line shows the subset of maximum solutions
given by Eq. (21), and the dashed line shows the numerical solution
using the ellipsoidal quitting-surface model. The intensity was calcu-
lated using the ellipsoidal quitting-surface model with the following
parameters: 7 = 0.0052 K, T, = 0.0035 K, Rg =0.01129 m, xg =
0.0113m, Ty = 115K, Py = 101 Bar, and > = 0.089 nm. The nozzle
diameter d, is set at 10 um. The maximum (black cross) lies at
(@™, ™, rg™) = (0.555m,3.763 x 107%m,1.195 x 107> m). The
yellow cross indicates the configuration corresponding to the original
setup used in [33]. The optimized design would increase the intensity
by seven times. An intensity increase of as much as 8000 times can
be achieved by reducing Ar to 10 nm (see Fig. 3).

from the intensity maximum (black cross). In Fig. 3, we show
the best setup and best achievable intensity with the smallest
realistic value of Ar (10 nm). In this case, the old setup cannot
be compared in the same plot, as Ar has changed.

The intensity for the model calculations is computed using
the ellipsoidal quitting-surface model [Eq. (15)] and plotted
with respect to two variables: r,, and a. The skimmer radius
rs is a hidden variable related to r,, and a by Eq. (9). A clear
intensity peak can be observed which for small zone plate
radii follows well. The approximation given by Eq. (21) (see
Figs. 2 and 3, solid line) is shown together with the real line of
zero gradient of the ellipsoidal quitting-surface model (dashed
line).

If Ar is set at a minimal construction limit of 10 nm, the
intensity increases significantly: 8000 times with respect to
the original setup (see Fig. 3). In this case, Eq. (21) gives a
value very close to the position of the intensity peak calculated
numerically.

The literature has so far featured relatively large zone
plates (r,, > 90 um), a regime where Sikora’s approximation
can perform badly [8]. Therefore, it is important to compare
Sikora’s approximation with the ellipsoidal quitting-surface
model. To do so, it is useful to plot the fraction of the
normalized intensities,

1 smax(IE)

" Igmax(ls) (26)
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FIG. 3. Intensity (part/s) in a 0.9 pum focal spot of a zone
plate helium microscope for a span of values of r,, and a and
for a constant Ar = 10 nm. The red line shows the subset of
maximum solutions given by Eq. (21) and the dashed line shows
the real line of zero derivative in the ellipsoidal quitting-surface
model. The intensity was calculated using the ellipsoidal quitting-
surface model with the following parameters: 7}, = 0.0052 K,
T, =0.0035 K, Rg=0.01129 m, x5 =0.0113 m, 7, = 115 K,
Py = 101 Bar, and A = 0.089 nm. The nozzle diameter d, is set
at 10 um. The maximum (black cross) lies at (ama",rz“l‘,“,rg“”" =
(0.06 m,12.22 x 107°m,1.173 x 10> m). Note how the intensity
peak is at 3.5 x 10'! (part/s), corresponding to an intensity of about
8000 times the configuration used in [33].

It can be seen that for zone plate microscopes, Sikora’s
approximation can be implemented across a broad zone plate
range (Fig. 4). Interestingly, ¢ is significantly bigger than 1
only for very small zone plates. This is the opposite behavior
from what one would expect, but it can be understood when
the skimmer radius is plotted. From the values of the skimmer
radius, one sees that the Sikora approximation fails for large
radii, showing that the size of the aperture closer to the quitting
surface (skimmer) is more important than the aperture further
away (zone plate) (Fig. 5). This is due to the off-axis intensity
decreasing faster the closer the quitting surface is to the plane
of interest.

B. Parametric dependences

In this paper, we reduce a multivariable multiparametric
system to a two-variable equation, giving a single optimal
configuration for a zone plate microscope. In this section,
we discuss the dependence of the system on some of
the parameters considered to be constant. Particularly, we
plot the dependence of the optimized system geometry
(ama",r;;,a",rg‘“) and intensity /, as a function of the focal
spot size P, the speed ratio S, and the width of the outermost
zone Ar.

To do so, we use Sikora’s approximation [Eq. (18)], which
approximates well the intensity maxima and requires much
lower computation times than the ellipsoidal quitting-surface
model. The quitting-surface properties such as the speed ratio
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FIG. 4. Normalized fraction of Sikora’s model divided by the
ellipsoidal quitting-surface model, ¢, for a span of values of r,, and
a. The solution was calculated for a zone plate helium microscope
with a resolution of 0.9 um and a Ar of 323 nm. The red line shows
the subset of maximum solutions given by Eq. (21). Both models
were computed using the following parameters: 7)) = 0.0052K, T, =
0.0035 K, R = 0.01129 m, xs = 0.0113 m, 7;, = 115 K, Py = 101
Bar, and A = 0.089 nm.

(when constant) and the radius of the quitting surface are set
at a fix value of § = 241.68 and Rg = 0.01129 m, calculated
solving the Boltzmann equation for 7o = 115K, Py = 101 Bar
as described in Sec. L.

10
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10°
10°
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10°®
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Zone plate radius (m) %107

(é)]

N

N

Distance skimmer-zone plate a (m)
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FIG. 5. Skimmer radius rs (m), for a zone plate helium micro-
scope with a resolution of 0.9 um and a Ar of 323 nm. The radius is
plotted with a logarithmic scale due to the high variations in its
magnitude. Note how in the areas where Sikora’s approximation
fails (see Fig. 4), the skimmer radius is largest. The red line
indicates the subset of maximum solutions given by Eq. (21). The
radius was calculated using the following parameters: S = 241.68,
2=89x 107" m.
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FIG. 6. Normalized optimized parameters of a zone plate helium
microscope for a span of values of the speed ratio S. The intensity was
calculated using Sikora’s approximation with the following param-
eters: To = 115 K, Py = 101 Bar at a fix resolution, ® = 0.9 um
and Ar = 10 nm. The maximum values of the parameters, used
for normalization are r,, = 10.2 um, rs = 458.6 um, a = 0.05 m,
I = 2.65 x 10! part/s. The small fluctuations of the data are due to
numerical effects.

From Fig. 6, we see that, as expected, a higher speed ratio
yields a smaller optimal skimmer radius. This is because with
higher speed ratios the beam is more collimated and thus
increasing the skimmer radius affects the intensity less. We
also see an increase of the intensity of the beam and an increase
of both the zone plate radius and the distance a (also aresult of a
more collimated beam). The increase of the optimal zone plate
radius is correlated with the decrease in chromatic aberrations:
bigger zone plates capture more particles, but also have larger
aberrations. Here, the increase in the speed ratio compensates
the larger aberration term [see Eq. (4)].

The dependence on the focal spot size ® is monotonous
and increasing in all cases. As expected, when the focal spot
increases, the maximum intensity increases as well (see Fig. 7).

Asexplained in Sec. III A, the maximum intensity increases
dramatically with smaller Ar. This is due to a combination of
a smaller microscope length with a larger zone plate radius.

To summarize: the theoretical best helium microscope
design is a compact microscope with a relatively large zone
plate, combining the closeness to the atom source with a large
angle of collection (see Fig. 8).

C. Realistic resolution limits

In this section, we estimate realistic resolution limits. The
calculations are done by setting constraints to all variables, as
discussed below. In a real microscope, the angular distribution
of the reflected intensity will depend on the sample topography.
As a suitable reference, here we assume Lambertian reflection.
Further, we assume that the detector is placed at an angle of 7 /4
radians relative to the sample normal with the detector opening
area perpendicular to the detector angle. This is similar to what
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FIG. 7. Normalized optimized parameters of a zone plate helium
microscope for a span of values of the focal spot size ¢ for a fixed
resolution Ar = 10 nm. The intensity was calculated using Sikora’s
approximation with the following parameters: Tp = 115 K, Py =
101 Bar, which corresponds to S = 241.7. The maximum values
of the parameters used for normalization are r,, = 29.7 um, rs =
17.4 pm, a = 0.09 m, I = 1.68 x 10'? part/s, and b = 0.007 m.
The small fluctuations of the data are due to numerical effects.

has been done in [8] where we model the resolution limits for
a pinhole microscope.
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FIG. 8. Normalized optimized parameters of a zone plate helium
microscope for a span of values of the width of the outermost zone Ar.
The intensity was calculated using Sikora’s approximation with the
following parameters: 7, = 115 K, P, = 101 Bar at a fixed resolution
® = 0.9 um. This corresponds to a speed ratio of S = 241.7. In this
case, b has also been included to emphasize the reduction of the
microscope length at high intensity setups. The maximum values
of the parameters used for normalization are r,, = 12.5 um, rs =
13.9 um,a = 0.7515m, I = 3.81 x 10'! part/s, and b = 0.0316 m.
The small fluctuations of the data are due to numerical effects.
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FIG. 9. Optimized count rate for different focal spot sizes. The
intensity was calculated using Sikora’s approximation with the
following parameters: 7y = 115 K, Py = 161 Bar, which corresponds
to S = 241.7. The efficiency of the detector, placed at /4 radians,
is n =1 x 107> (lower line) or n = 1 x 103 (upper line). The red
line indicates the 100 part/s intensity limit. The constraints on the
calculation are a minimum working distance of 10 um, a minimum
skimmer radius of 100 nm, and a minimum a of 1 mm. Ar is set at
10 nm.

The constraints we choose are a minimal working distance
b of 10 um (a value that has been claimed in the literature [7]),
and a minimal skimmer radius of 100 nm, which is commer-
cially available [34]. Ar is set at 10 nm and the radius of the
zone plate is limited to a minimum of 10Ar. a is set to a
minimum of 1 mm.

A minimal count rate of 100 counts per second is chosen.
This is, to a certain extent, an arbitrary choice, but 100 cts/s
for a Lambertian surface ensures a reasonably large range
of measurable intensity variations from different surface
topographies, provided the background signal can be kept
low. The count rate is determined by calculating the beam
intensity using Sikora’s approximation followed by deflection
by a Lambertian surface, as follows:

optim 52 2 )

N = %m} cos (%) ~ 14 x 1077 (27)
where d = 3 mm is the distance between the sample surface
and the detector, and R = 0.5 mm is the radius of the opening
area in the detector. This corresponds to the solid angle
of 0.027 sr mentioned in the Abstract, which was chosen
because it corresponds to the solid angle used in the most
recently published pinhole microscope experiment by Barr
et al. [30]. We have also used similar beam parameters. IN ptim
is the optimized intensity using Sikora’s approximation. np
is the efficiency of the detector, chosen to be between 1073
and 107> (an upper-limit estimate for a commercial mass
spectrometer)[35-38,40].

As we can see by comparing Figs. 7 and 9, resolutions
close to the diffraction limit (10 nm) are possible for a very
small working distance and the most efficient detector. Such a
configuration usually requires a small number of zones. Even

PHYSICAL REVIEW A 95, 013611 (2017)

for a small number of zones (more than five), the resolution has
been shown to approximate well to the optic lens limit and thus
the result should be correct to within a few nanometers [39].
For a detector of np = 1075, a microscope with a resolution
of 30 nm is possible. In this case, the number of zones used
in practical setups is already large enough to be in the lens
approximation regime.

A realistic “best resolution” configuration

The construction limits considered in the previous section
are arguably not stringent enough. Although a separation of
1 mm between the skimmer and the zone plate is possible,
placing a vacuum pump within that distance is difficult.
Similarly, a working distance of only 10 pm, although
demonstrated, is technically challenging to implement in the
reflection mode and limits the samples that can be imaged.
Therefore, we have also calculated the resolution limit with
a minimum a = 5 cm and a minimum working distance b of
3 mm to set a realistic limit. For np = 1073, sucha microscope
has a resolution limit of about 100 nm. For A = 0.088 nm, the
associated skimmer radius is 0.8 um. The zone plate radius is
12.4 um; Ar is 10 nm. For np = 1073, the resolution is limited
to 80 nm by Eq. (10) and not by the 100 counts/s limitation.
This latter case corresponds to a 0.2 um skimmer radius and
the same values for the rest of variables.

IV. CONCLUSION

In this paper, we present a theoretical model of the neutral
helium zone plate microscope. Using the optical equations of
the system and the quitting-surface approach, we are able to
obtain a two-variable intensity function for a given microscope
resolution and width of the outermost zone of the zone plate.
This function shows a clear intensity peak from which the
best zone plate microscope design can be determined. By
imposing realistic design constraints, we find that zone plate
microscopes with a resolution as low as 10 nm are possible.
We show how our model can be used to increase the intensity
of a published setup by as much as 8000 times. The approach
followed in this paper can easily be implemented for different
intensity models, such as models describing other types of
molecular beams and/or considering backscattering from the
skimmer, by simply adapting the intensity equation.
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APPENDIX A: DERIVATION OF EQ. (21)

To obtain Eq. (21), one must derive Eq. (18) with respect
to the skimmer-zone plate distance a and set it equal to 0. One
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then obtains (assuming Rr — x5 < a)

(25 = 3)(Re +a)y’(a — V3Tr)la + Reryp/3T]
l=exp(—F)[ 1+ — , Al
xp( )( FRZ0 ) (AD)
with -
(S > %)(RF + a)2(a - \/_r7p)
F = . A2
I'Ria? (A2)
Equation (A1) can be written as follows:
1 —A
—-F)=—=1 , = —, A3
Xp(—F) =y = te w =y (83)
with
(525 — 1)(Re + a)X(a — V3Trp)la? + Rerpy/3 n
A= 2 (A4)

I'Ria?

By plotting A along a wide range of parameters, one can see that for the conditions of interest along the intensity maxima, A < 1.
By taking the logarithm in Eq. (A3) and expanding using Taylor series log(1 — A) &~ —A, one obtains

Fr~——0, (AS)
which reduces to

(@ —V3Trp)(1 4 A) =

cﬂ + RFerV 3F (A6)
—a .

In general, the radius of the quitting surface, Rp, is of the order of millimeters (for the example shown in Sec. III C, it corresponds
to around 10 mm). For microscopes with low resolution and realistic speed ratios of the order of 100, the radius of the zone plate
is as much as hundreds of times the focal spot size [see Eq. (11)]. Conservatively, this means O(r,,) & 1 x 107*. The product of

the zone plate radius and the radius of the quitting surface is then of the order of Rpr,, < 1 x 107, /T scales as Ar/A, which

for high Ar is of the order of a few thousand. When compared with the order of a?, O(a?) ~ 1 x 1072, the product Rprp/3T
is at least one order of magnitude smaller (in practice in the studied cases, it was at least two orders of magnitude smaller).
Therefore, we can make the following approximation:

a® + Rprpv/3T ~ a*. (A7)

When developing Eq. (A5), we will encounter (@ — +/3I'r,p) at the first and second exponent. It will be helpful to find some
approximation to it. ~/3I'r,, is smaller than a such that the following approximation holds:

(a — x/3_1"rzp)2 =a’— 2\/3_1"rzpa + 31"r22p ~a’— 2«/3_Frzpa =ala — 2\/3_Frzp). (A8)

Implementing these approximations in Eq. (A5), one obtains
(525 = 3)(Re +a)(a — 2v/3Try)

I'R2

=/3Try. (A9)

By multiplying by rz3p and grouping for powers of a, one recovers Eq. (21):

a’® +2a*(Rp — ~/30'ry) + aRp(RE — 4r,p"/3T) = rzp¢3rR§[ (A10)

28202 +r;(C — 1)
§2®2 —0.5r2,

The second derivative of Eq. (18) with respect to a is too lengthy to justify an analytical proof of the negative value of the second
derivative at the intensity maximum. Instead, we follow a more practical numerical approach, which confirmed that the only real
positive solution of Eq. (A10) evaluates to a negative second derivative of Eq. (18).

The analytical solution of Eq. (A10) follows:

B (\/2712 T (I8GH —4G)I +4H? —G?H? —271 —9GH + 2G3)§

233 54
+ G* —3H G (Al1)
9(\/2712+(18GH—4G3)I+4H3—G2 H? . 727179GH+2G3)% 3 ’
233 54

28°®" +r  (I'—-1
where G = 2(Rp — v/3T7p), H = Rp(Re — 4r,p+/3T), and I = r,pv/3T RZ[WJ—O;Z)].
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APPENDIX B: THE ELLIPSOIDAL QUITTING-SURFACE
MODEL

The ellipsoidal quitting-surface model used in this paper
is an extension of Sikora’s ellipsoidal quitting-surface model,
except that the skimmer is allowed to be in a different position
than the quitting surface. Such a model was published by
Bossel in 1974 [27]. Here we describe corrected equations
from that work in detail. The main intensity equation arriving
at the zone plate is Eq. (15):

= s / / ’s / " oyrpcost(Brete -
271a2R1%L 0 0 0

x D(b)dpdrda, (B1)

where Rp is the radius of the quitting surface and
S =1//2kgT)/m 1is the parallel speed ratio. €=

. —1/2 . .
(7 sin® 6 + cos? ) / , T = % are auxiliary functions. The

function D(b) is defined as follows:
2
D(b) = ——be™" + (2b* + D[1 +erf(h)], b = Secosb,
JT

(B2)

where [ is defined in Eq. (16). g(8) is obtained from
the angular term in Eq. (12) of the Beijerinck and Verster
paper [21] (in Bossel’s work, a cos’ function is chosen
instead [27]) as follows:

& =cos’ (Z2). ="
g - 260 k] 0 — 2

where y = Cp/Cvy = 5/3 for helium has been used. L corre-
sponds to the integration of g(§) along the half sphere (all of the
intensity emitted by the source is set to be contained in g(§)),

y+1

LA

== B
- S (B3

L= / * ¢(8)sindds = . (B4)
O 4

p is the radial coordinate at the zone plate plane and r is the

radial coordinate at the skimmer plane. The angles 8,«, and

0 are shown in Fig. 10. The analytical expressions that relate

them to the radial coordinates of the system are as follows:

a

Va4 (rsina)? + (p — reosa)?

cos B = a = Xp — Xs,

(BS)
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P (Xg, Vg Zg) Y X0 > P’ (x,.0,2))
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»
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FIG. 10. Illustration of all variables used in the ellipsoidal
quitting-surface model. P is a point on the quitting surface from
which a particle leaves in a straight trajectory until P’, a point placed
on the zone plate plane. The point on the quitting surface is given by
the set of Cartesian coordinates (xg,Yr,zr), Which can be related to
the polar coordinates r,a, p for further integration. xs is the distance
from the nozzle to the skimmer and xp is the distance from the nozzle
to the zone plate. Therefore, a = xp — xs. The angles § and 6 can
also be expressed in terms of r, «, and p.

XR(Xp — XR) — Y& + Zr(0 — ZR)

, (B6)
RF\/(XD —xr)2+ ya + (p — zr)?

cosf =

where

. XD — XR
Xr = xp —&(xp — xs), YR =rsina| —— |,
Xp — Xs

ZR — rcosa(w> —_ p(M) + p’ (B7)
Xp — X§ XD — Xs
are the Cartesian coordinates of a point P on the quitting
surface (see Fig. 10), and

B —+/B?—- AC
§= B E— (B8)
A= (xp — x5)* + (rsina)® 4+ (p — r cos«)?, (B9)
B = xp(xp — x5) + p(p — rcosa), (B10)
C =x3+p* — R:. (B11)
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