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Interplay between exotic superfluidity and magnetism in a chain of four-component ultracold atoms
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We investigate the spin-polarized chain of ultracold alkaline-earth-metal atoms with spin-3/2 described by the
fermionic Hubbard model with SU(4) symmetric attractive interaction. The competition of bound pairs, trions,
quartets, and unbound atoms is studied analytically and by density-matrix renormalization-group simulations.
We find several distinct states where bound particles coexist with the ferromagnetic state of unpaired fermions.
In particular, an exotic inhomogeneous Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)-type superfluid of quartets
in a magnetic background of uncorrelated atoms is found for weaker interactions. We show that the system
can be driven from this quartet-FFLO state to a molecular state of localized quartets where spatial segregation
between molecular crystals and ferromagnetic liquids emerges, and this transition is reflected in the static structure
factor.
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I. INTRODUCTION

Investigating effective Hamiltonians with local contact
interactions has proven to be instrumental in understanding
the physics of ultracold atomic systems [1–3]. Realizing
exotic quantum states, e.g., inhomogeneous Fulde-Ferrell-
Larkin-Ovchinnikov (FFLO) superfluid pairs [4,5] or trionic
states [6], low-dimensional systems are of particular interest
owing to the large quantum fluctuations [7–16]. Thanks
to rapid progress in the experimental techniques in the
physics of ultracold atoms, by now not only two-component
systems can be experimentally realized but an insight into
unconventional molecular superfluids of multiple-body states
is also provided [11,17–32], which urges further studies of the
detailed properties of such systems.

The phase diagram of the one-dimensional four-component
interacting Fermi gas with s-wave scattering is well estab-
lished. It exhibits various exotic superfluid phases, among
them a phase with SU(4)-singlet quartets [28,33–39]. Contrary
to this, the behavior in an external magnetic field where a finite
spin imbalance develops is still an open question. For attractive
interactions far detuned from SU(4) symmetry, we observed
a mixing of spin-carrying pairs and spin-neutral quartets in
our earlier work [40,41]. In the case of experimentally more
relevant SU(4) symmetric couplings it is expected that the
quartets are replaced at least partially by other energetically
favorable spin-carrying excitations [10].

In this paper, we study the competition between magnetism
and superfluidity in the SU(4) symmetric Hubbard-like four-
component model in external magnetic field B,

H = −t

L∑
i,α

(ĉ†α,i ĉα,i+1 + H.c.) + U

2

L∑
i=1

n̂2
i + pNB, (1)
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by controlling the spin imbalance p. Here, L is the length
of the chain and operator ĉ

†
α,i creates a fermion with spin

α ∈ {−3/2,−1/2,1/2,3/2} at site i. The number operator
reads n̂i = ∑

α n̂α,i and p = 1
L

∑
i,α α〈n̂α,i〉. The total number

of particles is N , t measures the one-particle overlap between
neighboring sites, and U < 0 parametrizes the strength of
the SU(4) symmetric attraction between alkaline-earth-metal
atoms.

The quarter-filled, N = L, phase diagram is summarized
in Fig. 1 as a function of the coupling U and polarization
p. The partially polarized system exhibits three quartetting
phases with strikingly distinct character for increasing |U |
in the four-component region. Above a critical polarization
only α > 0 fermions are present in the system; i.e., we
observe a gapless two-component liquid. We found that a
three-component system emerges for weak or intermediate
interactions, while a direct transition between phases with four
and two fermion components is observed in the case of strong
enough couplings. In what follows we first give a qualitative
description of the behavior of the model in the bosonization
representation and then we present the results of numerical
calculations using the density-matrix renormalization-group
(DMRG) method [42,43].

II. BOSONIZATION

The properties determined by low-energy excitations can
be well understood within a hydrodynamical treatment taking
into account only those states which are in the vicinity of the
Fermi energy. In the case of spin balance the populations of
the four spin states are equal, and there are only two Fermi
points, ±kF.

Switching on spin imbalance this degeneracy is removed
and the Fermi momenta shift, leading to eight different Fermi
points at ±kα’s. Using standard notation [44,45], in boson
representation the total Hamiltonian can be written in the
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form

H = 1

π

∑
α

∫
dx

{(
2vα + U

π

)
(∂xφα)2 + 2vα(∂xθα)2

+ U

π

∑
α′(�=α)

∂xφα∂xφα′ + λα∂xφα

+ U

2π

∑
α′

cos[2(φα − φα′ )] + gu

∑
α′

cos

[
2
∑

α

φα

]}
,

(2)

where the Gaussian part describes the small momentum
transfer scattering processes, while the cosine terms describe
the ones with large momentum transfer. gu drives the four-
particle umklapp processes which may appear at quarter filling
and gu is proportional to U 3. We introduce a spin-dependent
Lagrange multiplier λα to fix the global occupation number of
the spin components and the total particle number per site.
The constraints on filling and polarization can be ensured
with two independent Lagrange multipliers λn and λs with
λα = λn + αλs . With this the explicit expression of the shifted
Fermi momenta is kα = kF + μBαλs , where μB is the Bohr
magneton, and α = ±1/2, ± 3/2. After the diagonalization
of the Gaussian part of Hamiltonian (2) in the spin space, the
linear term λα∂xφα can be transformed out by a simple shift
of the new bosonic fields.

When the interaction is weak compared to the energy
contribution of the magnetization and only particles close
to the Fermi points can be excited and can participate in
scattering processes, the quasimomentum conservation cannot
be satisfied by these relevant particles in the large-momentum-
transfer scattering processes [44]. This means that the spin
imbalance freezes out the real backscatterings and one arrives
at a Gaussian problem. In the case of quarter filling, similarly to
the backward scatterings, the four-particle umklapp processes
are also frozen out for weak interactions. In this case all
bosonic fields φ and their duals θ can fluctuate freely, and
the dominant instability is a 2kF density order (O2kF ∝ ei2φα )
with subdominant pairing, trioning, and quartetting. Further
increase of the spin polarization freezes out the spin compo-
nents one by one, and the system becomes equivalent to a
three- and a two-component system, respectively. In principle,
these transitions are not necessarily simple; i.e., close to the
transition points a finite spin gap could be expected to pin
the density fluctuations, whenever the backward scatterings
become sufficiently strong as we discussed above. However,
we see that our numerical results predict that the system stays
in the Gaussian state even close to the transition lines. In Fig. 1
this phase is referred to as a Gaussian (Luttinger) liquid with
different color for the different number of the spin component
n. Upon further increasing the polarization, it obviously
saturates at p = 3/2, and a liquid state of unbound fermions
with maximum spin projection (α = 3/2) is stabilized. This
trivial, n = 1, fully polarized phase is not indicated in Fig. 1.

As a consequence of the spin imbalance, the chargelike
mode does not correspond to the symmetric combination of the
density of the spin components ntot = ∑

α nα , but a weighted

sum of them: nw
tot = ∑

α aαnα with aα =
√

sin(kα)
sin(π/4) . Introducing

FIG. 1. Schematic phase diagram of spin-3/2 fermionic atoms
as a function of the attractive spin-independent interaction strength
|U | and the polarization 0 < p < 3/2. The dashed lines indicate
transitions between phases consisting of different numbers of spin
components n = 2, 3, and 4. The n = 1 fully polarized phase is not
indicated. The lines are only a guide to the eyes.

the new fields φα → aαφα the threefold-degenerate eigenvalue
of the Gaussian part of Hamiltonian (2) corresponds to the
spinlike modes, while the nondegenerate eigenvalue gives the
ratio of the sound velocity and the Luttinger parameter of
the chargelike mode uc/Kc. Figure 2 shows the characteristic
behavior of the four eigenvalues, and the Luttinger parameter
Kc. We find that Kc becomes divergent at a critical interaction
strength determined by the equation uc/Kc = 0. However, the
compressibility is directly related to ntot; the above singularity
in the Luttinger parameter of the chargelike weighted mode
also indicates density instability and the possibility of phase
separation in the system for stronger interactions—beyond
the validity of the hydrodynamical picture. This first-order
transition is supported by strong numerical evidences (see
below) and indicated in Fig. 1 by a dotted line between
the Gaussian liquid of the four-component system and the
phase-separated (PS) quartetting phase.

In the case of intermediate couplings one has to deal with the
backscatterings, and the four-particle umklapp processes, too.
Due to the different occupations of the four spin components,
all bosonic fields are coupled by the cosine terms in Eq. (2).
Accordingly, relevant processes can open both the charge and

|U |/t

u
/K
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2
spin-like modes

charge mode

|U |/t

K
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FIG. 2. (a) Eigenvalues of the Gaussian part of Hamiltonian (2) as
a function of the coupling U , and (b) the divergence of the Luttinger
parameter of the charge mode Kc indicating the density instability
which leads to phase separation in the system.
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the spin gap, leading to an incompressible liquid (ICL) state.
In this case only the dual fields θ fluctuate freely; therefore, the
competing correlations are the tunneling density OG ∝ ei2θα ,
and the various composite states: pairing OP ∝ ei2(θα+θα′ ),
trioning OT ∝ ei2(θα1 +θα2 +θα3 ), and quartetting OQ ∝ ei2

∑
α θα .

However, the tunneling density shows always the slowest
decay; the system can be characterized by the off-diagonal
orders of the competing composite bound states. For weak spin
imbalance, the interaction is sufficiently strong to suppress
the magnetic energy. In this regime our numerical analysis
supports that the system is indeed a gapped incompressible
liquid. The corresponding phase is indicated in Fig. 1 as
quartet-FFLO (ICL), notation that is based on the details of
our numerical findings discussed below.

III. NUMERICAL RESULTS

In order to establish a complete phase diagram of the
system we performed numerical calculations using the DMRG
method with open boundary condition up to L = 72 sites.
The accuracy was controlled by the dynamic block state
selection (DBSS) procedure [46,47], keeping up to 2000 block
states and performing 8 sweeps. In addition to the various
correlation functions and their Fourier transforms, we study
local densities measuring the exclusive occupation number
of unbound atoms and various molecules composed of two,
three, or four fermions. As examples, the explicit formula
for α = 3/2 free atom, quintet pair with m = 2, trion with
α = 3/2, and quartet read

A3/2,i = 〈(1 − n̂−3/2,i)(1 − n̂−1/2,i)(1 − n̂1/2,i)n̂3/2,i〉,
P2,2,i = 〈(1 − n̂−3/2,i)(1 − n̂−1/2,i)n̂1/2,i n̂3/2,i〉,

(3)
T3/2,i = 〈(1 − n̂−3/2,i)n̂−1/2,i n̂1/2,i n̂3/2,i〉,

Qi = 〈n̂−3/2,i n̂−1/2,i n̂1/2,i n̂3/2,i〉,
respectively. Results presented in the following are based
on detailed calculations for U/t ∈ {−0.1,−0.5,−1,−2,−3,

−4,−8,−20,−50,−100}.
Starting from the unpolarized case (p = 0) our numerical

study confirms the earlier results [28,34,35,37] about the
gapless Gaussian state in the very weak interaction regime
(|U |/t � 1), and the formation of quartets for moderate
attractive interactions (1 < |U |/t � 50). For extremely strong
interactions (|U |/t = 100)—far beyond the validity of the
field-theoretical description—we found that the quartets show
a tendency to become localized as the effective repulsion
between neighboring quartets, ∼t2/|U |, overwhelms their
effective hopping amplitude, ∼t4/|U |3. In our numerical
investigation, the highly degenerate crystals compete ener-
getically with the gapped liquid state observed for weaker
interactions. Given the extremely small energy scale needed
to be resolved, the ground state cannot be unambiguously
determined via numerics.

Polarizing the weakly interacting system up to moderate
values, the ground state does not change drastically compared
to the spin-balanced case. The correlation functions still show
power-law decay, and the system remains in the Gaussian
state as the phase diagram in Fig. 1 shows. However, as the
polarization is increased, the weight of the m = 2 pairs formed
of α = 3/2 and 1/2 fermions increases and their correlations
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FIG. 3. (a) Average occupation number of the characteristic
composite particles in the chain with L = 72 sites measured in
representative p values for U/t = −2. (b) Similar for U/t = −8.

become dominant over quartet decay. For sufficiently large
polarizations, where the gapless system contains exclusively
α > 0 particles and is therefore half filled, the Green’s function
of the majority component (α = 3/2) is dominant. Neverthe-
less, the slow algebraic decay of m = 2 pair correlations with
spatial oscillation periodicity proportional to the population
imbalance can be interpreted as FFLO pairing [48] (also
depicted in Fig. 1).

For intermediate attractive interactions (|U |/t ∈ {2,3}),
where quartetting becomes more prominent, the SU(4)-singlet
quartets of the unpolarized ground state start to dissolve into a
mixture with α = 3/2 unpaired fermions as the spin balance is
broken (see Fig. 3). The nature of the quartets can be caught by
the analysis of their center of mass (c.m.) momentum distribu-
tion. An exotic FFLO-like state is found since the peak of the
distribution shifts linearly with increasing polarization [49].
This quartet-FFLO state corresponds to the incompressible
liquid state of the bosonization predictions as it is shown in
Fig. 1. Note that in this state trions and m = 2 quintet pairs
are also observed with small weight as shown in Fig. 3(a) for
smaller values of p. As the polarization is further increased all
the correlation functions start to show algebraic decay and the
system becomes four-component Gaussian (see Fig. 1). Now
again we found that the polarization does not affect the corre-
lation functions in the Gaussian state, and up to intermediate
couplings the spin components are frozen out one by one.

Turning now to the strongly interacting regime (|U |/t � 4),
we observe that in the polarized system the quartet crys-
tallization appears for significantly weaker U compared to
case p = 0. This can be understood as follows. The spin-
balanced ground state is purely characterized by quartets and
their localization is owed to the strong effective repulsion
as discussed above. Contrary to this, in the case of spin
imbalance, the crystallization and the spatial segregation
of the emerging composite particles are governed by their
mass imbalance similarly to two-component systems with
asymmetric hoppings [50–52]. In the present model, the
asymmetry can be understood in terms of the perturbation
theory: the effective hopping for pairs, trions, and quartets is
of order t2/|U |, t3/|U |2, and t4/|U |3, respectively [37].

In particular, for weak spin imbalance (PS quartetting
in Fig. 1), quartets become crystallized and segregate from
the sea of unbound α = 3/2 atoms according to the density
profiles [see Fig. 4(a)]. The c.m. of the quartets remains
zero independently of p and they behave like well-localized
hard-core bosons. For larger polarization, besides the free
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FIG. 4. (a) Typical density profile of the characteristic composite
particles measured in the PS-quartetting phase (U/t = −8, p = 1/8).
(b) Similar to (a) in the mixed PS-quartetting phase (U/t = −8,
p = 5/16). Here, for better visibility, we present the results for a
chain of length L = 48. The lines are only a guide to the eyes.

atoms, α = 3/2 trions appear gradually as well. The heavy
particles form domains so that the mobile α = 3/2 fermions
gain extra kinetic energy by maximized expansion [see
Fig. 4(b)]. For sufficiently strong couplings, not only trions
but the emerging m = 2 quintet pairs also become localized in
the domains of the quartets. We refer to this phase as mixed
PS quartetting in Fig. 1, although no sharp transition separates
it from the PS-quartetting phase.

In this strong-coupling region, contrary to results for
weaker interactions, the weights of the spin components α =
−1/2 and −3/2 vanish simultaneously as the polarization is
increased [see Fig. 3(b)], implying a direct transition between
the four- and two-component states. The two-component
system, found for sufficiently large p, is gapless and can
be characterized by the spatially nonuniform m = 2 pairing
similarly to results for weaker couplings as depicted in Fig. 1.

IV. OBSERVABLES

The structure of the density can be probed by light-
scattering diffraction measurements revealing essentially the
Fourier spectrum of the density-density correlations, χn(k) =
1/L

∑
l,l′ e

ik(l−l′)〈n̂l n̂l′ 〉. In the case of spin balance, corrob-
orating previous numerical analysis [35], we find that the
oscillation of density correlations develops a quasicoherent
peak at π/2 [see the p = 0 curves in Figs. 5(a) and 5(b)].
The characteristic periodicity of the density oscillations, i.e.,
the position of the quasicoherent peak, is determined by the
Fermi momentum. For finite p, the low-energy spectrum of the
system splits up and the Fermi momenta shift, leading to eight
different Fermi points as was discussed in the bosonization
section. As a consequence, multiple peaks emerge according
to the relative population of the four spin components which
can be observed nicely in Fig. 5(a).

The asymptotic behavior of the density correlations reveals
the Luttinger parameter (Kc), which is proportional to the
compressibility. It can be extracted from the structure factor in
the long-wavelength limit, i.e., Kc = π/4 limk→0 χn(k)/k. We
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FIG. 5. (a) Fourier transform of the density correlations for
U/t = −2 at various total imbalances Sz = pL, denoted with distinct
colors. (b) Similar to (a) for U/t = −8, amplitudes for Sz �= 0 are
magnified by a factor of 5 for better visibility.

observe that the Luttinger parameter of the weakly interacting
system is independent of the spin imbalance up to critical
polarization pc ≈ 5/6 where fermion component α = −3/2
freezes out. At pc, reaching the n = 3 Luttinger liquid phase
with strongly asymmetrical filling, the compressibility of the
system drops suddenly to a smaller value as observed in the
k → 0 limit of the curves in Fig. 5(a). The value of pc does not
show significant systematic changes for shorter chains either.

The phase separation can also be detected in the changing
of Kc, i.e., the long-wavelength gradient of the density
correlations. We found that Kc is an order of magnitude smaller
in the strongly interacting spin-polarized system—even for
small polarization—compared to the case of spin balance as a
direct consequence of the quartet crystallization. Furthermore,
the Luttinger parameter—and therefore κ also—increases
slightly for increasing p as a consequence of the decreasing
presence of crystallized quartet domains, and larger weight of
the free atoms in the system.

V. CONCLUDING REMARKS

We investigated the phase diagram of a quarter-filled
attractive four-component fermionic chain in the presence
of spin polarization. We show that the system is unstable
against quartet formation in the whole four-component region,
but the nature of the ground state in the various phases
shows fundamental differences like molecular crystallization,
FFLO-like quartetting without superfluidity (gapless state), or
quartet-FFLO superfluidity (gapped state). We also show that
the sudden localization of the molecular quartets for stronger
interactions leaves a clear fingerprint in the static structure
factor.
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